1
|
Pasternak-Mnich K, Kujawa J, Agier J, Kozłowska E. Impact of photobiomodulation therapy on pro-inflammation functionality of human peripheral blood mononuclear cells - a preliminary study. Sci Rep 2024; 14:23111. [PMID: 39367102 PMCID: PMC11452683 DOI: 10.1038/s41598-024-74533-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
Research into the efficacy of photobiomodulation therapy (PBMT) in reducing inflammation has been ongoing for years, but standards for irradiation methodology still need to be developed. This study aimed to test whether PBMT stimulates in vitro human peripheral blood mononuclear cells (PBMCs) to synthesize pro-inflammatory cytokines, including chemokines. PBMCs were irradiated with laser radiation at two wavelengths simultaneously (λ = 808 nm in continuous emission and λ = 905 nm in pulsed emission). The laser radiation energy was dosed in one dose as a whole (5 J, 15 J, 20 J) or in a fractionated way (5 J + 15 J and 15 J + 5 J) with a frequency of 500, 1,500 and 2,000 Hz. The surface power densities were 177, 214 and 230 mW/cm2, respectively. A pro-inflammatory effect was observed at both the transcript and protein levels for IL-1β after PBMT at the energy doses 5 J and 20 J (ƒ=500 Hz) and only at the transcript level after application of PBMT at energy doses of 20 J (ƒ= 1,500; ƒ=2,000 Hz) and 5 + 15 J (ƒ=500 Hz). An increase in CCL2 and CCL3 mRNA expression was observed after PBMT at 5 + 15 J (ƒ=1,500 Hz) and 15 + 5 J (ƒ=2,000 Hz) and CCL3 concentration after application of an energy dose of 15 J (frequency of 500 Hz). Even though PBMT can induce mRNA synthesis and stimulate PBMCs to produce selected pro-inflammatory cytokines and chemokines, it is necessary to elucidate the impact of the simultaneous emission of two wavelengths on the inflammatory response mechanisms.
Collapse
Affiliation(s)
- Kamila Pasternak-Mnich
- Department of Medical Rehabilitation, Faculty of Health Sciences, Medical University of Lodz, 251 Pomorska St, Lodz, 92-213, Poland.
| | - Jolanta Kujawa
- Department of Medical Rehabilitation, Faculty of Health Sciences, Medical University of Lodz, 251 Pomorska St, Lodz, 92-213, Poland
| | - Justyna Agier
- Department of Microbiology, Genetics and Experimental Immunology, Lodz Centre of Molecular Studies on Civilisation Diseases, Medical University of Lodz, Lodz, 92-215, Poland
| | - Elżbieta Kozłowska
- Department of Microbiology, Genetics and Experimental Immunology, Lodz Centre of Molecular Studies on Civilisation Diseases, Medical University of Lodz, Lodz, 92-215, Poland
| |
Collapse
|
2
|
Wang J, Xue X, Zhao X, Luo L, Liu J, Dai S, Zhang F, Wu R, Liu Y, Peng C, Li Y. Forsythiaside A alleviates acute lung injury by inhibiting inflammation and epithelial barrier damages in lung and colon through PPAR-γ/RXR-α complex. J Adv Res 2024; 60:183-200. [PMID: 37579917 PMCID: PMC11156707 DOI: 10.1016/j.jare.2023.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/04/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023] Open
Abstract
INTRODUCTION Acute lung injury (ALI) is a lung disease characterized by inflammation and still requires further drug development. Forsythiaside A as the active compound of Forsythiae Fructus has the therapeutic potential for ALI. OBJECTIVE To investigate the mechanism of forsythiaside A in treating ALI through PPAR-γ and its conjugate RXR-α based on gut-lung axis. METHODS This study constructed in vitro and in vivo injury models using LPS and TNF-α. Forsythiaside A was used for the drug treatment, and RXR-α inhibitor UVI3003 was used to interfere with PPAR-γ/RXR-α complexes in the cells. HE staining was used for histopathological examination. Serum endotoxin contents were determined using limulus lysate kit. IHC staining and Western blot were conducted to assess the protein expressions. ELISA was applied to examine the content of pro-inflammatory cytokines in the cell supernatants. The protein interactions were analyzed via CO-IP. RESULTS In vivo results showed that forsythiaside A regulated PPAR-γ/RXR-α and inhibited TLR4/MAPK/NF-κB and MLCK/MLC2 signal pathways, thus inhibiting inflammation and epithelial barrier damages of lung and colon in ALI mice induced by intratracheal LPS. PPAR-γ/RXR-α were promoted by forsythiaside A in lungs, whereas inhibited by forsythiaside A in colons. Additionally, in vitro results showed that forsythiaside A suppressed inflammation and epithelial barrier damages in macrophages and lung/colon epithelial cells, by manipulating PPAR-γ/RXR-α to suppress the LPS- and TNF-α-induced activation of TLR4/MAPK/NF-κB and NF-κB/MLCK/MLC2 signal pathways. Moreover, further mechanism study indicated that forsythiaside A showed a cell-specific regulatory effect on PPAR-γ/RXR-α complex. Specifically, the PPAR-γ/RXR-α protein interactions were promoted by forsythiaside A in LPS-induced macrophages RAW264.7 and TNF-α-induced lung epithelial cells A549, but inhibited by forsythiaside A in TNF-α-induced colon epithelial cells SW620. CONCLUSION In the treatment of ALI, Forsythiaside A inhibited inflammation and epithelial barrier damages of lung and colon through its regulation on PPAR-γ/RXR-α complex.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xingtao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lin Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Juan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rui Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yanfang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
3
|
Zhu Y, Wang L, Li J, Zhao Y, Yu X, Liu P, Deng X, Liu J, Yang F, Zhang Y, Yu J, Lai L, Wang C, Li Z, Wang L, Luo T. Photoaffinity labeling coupled with proteomics identify PDI-ADAM17 module is targeted by (-)-vinigrol to induce TNFR1 shedding and ameliorate rheumatoid arthritis in mice. Cell Chem Biol 2024; 31:452-464.e10. [PMID: 37913771 DOI: 10.1016/j.chembiol.2023.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 08/01/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023]
Abstract
Various biological agents have been developed to target tumor necrosis factor alpha (TNF-α) and its receptor TNFR1 for the rheumatoid arthritis (RA) treatment, whereas small molecules modulating such cytokine receptors are rarely reported in comparison to the biologicals. Here, by revealing the mechanism of action of vinigrol, a diterpenoid natural product, we show that inhibition of the protein disulfide isomerase (PDI, PDIA1) by small molecules activates A disintegrin and metalloprotease 17 (ADAM17) and then leads to the TNFR1 shedding on mouse and human cell membranes. This small-molecule-induced receptor shedding not only effectively blocks the inflammatory response caused by TNF-α in cells, but also reduces the arthritic score and joint damage in the collagen-induced arthritis mouse model. Our study indicates that targeting the PDI-ADAM17 signaling module to regulate the shedding of cytokine receptors by the chemical approach constitutes a promising strategy for alleviating RA.
Collapse
Affiliation(s)
- Yinhua Zhu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Lu Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jing Li
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing 100044, China
| | - Yuan Zhao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xuerong Yu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ping Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaobing Deng
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jingjing Liu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Fan Yang
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Beijing 100871, China
| | - Yini Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiaojiao Yu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Luhua Lai
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Chu Wang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Beijing 100871, China
| | - Zhanguo Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing 100044, China.
| | - Lei Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Tuoping Luo
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
4
|
Jin S, Li Y, Luo C, Cheng X, Tao W, Li H, Wang W, Qin M, Xie G, Han F. Corydalis tomentella Franch. Exerts anti-inflammatory and analgesic effects by regulating the calcium signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117499. [PMID: 38042392 DOI: 10.1016/j.jep.2023.117499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Corydalis tomentella Franch. is a perennial cespitose plant commonly used to treat stomachaches as a folk medicine. The C. tomentella total alkaloids have good protective effects against acute liver injury and potential anti-hepatoma and anti-Alzheimer's disease activities. AIM OF THE STUDY To establish an effective purification process for total alkaloids from C. tomentella and investigate the mechanism of their anti-inflammatory effects. MATERIALS AND METHODS Corydalis tomentella were purified using macroporous resin. Then the crude and purified C. tomentella extracts (cCTE and pCTE) were qualitatively analyzed using UPLC-Triple-TOF-MS/MS. The cCTE and pCTE were used to investigate and compare their anti-inflammatory effects on lipopolysaccharide (LPS)-induced RAW264.7 cells. Doses at 100, 200 and 400 mg/kg/d of pCTE were used to study their anti-inflammatory and analgesic activities in mice with xylene-induced ear swelling and acetic acid-induced writhing tests. Content of nitric oxide (NO), interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) were determined both in RAW264.7 cells and mice. Network pharmacology was used to predict the anti-inflammatory mechanism of C. tomentella, and the key enzymes were validated using qPCR and Western Blot analysis. Concentration of intracellular Ca2+ was detected using flow cytometric analysis. RESULTS The C. tomentella total alkaloid purity increased from 6.29% to 47.34% under optimal purification conditions. A total of 54 alkaloids were identified from CTE. Both cCTE and pCTE could suppress the LPS-induced production of NO, IL-6, IL-1β, and TNF-α in RAW264.7 cells. The pCTE exhibited a more potent anti-inflammatory effect; it also inhibited pain induced by xylene and acetic acid in mice. The calcium signaling pathway is associated with the anti-inflammatory and analgesic activities of C. tomentella. The mRNA expression of nitric oxide synthase (NOS) 2, NOS3 and calmodulin1 (CALM1) was regulated by C. tomentella through the reduction of inflammation-induced Ca2+ influx, and it also exhibited a more pronounced effect than the positive control (L-NG-nitro arginine methyl ester). CONCLUSIONS Purified C. tomentella extract shows anti-inflammatory effect both in vitro and in vivo. It exerts anti-inflammatory and analgesic effects through the calcium signaling pathway by down-regulating NOS2 and CALM1 expression and up-regulating NOS3 expression in LPS-induced RAW264.7 cells, and decreasing intracellular Ca2+ concentration.
Collapse
Affiliation(s)
- Shuyi Jin
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Yveting Li
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Chuan Luo
- Chongqing Institute of Medicinal Plant Cultivation, Chongqing, 408435, China.
| | - Xinyi Cheng
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Wei Tao
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Hongting Li
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Wanli Wang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Minjian Qin
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Guoyong Xie
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China; Medical Botanical Garden, China Pharmaceutical University, Nanjing, 210009, China.
| | - Feng Han
- Chongqing Institute of Medicinal Plant Cultivation, Chongqing, 408435, China.
| |
Collapse
|
5
|
Carmona-Rocha E, Rusiñol L, Puig L. New and Emerging Oral/Topical Small-Molecule Treatments for Psoriasis. Pharmaceutics 2024; 16:239. [PMID: 38399292 PMCID: PMC10892104 DOI: 10.3390/pharmaceutics16020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
The introduction of biologic therapies has led to dramatic improvements in the management of moderate-to-severe psoriasis. Even though the efficacy and safety of the newer biologic agents are difficult to match, oral administration is considered an important advantage by many patients. Current research is focused on the development of oral therapies with improved efficacy and safety compared with available alternatives, as exemplified by deucravacitinib, the first oral allosteric Tyk2 inhibitor approved for the treatment of moderate to severe psoriasis in adults. Recent advances in our knowledge of psoriasis pathogenesis have also led to the development of targeted topical molecules, mostly focused on intracellular signaling pathways such as AhR, PDE-4, and Jak-STAT. Tapinarof (an AhR modulator) and roflumilast (a PDE-4 inhibitor) have exhibited favorable efficacy and safety outcomes and have been approved by the FDA for the topical treatment of plaque psoriasis. This revision focuses on the most recent oral and topical therapies available for psoriasis, especially those that are currently under evaluation and development for the treatment of psoriasis.
Collapse
Affiliation(s)
- Elena Carmona-Rocha
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (E.C.-R.); (L.R.)
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
- Sant Pau Teaching Unit, School of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Lluís Rusiñol
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (E.C.-R.); (L.R.)
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
- Sant Pau Teaching Unit, School of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Lluís Puig
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (E.C.-R.); (L.R.)
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
- Sant Pau Teaching Unit, School of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| |
Collapse
|
6
|
Akçadağ G, Cansaran-Duman D, Aras ES, Ataoğlu H. Study on Cloning and Expression of TNF-α Variants in E. coli: Production, Purification, and Interaction with Anti-TNF-α Inhibitors. Protein Pept Lett 2024; 31:395-408. [PMID: 38847260 DOI: 10.2174/0109298665312592240516111404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND TNF-α is a proinflammatory cytokine and plays a role in cell proliferation, differentiation, survival, and death pathways. When administered at high doses, it may cause damage to the tumor vasculature, thereby increasing the permeability of the blood vessels. Therefore, monitoring the dose and the response of the TNF-α molecule is essential for patients' health. OBJECTIVES This study aimed to clone, express, and purify the active form of the TNF-α protein, which can interact with various anti-TNF-α inhibitors with high efficiency. METHODS Recombinant DNA technology was used to clone three different versions of codon-optimized human TNF-α sequences to E. coli. Colony PCR protocol was used for verification and produced proteins were analyzed through SDS-PAGE and western blot. Size exclusion chromatography was used to purify sTNF-α. ELISA techniques were used to analyze and compare binding efficiency of sTNF-α against three different standards. RESULTS Under native condition (25°C), interaction between sTNF-α and anti-TNF-α antibody was 3,970, compared to positive control. The interaction was 0,587, whereas it was 0,535 for TNF- α and anti-TNF-α antibodies under denaturing conditions (37°C). F7 of sTNF-α (920 μg/mL) had the same/higher binding efficiency to adalimumab, etanercept, and infliximab, compared to commercial TNF-α. CONCLUSION This study was the first to analyze binding efficiency of homemade sTNF-α protein against three major TNF-α inhibitors (adalimumab, etanercept, and infliximab) in a single study. The high binding efficiency of sTNF-α with adalimumab, etanercept, and infliximab, evidenced in this study supports the feasibility of its use in therapeutic applications, contributing to more sustainable, cost-effective, and independent healthcare system.
Collapse
Affiliation(s)
- Gülşah Akçadağ
- Department of Biology, Science Faculty, Ankara University, Tandogan, Ankara, Turkey
- Matriks Biotechnology Industry and Trade Ltd. Co., Gazi Teknopark, Ankara, Turkey
| | | | - Emine Sümer Aras
- Department of Biology, Science Faculty, Ankara University, Tandogan, Ankara, Turkey
| | - Haluk Ataoğlu
- Matriks Biotechnology Industry and Trade Ltd. Co., Gazi Teknopark, Ankara, Turkey
| |
Collapse
|
7
|
Xiong W, Jia L, Cai Y, Chen Y, Gao M, Jin J, Zhu J. Evaluation of the anti-inflammatory effects of PI3Kδ/γ inhibitors for treating acute lung injury. Immunobiology 2023; 228:152753. [PMID: 37832501 DOI: 10.1016/j.imbio.2023.152753] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/19/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023]
Abstract
Phosphatidylinositol 3-kinase delta (PI3Kδ) and gamma (PI3Kγ) are predominantly located in immune and hematopoietic cells. It is well-established that PI3Kδ/γ plays important roles in the immune system and participates in inflammation; hence, it could be a potential target for anti-inflammatory therapy. Currently, several PI3K inhibitors are used clinically to treat cancers with aberrant PI3K signaling; however, their role in treating acute respiratory inflammatory diseases has rarely been explored. Herein, we investigated the potential anti-inflammatory activities of several pharmacological PI3K inhibitors, including marketed drugs idelalisib (PI3Kδ), duvelisib (PI3Kδ/γ), and copanlisib (pan-PI3K with preferential α/δ) and the clinical drug eganelisib (PI3Kγ), for treating acute lung injury (ALI). In the lipopolysaccharide-induced RAW264.7 macrophage inflammatory model, the four inhibitors significantly suppressed proinflammatory cytokine expression by inhibiting the PI3K signaling pathway. Oral administration of PI3K inhibitors markedly improved lung injury in a murine model of ALI. PI3K pathway inhibition decreased inflammatory cell infiltration and totalprotein levels, as well as reduced the expression of associated lung inflammatory factors. Collectively, all four representative PI3K inhibitors exerted prominent anti-inflammatory properties, indicating that PI3K δ and/or γ inhibition could be ideal targets to treat respiratory inflammatory diseases by reducing the inflammatory response. The findings of the current study provide a new basis for utilizing PI3K inhibitors to treat acute respiratory inflammatory diseases.
Collapse
Affiliation(s)
- Wendian Xiong
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lei Jia
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yanfei Cai
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yun Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Mingzhu Gao
- Department of Clinical Research Center for Jiangnan University Medical Center (Wuxi No.2 People's Hospital), Wuxi, Jiangsu 214000, China.
| | - Jian Jin
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Jingyu Zhu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
8
|
Rusiñol L, Carmona-Rocha E, Puig L. Psoriasis: a focus on upcoming oral formulations. Expert Opin Investig Drugs 2023; 32:583-600. [PMID: 37507233 DOI: 10.1080/13543784.2023.2242767] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 07/30/2023]
Abstract
INTRODUCTION Targeted therapies have greatly improved the quality of life of patients with psoriasis. Despite the extensive list of treatments available, multiple new drugs are being developed, especially oral therapies with potential advantages as regards comfort of administration. However, the efficacy and safety of these new oral therapies need to be improved to match those of novel biologics. AREAS COVERED We provide a narrative review of the oral therapies for psoriasis that are currently under development, from Jak inhibitors to oral IL-17 and IL-23 inhibitors, among others. A literature search was performed for articles published from 1 January 2020, to 6 June 2023. EXPERT OPINION The approval of deucravacitinib, the first Jak inhibitor for the treatment of moderate-to-severe plaque psoriasis, heralds a bright therapeutic future with multiple new oral formulations. A great number of oral treatments with singular mechanism of action, like A3AR agonists, HSP90 inhibitors, ROCK-2 inhibitors, oral TNF inhibitors, oral IL-23 inhibitors, oral IL-17 inhibitors, PD4 inhibitors (orismilast) and several Tyk2 inhibitors, are currently being evaluated in clinical trials and could be suitable for approval in the future. Growing variation in treatment modes of administration will allow dermatologists to better integrate patient preferences in the therapeutic decision process.
Collapse
Affiliation(s)
- Lluís Rusiñol
- Dermatology Department IIB Sant Pau, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Elena Carmona-Rocha
- Dermatology Department IIB Sant Pau, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Lluís Puig
- Dermatology Department IIB Sant Pau, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| |
Collapse
|
9
|
Lay CS, Isidro-Llobet A, Kilpatrick LE, Craggs PD, Hill SJ. Characterisation of IL-23 receptor antagonists and disease relevant mutants using fluorescent probes. Nat Commun 2023; 14:2882. [PMID: 37208328 PMCID: PMC10199020 DOI: 10.1038/s41467-023-38541-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/08/2023] [Indexed: 05/21/2023] Open
Abstract
Association of single nucleotide polymorphisms in the IL-23 receptor with several auto-inflammatory diseases, led to the heterodimeric receptor and its cytokine-ligand IL-23, becoming important drug targets. Successful antibody-based therapies directed against the cytokine have been licenced and a class of small peptide antagonists of the receptor have entered clinical trials. These peptide antagonists may offer therapeutic advantages over existing anti-IL-23 therapies, but little is known about their molecular pharmacology. In this study, we use a fluorescent version of IL-23 to characterise antagonists of the full-length receptor expressed by living cells using a NanoBRET competition assay. We then develop a cyclic peptide fluorescent probe, specific to the IL23p19:IL23R interface and use this molecule to characterise further receptor antagonists. Finally, we use the assays to study the immunocompromising C115Y IL23R mutation, demonstrating that the mechanism of action is a disruption of the binding epitope for IL23p19.
Collapse
Affiliation(s)
- Charles S Lay
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK
- Chemical Biology, Medicine Design, GlaxoSmithKline, Stevenage, SG1 2NY, UK
| | | | - Laura E Kilpatrick
- Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK
- Division of Bimolecular Science and Medicinal Chemistry, School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Peter D Craggs
- Chemical Biology, Medicine Design, GlaxoSmithKline, Stevenage, SG1 2NY, UK.
- Crick-GSK Biomedical Linklabs, Medicine Design, GlaxoSmithKline, Stevenage, SG1 2NY, UK.
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK.
- Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK.
| |
Collapse
|
10
|
Mei X, Wang J, Zhang C, Zhu J, Liu B, Xie Q, Yuan T, Wu Y, Chen R, Xie X, Wei Y, Wang L, Shao G, Xiong Q, Xu Y, Feng Z, Zhang Z. Apigenin suppresses mycoplasma-induced alveolar macrophages necroptosis via enhancing the methylation of TNF-α promoter by PPARγ-Uhrf1 axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154504. [PMID: 36332388 DOI: 10.1016/j.phymed.2022.154504] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 09/09/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Mycoplasma-associated pneumonia is characterized by severe lung inflammation and immunological dysfunction. However, current anti-mycoplasma agents used in clinical practice do not prevent dysfunction of alveolar macrophages caused by the high level of the cytokine tumor necrosis factor-α (TNF-α) after mycoplasma infection. Apigenin inhibits the production of TNF-α in variet inflammation associated disease. PURPOSE This study aimed to investigate apigenin's effect on mycoplasma-induced alveolar immune cell injury and the mechanism by which it inhibits TNF-α transcription. METHODS In this study, we performed a mouse model of Mycoplasma hyopneumoniae infection to evaluate the effect of apigenin on reducing mycoplasma-induced alveolar immune cell injury. Furthermore, we carried out transcriptome analysis, RNA interference assay, methylated DNA bisulfite sequencing assay, and chromatin immunoprecipitation assay to explore the mechanism of action for apigenin in reducing TNF-α. RESULTS We discovered that M. hyopneumoniae infection-induced necroptosis in alveolar macrophages MH-S cells and primary mouse alveolar macrophages, which was activated by TNF-α autocrine. Apigenin inhibited M. hyopneumoniae-induced elevation of TNF-α and necroptosis in alveolar macrophages. Apigenin inhibited TNF-a mRNA production via increasing ubiquitin-like with PHD and RING finger domains 1 (Uhrf1)-dependent DNA methylation of the TNF-a promotor. Finally, we demonstrated that apigenin regulated Uhrf1 transcription via peroxisome proliferator activated receptor gamma (PPARγ) activation, which acts as a transcription factor binding to the Uhrf1 promoter and protected infected mice's lungs, and promoted alveolar macrophage survival. CONCLUTSION This study identified a novel mechanism of action for apigenin in reducing alveolar macrophage necroptosis via the PPARγ/ Uhrf1/TNF-α pathway, which may have implications for the treatment of Mycoplasma pneumonia.
Collapse
Affiliation(s)
- Xiuzhen Mei
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jian Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China; Department of Animal Science, Tibet Agricultural and Animal Husbandry College, Linzhi, China
| | - Chao Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jiale Zhu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Beibei Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qingyun Xie
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ting Yuan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yuzi Wu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Rong Chen
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xing Xie
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yanna Wei
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Li Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Guoqing Shao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qiyan Xiong
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yefen Xu
- Department of Animal Science, Tibet Agricultural and Animal Husbandry College, Linzhi, China.
| | - Zhixin Feng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China; Department of Animal Science, Tibet Agricultural and Animal Husbandry College, Linzhi, China.
| | - Zhenzhen Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.
| |
Collapse
|
11
|
Wu D, Robinson CV. Native Top-Down Mass Spectrometry Reveals a Role for Interfacial Glycans on Therapeutic Cytokine and Hormone Assemblies. Angew Chem Int Ed Engl 2022; 61:e202213170. [PMID: 36260431 PMCID: PMC10100379 DOI: 10.1002/anie.202213170] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Indexed: 11/06/2022]
Abstract
Oligomerization and glycosylation modulate therapeutic glycoprotein stability and efficacy. The interplay between these two critical attributes on therapeutic glycoproteins, is however often hard to define. Here, we present a native top-down mass spectrometry (MS) approach to assess the glycosylation status of therapeutic cytokine and hormone assemblies and relate interfacial glycan occupancy to complex stability. We found that interfacial O-glycan stabilizes tumor necrosis factor-α trimer. On the contrary, interferon-β1a dimerization is independent of glycosylation. Moreover, we discovered a unique distribution of N-glycans on the follicle-stimulating hormone α subunit. We found that the interfacial N-glycan, at Asn52 of the α subunit, interacts extensively with the β subunit to regulate the dimer assembly. Overall, we have exemplified a method to link glycosylation with assembly status, for cytokines and hormones, critical for informing optimal stability and bioavailability.
Collapse
Affiliation(s)
- Di Wu
- Department of ChemistryUniversity of OxfordOxfordOX1 3QZUK
- Kavli Institute for Nanoscience DiscoveryUniversity of OxfordOxfordOX1 3QUUK
| | - Carol V. Robinson
- Department of ChemistryUniversity of OxfordOxfordOX1 3QZUK
- Kavli Institute for Nanoscience DiscoveryUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
12
|
Wu D, Robinson CV. Native Top-Down Mass Spectrometry Reveals a Role for Interfacial Glycans on Therapeutic Cytokine and Hormone Assemblies. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202213170. [PMID: 38504999 PMCID: PMC10947189 DOI: 10.1002/ange.202213170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Indexed: 11/11/2022]
Abstract
Oligomerization and glycosylation modulate therapeutic glycoprotein stability and efficacy. The interplay between these two critical attributes on therapeutic glycoproteins, is however often hard to define. Here, we present a native top-down mass spectrometry (MS) approach to assess the glycosylation status of therapeutic cytokine and hormone assemblies and relate interfacial glycan occupancy to complex stability. We found that interfacial O-glycan stabilizes tumor necrosis factor-α trimer. On the contrary, interferon-β1a dimerization is independent of glycosylation. Moreover, we discovered a unique distribution of N-glycans on the follicle-stimulating hormone α subunit. We found that the interfacial N-glycan, at Asn52 of the α subunit, interacts extensively with the β subunit to regulate the dimer assembly. Overall, we have exemplified a method to link glycosylation with assembly status, for cytokines and hormones, critical for informing optimal stability and bioavailability.
Collapse
Affiliation(s)
- Di Wu
- Department of ChemistryUniversity of OxfordOxfordOX1 3QZUK
- Kavli Institute for Nanoscience DiscoveryUniversity of OxfordOxfordOX1 3QUUK
| | - Carol V. Robinson
- Department of ChemistryUniversity of OxfordOxfordOX1 3QZUK
- Kavli Institute for Nanoscience DiscoveryUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
13
|
Vugler A, O’Connell J, Nguyen MA, Weitz D, Leeuw T, Hickford E, Verbitsky A, Ying X, Rehberg M, Carrington B, Merriman M, Moss A, Nicholas JM, Stanley P, Wright S, Bourne T, Foricher Y, Zhu Z, Brookings D, Horsley H, Heer J, Schio L, Herrmann M, Rao S, Kohlmann M, Florian P. An orally available small molecule that targets soluble TNF to deliver anti-TNF biologic-like efficacy in rheumatoid arthritis. Front Pharmacol 2022; 13:1037983. [PMID: 36467083 PMCID: PMC9709720 DOI: 10.3389/fphar.2022.1037983] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/21/2022] [Indexed: 07/30/2023] Open
Abstract
Tumor necrosis factor (TNF) is a pleiotropic cytokine belonging to a family of trimeric proteins with both proinflammatory and immunoregulatory functions. TNF is a key mediator in autoimmune diseases and during the last couple of decades several biologic drugs have delivered new therapeutic options for patients suffering from chronic autoimmune diseases such as rheumatoid arthritis and chronic inflammatory bowel disease. Attempts to design small molecule therapies directed to this cytokine have not led to approved products yet. Here we report the discovery and development of a potent small molecule inhibitor of TNF that was recently moved into phase 1 clinical trials. The molecule, SAR441566, stabilizes an asymmetrical form of the soluble TNF trimer, compromises downstream signaling and inhibits the functions of TNF in vitro and in vivo. With SAR441566 being studied in healthy volunteers we hope to deliver a more convenient orally bioavailable and effective treatment option for patients suffering with chronic autoimmune diseases compared to established biologic drugs targeting TNF.
Collapse
Affiliation(s)
- Alexander Vugler
- Immunology Therapeutic Area, PV Early Solutions, UCB Pharma, Slough, United Kingdom
| | - James O’Connell
- Discovery Sciences, PV Early Solutions, UCB Pharma, Slough, United Kingdom
| | - Mai Anh Nguyen
- Sanofi R&D, TMED Pharmacokinetics Dynamics and Metabolism, Frankfurt am Main, Germany
| | - Dietmar Weitz
- Sanofi R&D, Drug Metabolism and Pharmacokinetics, Frankfurt am Main, Germany
| | - Thomas Leeuw
- Sanofi R&D, Type 1/17 Immunology, Immunology & Inflammation Research TA, Frankfurt, Germany
| | - Elizabeth Hickford
- Development Science, PV Early Solutions, UCB Pharma, Slough, United Kingdom
| | | | - Xiaoyou Ying
- Sanofi R&D, Translation In vivo Models, Cambridge, MA, United States
| | - Markus Rehberg
- Sanofi R&D, Translational Disease Modelling, Frankfurt am Main, Germany
| | - Bruce Carrington
- Discovery Sciences, PV Early Solutions, UCB Pharma, Slough, United Kingdom
| | - Mark Merriman
- Immunology Therapeutic Area, PV Early Solutions, UCB Pharma, Slough, United Kingdom
| | - Andrew Moss
- Translational Medicine Immunology, PV Early Solutions, UCB Pharma, Slough, United Kingdom
| | - Jean-Marie Nicholas
- Development Science, Drug Metabolism and Pharmacokinetics, UCB Pharma, Braine-I’Alleud, Belgium
| | - Phil Stanley
- Immunology Therapeutic Area, PV Early Solutions, UCB Pharma, Slough, United Kingdom
| | - Sara Wright
- Early PV Missions, PV Early Solutions, UCB Pharma, Slough, United Kingdom
| | - Tim Bourne
- Milvuswood Consultancy, Penn, United Kingdom
| | - Yann Foricher
- Sanofi R&D, Integrated Drug Discovery, Vitry-sur-Seine, France
| | - Zhaoning Zhu
- Global Chemistry, Discovery Sciences, PV Early Solutions, UCB Pharma, Slough, United Kingdom
| | - Daniel Brookings
- Global Chemistry, Discovery Sciences, PV Early Solutions, UCB Pharma, Slough, United Kingdom
| | - Helen Horsley
- Global Chemistry, Discovery Sciences, PV Early Solutions, UCB Pharma, Slough, United Kingdom
| | - Jag Heer
- Global Chemistry, Discovery Sciences, PV Early Solutions, UCB Pharma, Slough, United Kingdom
| | - Laurent Schio
- Sanofi R&D, Integrated Drug Discovery, Vitry-sur-Seine, France
| | - Matthias Herrmann
- Sanofi R&D, Type 1/17 Immunology, Immunology & Inflammation Research TA, Frankfurt, Germany
| | - Srinivas Rao
- Sanofi R&D, Translation In vivo Models, Cambridge, MA, United States
| | - Markus Kohlmann
- Sanofi R&D, Early Clinical Development, Therapeutic Area Immunology and Inflammation, Frankfurt am Main, Germany
| | - Peter Florian
- Sanofi R&D, Type 1/17 Immunology, Immunology & Inflammation Research TA, Frankfurt, Germany
| |
Collapse
|
14
|
Javaid N, Patra MC, Cho DE, Batool M, Kim Y, Choi GM, Kim MS, Hahm DH, Choi S. An orally active, small-molecule TNF inhibitor that disrupts the homotrimerization interface improves inflammatory arthritis in mice. Sci Signal 2022; 15:eabi8713. [DOI: 10.1126/scisignal.abi8713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Excessive signaling by the proinflammatory cytokine TNF is involved in several autoimmune diseases, including rheumatoid arthritis (RA). However, unlike the approved biologics currently used to treat this and other conditions, commercially available small-molecule inhibitors of TNF trimerization are cytotoxic or exhibit low potency. Here, we report a TNF-inhibitory molecule (TIM) that reduced TNF signaling in vitro and was an effective treatment in a mouse model of RA. The initial lead compound, TIM1, attenuated TNF-induced apoptosis of human and mouse cells by delaying the induction of proinflammatory NF-κB and MAPK signaling and caspase 3– and caspase 8–dependent apoptosis. TIM1 inhibited the secretion of the proinflammatory cytokines IL-6 and IL-8 by disrupting TNF homotrimerization, thereby preventing its association with the TNF receptor. In a mouse model of collagen-induced polyarthritis, the more potent TIM1 analog TIM1c was orally bioavailable and reduced paw swelling, histological indicators of knee joint pathology, inflammatory infiltration of the joint, and the overall arthritis index. Orally delivered TIM1c showed immunological effects similar to those elicited by intraperitoneal injection of the FDA-approved TNF receptor decoy etanercept. Thus, TIM1c is a promising lead compound for the development of small-molecule therapies for the treatment of RA and other TNF-dependent systemic inflammation disorders.
Collapse
Affiliation(s)
- Nasir Javaid
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Mahesh Chandra Patra
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Da-Eun Cho
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Maria Batool
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Korea
| | - Yoongeun Kim
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Gwang Muk Choi
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Dae-Hyun Hahm
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Korea
| |
Collapse
|
15
|
Yan B. Actuators for Implantable Devices: A Broad View. MICROMACHINES 2022; 13:1756. [PMID: 36296109 PMCID: PMC9610948 DOI: 10.3390/mi13101756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/12/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
The choice of actuators dictates how an implantable biomedical device moves. Specifically, the concept of implantable robots consists of the three pillars: actuators, sensors, and powering. Robotic devices that require active motion are driven by a biocompatible actuator. Depending on the actuating mechanism, different types of actuators vary remarkably in strain/stress output, frequency, power consumption, and durability. Most reviews to date focus on specific type of actuating mechanism (electric, photonic, electrothermal, etc.) for biomedical applications. With a rapidly expanding library of novel actuators, however, the granular boundaries between subcategories turns the selection of actuators a laborious task, which can be particularly time-consuming to those unfamiliar with actuation. To offer a broad view, this study (1) showcases the recent advances in various types of actuating technologies that can be potentially implemented in vivo, (2) outlines technical advantages and the limitations of each type, and (3) provides use-specific suggestions on actuator choice for applications such as drug delivery, cardiovascular, and endoscopy implants.
Collapse
Affiliation(s)
- Bingxi Yan
- Department of Electrical and Computer Engineering, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
16
|
Abdelraheem E, Lubberink M, Wang W, Li J, Reyes Romero A, van der Straat R, Du X, Groves M, Dömling A. Multicomponent Macrocyclic IL-17a Modifier. ACS Med Chem Lett 2022; 13:1468-1471. [PMID: 36105327 PMCID: PMC9465830 DOI: 10.1021/acsmedchemlett.2c00257] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/10/2022] [Indexed: 11/28/2022] Open
Abstract
![]()
IL-17a is a major inflammation target, with several approved
antibodies
in clinical use. Small-molecule IL-17a antagonists are an emerging
hot topic, with the recent advancement of three compounds into clinical
trials. Here, we describe the design, discovery, synthesis, and screening
of macrocyclic compounds that bind to IL-17a. We found that all currently
described IL-17a modifiers belong to the same pharmacophore model,
likely resulting in a similar receptor binding mode on IL-17a. A pipeline
of pharmacophore analysis, virtual screening, resynthesis, and protein
biophysics resulted in a potent IL-17a macrocyclic modifier.
Collapse
Affiliation(s)
- Eman Abdelraheem
- Department of Pharmacy, Drug Design Group, University of Groningen, A. Deusinglaan 1, Groningen 9700 AV, The Netherlands
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Max Lubberink
- Department of Pharmacy, Drug Design Group, University of Groningen, A. Deusinglaan 1, Groningen 9700 AV, The Netherlands
| | - Wenja Wang
- Department of Pharmacy, Drug Design Group, University of Groningen, A. Deusinglaan 1, Groningen 9700 AV, The Netherlands
| | - Jingyao Li
- Department of Pharmacy, Drug Design Group, University of Groningen, A. Deusinglaan 1, Groningen 9700 AV, The Netherlands
| | - Atilio Reyes Romero
- Department of Pharmacy, Drug Design Group, University of Groningen, A. Deusinglaan 1, Groningen 9700 AV, The Netherlands
| | - Robin van der Straat
- Department of Pharmacy, Drug Design Group, University of Groningen, A. Deusinglaan 1, Groningen 9700 AV, The Netherlands
| | - Xiaochen Du
- Department of Pharmacy, Drug Design Group, University of Groningen, A. Deusinglaan 1, Groningen 9700 AV, The Netherlands
| | - Matthew Groves
- Department of Pharmacy, Drug Design Group, University of Groningen, A. Deusinglaan 1, Groningen 9700 AV, The Netherlands
| | - Alexander Dömling
- Department of Pharmacy, Drug Design Group, University of Groningen, A. Deusinglaan 1, Groningen 9700 AV, The Netherlands
| |
Collapse
|
17
|
De Vita S, Finamore C, Chini MG, Saviano G, De Felice V, De Marino S, Lauro G, Casapullo A, Fantasma F, Trombetta F, Bifulco G, Iorizzi M. Phytochemical Analysis of the Methanolic Extract and Essential Oil from Leaves of Industrial Hemp Futura 75 Cultivar: Isolation of a New Cannabinoid Derivative and Biological Profile Using Computational Approaches. PLANTS 2022; 11:plants11131671. [PMID: 35807623 PMCID: PMC9269227 DOI: 10.3390/plants11131671] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022]
Abstract
Cannabis sativa L. is a plant belonging to the Cannabaceae family, cultivated for its psychoactive cannabinoid (Δ9-THC) concentration or for its fiber and nutrient content in industrial use. Industrial hemp shows a low Δ9-THC level and is a valuable source of phytochemicals, mainly represented by cannabinoids, flavones, terpenes, and alkaloids, with health-promoting effects. In the present study, we investigated the phytochemical composition of leaves of the industrial hemp cultivar Futura 75, a monoecious cultivar commercially used for food preparations or cosmetic purposes. Leaves are generally discarded, and represent waste products. We analyzed the methanol extract of Futura 75 leaves by HPLC and NMR spectroscopy and the essential oil by GC-MS. In addition, in order to compare the chemical constituents, we prepared the water infusion. One new cannabinoid derivative (1) and seven known components, namely, cannabidiol (2), cannabidiolic acid (3), β-cannabispirol (4), β-cannabispirol (5), canniprene (6), cannabiripsol (7), and cannflavin B (8) were identified. The content of CBD was highest in all preparations. In addition, we present the outcomes of a computational study focused on elucidating the role of 2α-hydroxy-Δ3,7-cannabitriol (1), CBD (2), and CBDA (3) in inflammation and thrombogenesis.
Collapse
Affiliation(s)
- Simona De Vita
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy; (S.D.V.); (G.L.); (A.C.)
| | - Claudia Finamore
- Department of Pharmacy, University of Naples, Via Domenico Montesano, 49, 80131 Naples, Italy; (C.F.); (S.D.M.)
| | - Maria Giovanna Chini
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (M.G.C.); (G.S.); (V.D.F.); (F.F.)
| | - Gabriella Saviano
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (M.G.C.); (G.S.); (V.D.F.); (F.F.)
| | - Vincenzo De Felice
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (M.G.C.); (G.S.); (V.D.F.); (F.F.)
| | - Simona De Marino
- Department of Pharmacy, University of Naples, Via Domenico Montesano, 49, 80131 Naples, Italy; (C.F.); (S.D.M.)
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy; (S.D.V.); (G.L.); (A.C.)
| | - Agostino Casapullo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy; (S.D.V.); (G.L.); (A.C.)
| | - Francesca Fantasma
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (M.G.C.); (G.S.); (V.D.F.); (F.F.)
| | - Federico Trombetta
- Societa Cooperativa Agricola MarcheSana, Localita San Biagio 40, 61032 Fano, Italy;
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy; (S.D.V.); (G.L.); (A.C.)
- Correspondence: (G.B.); (M.I.); Tel.: +39-089969741 (G.B.); +39-087-4404100 (M.I.)
| | - Maria Iorizzi
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (M.G.C.); (G.S.); (V.D.F.); (F.F.)
- Correspondence: (G.B.); (M.I.); Tel.: +39-089969741 (G.B.); +39-087-4404100 (M.I.)
| |
Collapse
|
18
|
Sasongko H, Nurrochmad A, Rohman A, Nugroho AE. Characteristic of Streptozotocin-Nicotinamide-Induced Inflammation in A Rat Model of Diabetes-Associated Renal Injury. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Background: Chemical agents such as streptozotocin (STZ) and nicotinamide (NAD) are used in animal models of diabetes mellitus and their related consequences in the kidneys. Several studies have been conducted to determine the modeling, however, the results are still unclear. Moreover, diabetic nephropathy is considered to begin with an inflammatory reaction in the kidneys.
Objectives: This study aims to investigate the metabolic profile STZ and NAD induce inflammation in the kidney.
Methods: The male Wistar rats used were divided into control and STZ-induced diabetes. Half of the diabetes group received a single dose of nicotinamide (230 mg/Kg) 15 minutes after STZ injection and all groups were monitored for 6 weeks. Furthermore, the profiles of creatinine, urea, and uric acid from serum and urine were observed and the kidney inflammation was tested by immunohistochemistry (IHC) with IL-6 and TNF-α parameters.
Results: The result shows that the administration of a single dose of 230 mg/kg NAD in diabetic rats induced with 50 mg/kg and 65 mg/kg STZ affects body weight and kidney organ index. For 6 weeks of testing, both doses of STZ were enhanced several parameters of kidney damage in diabetic rats in blood and urine chemical parameters. Furthermore, the use of NAD to promote inflammation in STZ-induced diabetic rats gave no significant difference. However, NAD can help mice live longer and avoid problems throughout the test.
Conclusions: The use of NAD leads to inflammation in Streptozotocin-induced diabetic rats. Therefore, the administration of Nicotinamide is recommended since it helps the rats live longer during the experiment.
Collapse
|