1
|
Knez D, Wang F, Duan WX, Hrast Rambaher M, Gobec S, Cheng XY, Wang XB, Mao CJ, Liu CF, Frlan R. Development of novel aza-stilbenes as a new class of selective MAO-B inhibitors for the treatment of Parkinson's disease. Bioorg Chem 2024; 153:107877. [PMID: 39396452 DOI: 10.1016/j.bioorg.2024.107877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/21/2024] [Accepted: 10/05/2024] [Indexed: 10/15/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by a progressive loss of nigrostriatal dopaminergic neurons. Inhibitors of monoamine oxidase B (MAO-B) have shown promise in alleviating motor symptoms and reducing oxidative stress associated with PD. In this study, we report the novel use of an azastilbene-based compound library for screening human (h)MAO-B, followed by optimization of initial hits to obtain compounds with low nanomolar inhibitory potencies (compound 9, IC50 = 42 nM) against hMAO-B. To ensure specificity and minimize false positives due to non-specific hydrophobic interactions, we performed comprehensive selectivity profiling against hMAO-A, butyrylcholinesterase (hBChE) and acetylcholinesterase (hAChE) - enzymes with hydrophobic active sites that are structurally distinct from hMAO-B. Docking analysis with Glide provided valuable insights into the binding interactions between the inhibitors and hMAO-B and also explained the selectivity against hMAO-A. In the cell-based model of Parkinson's disease, one of the compounds significantly reduced rotenone-induced accumulation of reactive oxygen species. In addition, these compounds showed a protective effect against acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced motor dysfunction in PD model mice and reduced MPTP-induced loss of striatal tyrosine hydroxylase-positive neurons in the substantia nigra. These results make azastilbene-based compounds a promising new class of hMAO-B inhibitors with potential therapeutic applications in Parkinson's disease and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Damijan Knez
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Wen-Xiang Duan
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Martina Hrast Rambaher
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Xiao-Yu Cheng
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Xiao-Bo Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Cheng-Jie Mao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China.
| | - Rok Frlan
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
2
|
Shi S, Fu L, Yi J, Yang Z, Zhang X, Deng Y, Wang W, Wu C, Zhao W, Hou T, Zeng X, Lyu A, Cao D. ChemFH: an integrated tool for screening frequent false positives in chemical biology and drug discovery. Nucleic Acids Res 2024; 52:W439-W449. [PMID: 38783035 PMCID: PMC11223804 DOI: 10.1093/nar/gkae424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/25/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
High-throughput screening rapidly tests an extensive array of chemical compounds to identify hit compounds for specific biological targets in drug discovery. However, false-positive results disrupt hit compound screening, leading to wastage of time and resources. To address this, we propose ChemFH, an integrated online platform facilitating rapid virtual evaluation of potential false positives, including colloidal aggregators, spectroscopic interference compounds, firefly luciferase inhibitors, chemical reactive compounds, promiscuous compounds, and other assay interferences. By leveraging a dataset containing 823 391 compounds, we constructed high-quality prediction models using multi-task directed message-passing network (DMPNN) architectures combining uncertainty estimation, yielding an average AUC value of 0.91. Furthermore, ChemFH incorporated 1441 representative alert substructures derived from the collected data and ten commonly used frequent hitter screening rules. ChemFH was validated with an external set of 75 compounds. Subsequently, the virtual screening capability of ChemFH was successfully confirmed through its application to five virtual screening libraries. Furthermore, ChemFH underwent additional validation on two natural products and FDA-approved drugs, yielding reliable and accurate results. ChemFH is a comprehensive, reliable, and computationally efficient screening pipeline that facilitates the identification of true positive results in assays, contributing to enhanced efficiency and success rates in drug discovery. ChemFH is freely available via https://chemfh.scbdd.com/.
Collapse
Affiliation(s)
- Shaohua Shi
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, P.R. China
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, 999077, P.R. China
| | - Li Fu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jiacai Yi
- School of Computer Science, National University of Defense Technology, Changsha, Hunan 410073, P.R. China
| | - Ziyi Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, P.R. China
| | - Xiaochen Zhang
- School of Information Technology, Shangqiu Normal University, Shangqiu, Henan 476000, P.R. China
| | - Youchao Deng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, P.R. China
| | - Wenxuan Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, P.R. China
| | - Chengkun Wu
- School of Computer Science, National University of Defense Technology, Changsha, Hunan 410073, P.R. China
| | - Wentao Zhao
- School of Computer Science, National University of Defense Technology, Changsha, Hunan 410073, P.R. China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Xiangxiang Zeng
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410082, P.R. China
| | - Aiping Lyu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, 999077, P.R. China
| | - Dongsheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
3
|
Klett T, Schwer M, Ernst LN, Engelhardt MU, Jaag SJ, Masberg B, Knappe C, Lämmerhofer M, Gehringer M, Boeckler FM. Evaluation of a Covalent Library of Diverse Warheads (CovLib) Binding to JNK3, USP7, or p53. Drug Des Devel Ther 2024; 18:2653-2679. [PMID: 38974119 PMCID: PMC11226190 DOI: 10.2147/dddt.s466829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/12/2024] [Indexed: 07/09/2024] Open
Abstract
Purpose Over the last few years, covalent fragment-based drug discovery has gained significant importance. Thus, striving for more warhead diversity, we conceived a library consisting of 20 covalently reacting compounds. Our covalent fragment library (CovLib) contains four different warhead classes, including five α-cyanoacacrylamides/acrylates (CA), three epoxides (EO), four vinyl sulfones (VS), and eight electron-deficient heteroarenes with a leaving group (SNAr/SN). Methods After predicting the theoretical solubility of the fragments by LogP and LogS during the selection process, we determined their experimental solubility using a turbidimetric solubility assay. The reactivities of the different compounds were measured in a high-throughput 5,5'-dithiobis-(2-nitrobenzoic acid) DTNB assay, followed by a (glutathione) GSH stability assay. We employed the CovLib in a (differential scanning fluorimetry) DSF-based screening against different targets: c-Jun N-terminal kinase 3 (JNK3), ubiquitin-specific protease 7 (USP7), and the tumor suppressor p53. Finally, the covalent binding was confirmed by intact protein mass spectrometry (MS). Results In general, the purchased fragments turned out to be sufficiently soluble. Additionally, they covered a broad spectrum of reactivity. All investigated α-cyanoacrylamides/acrylates and all structurally confirmed epoxides turned out to be less reactive compounds, possibly due to steric hindrance and reversibility (for α-cyanoacrylamides/acrylates). The SNAr and vinyl sulfone fragments are either highly reactive or stable. DSF measurements with the different targets JNK3, USP7, and p53 identified reactive fragment hits causing a shift in the melting temperatures of the proteins. MS confirmed the covalent binding mode of all these fragments to USP7 and p53, while additionally identifying the SNAr-type electrophile SN002 as a mildly reactive covalent hit for p53. Conclusion The screening and target evaluation of the CovLib revealed first interesting hits. The highly cysteine-reactive fragments VS004, SN001, SN006, and SN007 covalently modify several target proteins and showed distinct shifts in the melting temperatures up to +5.1 °C and -9.1 °C.
Collapse
Affiliation(s)
- Theresa Klett
- Laboratory for Molecular Design & Pharmaceutical Biophysics, Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Martin Schwer
- Laboratory for Molecular Design & Pharmaceutical Biophysics, Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Larissa N Ernst
- Laboratory for Molecular Design & Pharmaceutical Biophysics, Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Marc U Engelhardt
- Laboratory for Molecular Design & Pharmaceutical Biophysics, Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Simon J Jaag
- Pharmaceutical (Bio-) Analysis, Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Benedikt Masberg
- Pharmaceutical (Bio-) Analysis, Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Cornelius Knappe
- Pharmaceutical (Bio-) Analysis, Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Michael Lämmerhofer
- Pharmaceutical (Bio-) Analysis, Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Matthias Gehringer
- Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
- Medicinal Chemistry, Institute for Biomedical Engineering, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Frank M Boeckler
- Laboratory for Molecular Design & Pharmaceutical Biophysics, Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
- Interfaculty Institute for Biomedical Informatics (IBMI), Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| |
Collapse
|
4
|
Chen W, Jiang B, Zhao Y, Yu W, Zhang M, Liang Z, Liu X, Ye B, Chen D, Yang L, Li F. Discovery of benzyloxy benzamide derivatives as potent neuroprotective agents against ischemic stroke. Eur J Med Chem 2023; 261:115871. [PMID: 37852031 DOI: 10.1016/j.ejmech.2023.115871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Aberrant activation of N-methyl-d-aspartate receptors (NMDAR) and the resulting neuronal nitric oxide synthase (nNOS) excessive activation play crucial pathogenic roles in neuronal damage caused by stroke. Disrupting postsynaptic density protein 95 (PSD95)-nNOS protein-protein interaction (PPI) has been proposed as a potential therapeutic strategy for ischemic stroke without incurring the unwanted side effects of direct NMDAR antagonism. Based on a specific PSD95-nNOS PPI inhibitor (SCR4026), we conducted a detailed study on structure-activity relationship (SAR) to discover a series of novel benzyloxy benzamide derivatives. Here, our efforts resulted in the best 29 (LY836) with improved neuroprotective activities in primary cortical neurons from glutamate-induced damage and drug-like properties. Whereafter, co-immunoprecipitation experiment demonstrated that 29 significantly blocked PSD95-nNOS association in cultured cortical neurons. Furthermore, 29 displayed good pharmacokinetic properties (T1/2 = 4.26 and 4.08 h after oral and intravenous administration, respectively) and exhibited powerful therapeutic effects in rats subjected to middle cerebral artery occlusion (MCAO) by reducing infarct size and neurological deficit score. These findings suggested that compound 29 may be a promising neuroprotection agent for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Weilin Chen
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China; Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Bo Jiang
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Yifan Zhao
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Wei Yu
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Minyue Zhang
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Zhenchu Liang
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Xing Liu
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Binglin Ye
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Dongyin Chen
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China; Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Lei Yang
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China.
| | - Fei Li
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China; Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
5
|
Proj M, Hrast M, Bajc G, Frlan R, Meden A, Butala M, Gobec S. Discovery of a fragment hit compound targeting D-Ala:D-Ala ligase of bacterial peptidoglycan biosynthesis. J Enzyme Inhib Med Chem 2023; 38:387-397. [PMID: 36446617 PMCID: PMC9718554 DOI: 10.1080/14756366.2022.2149745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Bacterial resistance is an increasing threat to healthcare systems, highlighting the need for discovering new antibacterial agents. An established technique, fragment-based drug discovery, was used to target a bacterial enzyme Ddl involved in the biosynthesis of peptidoglycan. We assembled general and focused fragment libraries that were screened in a biochemical inhibition assay. Screening revealed a new fragment-hit inhibitor of DdlB with a Ki value of 20.7 ± 4.5 µM. Binding to the enzyme was confirmed by an orthogonal biophysical method, surface plasmon resonance, making the hit a promising starting point for fragment development.
Collapse
Affiliation(s)
- Matic Proj
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Ljubljana, Ljubljana, Slovenia
| | - Martina Hrast
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Bajc
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Rok Frlan
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Ljubljana, Ljubljana, Slovenia
| | - Anže Meden
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Ljubljana, Ljubljana, Slovenia
| | - Matej Butala
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Stanislav Gobec
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Ljubljana, Ljubljana, Slovenia,CONTACT Stanislav Gobec Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Ljubljana, Askerceva 7, 1000Ljubljana, Slovenia
| |
Collapse
|
6
|
Steinebach C, Bricelj A, Murgai A, Sosič I, Bischof L, Ng YLD, Heim C, Maiwald S, Proj M, Voget R, Feller F, Košmrlj J, Sapozhnikova V, Schmidt A, Zuleeg MR, Lemnitzer P, Mertins P, Hansen FK, Gütschow M, Krönke J, Hartmann MD. Leveraging Ligand Affinity and Properties: Discovery of Novel Benzamide-Type Cereblon Binders for the Design of PROTACs. J Med Chem 2023; 66:14513-14543. [PMID: 37902300 PMCID: PMC10641816 DOI: 10.1021/acs.jmedchem.3c00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/11/2023] [Accepted: 10/05/2023] [Indexed: 10/31/2023]
Abstract
Immunomodulatory imide drugs (IMiDs) such as thalidomide, pomalidomide, and lenalidomide are the most common cereblon (CRBN) recruiters in proteolysis-targeting chimera (PROTAC) design. However, these CRBN ligands induce the degradation of IMiD neosubstrates and are inherently unstable, degrading hydrolytically under moderate conditions. In this work, we simultaneously optimized physiochemical properties, stability, on-target affinity, and off-target neosubstrate modulation features to develop novel nonphthalimide CRBN binders. These efforts led to the discovery of conformationally locked benzamide-type derivatives that replicate the interactions of the natural CRBN degron, exhibit enhanced chemical stability, and display a favorable selectivity profile in terms of neosubstrate recruitment. The utility of the most potent ligands was demonstrated by their transformation into potent degraders of BRD4 and HDAC6 that outperform previously described reference PROTACs. Together with their significantly decreased neomorphic ligase activity on IKZF1/3 and SALL4, these ligands provide opportunities for the design of highly selective and potent chemically inert proximity-inducing compounds.
Collapse
Affiliation(s)
| | - Aleša Bricelj
- Faculty
of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Arunima Murgai
- Department
of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin
Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, D-12203 Berlin, Germany
| | - Izidor Sosič
- Faculty
of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Luca Bischof
- Max
Planck Institute for Biology Tübingen, D-72076 Tübingen, Germany
| | - Yuen Lam Dora Ng
- Department
of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin
Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, D-12203 Berlin, Germany
| | - Christopher Heim
- Max
Planck Institute for Biology Tübingen, D-72076 Tübingen, Germany
| | - Samuel Maiwald
- Max
Planck Institute for Biology Tübingen, D-72076 Tübingen, Germany
| | - Matic Proj
- Faculty
of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Rabea Voget
- Pharmaceutical
Institute, University of Bonn, D-53121 Bonn, Germany
| | - Felix Feller
- Pharmaceutical
Institute, University of Bonn, D-53121 Bonn, Germany
| | - Janez Košmrlj
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, SI 1000 Ljubljana, Slovenia
| | - Valeriia Sapozhnikova
- Department
of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin
Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, D-12203 Berlin, Germany
- Max
Delbrück
Center for Molecular Medicine, D-13125 Berlin, Germany
- German
Cancer Consortium (DKTK), Partner Site Berlin, DKFZ, D-69120 Heidelberg, Germany
| | - Annika Schmidt
- Department
of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin
Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, D-12203 Berlin, Germany
| | - Maximilian Rudolf Zuleeg
- Department
of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin
Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, D-12203 Berlin, Germany
| | - Patricia Lemnitzer
- Department
of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin
Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, D-12203 Berlin, Germany
| | - Philipp Mertins
- Max
Delbrück
Center for Molecular Medicine, D-13125 Berlin, Germany
- Berlin
Institute of Health, D-10178 Berlin, Germany
| | - Finn K. Hansen
- Pharmaceutical
Institute, University of Bonn, D-53121 Bonn, Germany
| | - Michael Gütschow
- Pharmaceutical
Institute, University of Bonn, D-53121 Bonn, Germany
| | - Jan Krönke
- Department
of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin
Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, D-12203 Berlin, Germany
- German
Cancer Consortium (DKTK), Partner Site Berlin, DKFZ, D-69120 Heidelberg, Germany
| | - Marcus D. Hartmann
- Max
Planck Institute for Biology Tübingen, D-72076 Tübingen, Germany
- Interfaculty
Institute of Biochemistry, University of
Tübingen, D-72076 Tübingen, Germany
| |
Collapse
|
7
|
Proj M, Strašek N, Pajk S, Knez D, Sosič I. Tunable Heteroaromatic Nitriles for Selective Bioorthogonal Click Reaction with Cysteine. Bioconjug Chem 2023. [PMID: 37354098 PMCID: PMC10360065 DOI: 10.1021/acs.bioconjchem.3c00163] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
The binucleophilic properties of 1,2-aminothiol and its rare occurrence in nature make it a useful reporter for tracking molecules in living systems. The 1,2-aminothiol moiety is present in cysteine, which is a substrate for a biocompatible click reaction with heteroaromatic nitriles. Despite the wide range of applications for this reaction, the scope of nitrile substrates has been explored only to a limited extent. In this study, we expand the chemical space of heteroaromatic nitriles for bioconjugation under physiologically relevant conditions. We systematically assembled a library of 116 2-cyanobenzimidazoles, 1-methyl-2-cyanobenzimidazoles, 2-cyanobenzothiazoles, and 2-cyanobenzoxazoles containing electron-donating and electron-withdrawing substituents at all positions of the benzene ring. The compounds were evaluated for their stability, reactivity, and selectivity toward the N-terminal cysteine of model oligopeptides. In comparison to the benchmark 6-hydroxy-2-cyanobenzothiazole or 6-amino-2-cyanobenzothiazole, we provide highly selective and moderately reactive nitriles as well as highly reactive yet less selective analogs with a variety of enabling attachment chemistries to aid future applications in bioconjugation, chemical biology, and nanomaterial science.
Collapse
Affiliation(s)
- Matic Proj
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Ljubljana, Askerceva 7, Ljubljana 1000, Slovenia
| | - Nika Strašek
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Ljubljana, Askerceva 7, Ljubljana 1000, Slovenia
| | - Stane Pajk
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Ljubljana, Askerceva 7, Ljubljana 1000, Slovenia
| | - Damijan Knez
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Ljubljana, Askerceva 7, Ljubljana 1000, Slovenia
| | - Izidor Sosič
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Ljubljana, Askerceva 7, Ljubljana 1000, Slovenia
| |
Collapse
|
8
|
Tredup C, Ndreshkjana B, Schneider NS, Tjaden A, Kemas AM, Youhanna S, Lauschke VM, Berger BT, Krämer A, Berger LM, Röhm S, Knapp S, Farin HF, Müller S. Deep Annotation of Donated Chemical Probes (DCP) in Organotypic Human Liver Cultures and Patient-Derived Organoids from Tumor and Normal Colorectum. ACS Chem Biol 2023; 18:822-836. [PMID: 36944371 PMCID: PMC10127199 DOI: 10.1021/acschembio.2c00877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Well-characterized small molecules are essential tools for studying the biology and therapeutic relevance of a target protein. However, many compounds reported in the literature and routinely studied in biomedical research lack the potency and selectivity required for mechanistic cellular studies on the function of a given protein. Furthermore, commercially available compounds often do not include useful tools developed by industry as part of their research and development efforts, as they frequently remain proprietary. The freely available donated chemical probe (DCP) library, fueled by generous donations of compounds from industry and academia, enables easy access to a steadily growing collection of these valuable and well-characterized tools. Here, we provide a systematic description of the current DCP library collection and their associated comprehensive characterization data, including a variety of in vitro and cellular assays. Of note, we characterized the set in relevant human primary models by employing hepatotoxicity screening in primary human liver spheroids and viability screening in patient-derived colorectal cancer organoids and matched normal-adjacent epithelium. Taken together, the DCP library represents a well-annotated, openly available collection of tool compounds for studying a wide range of targets, including kinases, G-protein-coupled receptors, and ion channels. As such, it represents a unique resource for the biomedical research community.
Collapse
Affiliation(s)
- Claudia Tredup
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438Frankfurt am Main, Germany
| | - Benardina Ndreshkjana
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596Frankfurt am Main, Germany
| | - Natalie S Schneider
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438Frankfurt am Main, Germany
| | - Amelie Tjaden
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438Frankfurt am Main, Germany
| | - Aurino M Kemas
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65Stockholm, Sweden
| | - Sonia Youhanna
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65Stockholm, Sweden
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65Stockholm, Sweden
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376Stuttgart, Germany
- University of Tübingen, 72074Tübingen, Germany
| | - Benedict-Tilman Berger
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438Frankfurt am Main, Germany
| | - Andreas Krämer
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main60596, Germany
| | - Lena M Berger
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438Frankfurt am Main, Germany
| | - Sandra Röhm
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438Frankfurt am Main, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main60596, Germany
| | - Henner F Farin
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main60596, Germany
- German Cancer Consortium (DKTK), Heidelberg69120, Germany
- German Cancer Research Center (DKFZ), 69120Heidelberg, Germany
| | - Susanne Müller
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438Frankfurt am Main, Germany
| |
Collapse
|
9
|
Proj M, Hrast M, Knez D, Bozovičar K, Grabrijan K, Meden A, Gobec S, Frlan R. Fragment-Sized Thiazoles in Fragment-Based Drug Discovery Campaigns: Friend or Foe? ACS Med Chem Lett 2022; 13:1905-1910. [DOI: 10.1021/acsmedchemlett.2c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Matic Proj
- Faculty of Pharmacy, University of Ljubljana, Askerceva 7, Ljubljana 1000, Slovenia
| | - Martina Hrast
- Faculty of Pharmacy, University of Ljubljana, Askerceva 7, Ljubljana 1000, Slovenia
| | - Damijan Knez
- Faculty of Pharmacy, University of Ljubljana, Askerceva 7, Ljubljana 1000, Slovenia
| | - Krištof Bozovičar
- Faculty of Pharmacy, University of Ljubljana, Askerceva 7, Ljubljana 1000, Slovenia
| | - Katarina Grabrijan
- Faculty of Pharmacy, University of Ljubljana, Askerceva 7, Ljubljana 1000, Slovenia
| | - Anže Meden
- Faculty of Pharmacy, University of Ljubljana, Askerceva 7, Ljubljana 1000, Slovenia
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Askerceva 7, Ljubljana 1000, Slovenia
| | - Rok Frlan
- Faculty of Pharmacy, University of Ljubljana, Askerceva 7, Ljubljana 1000, Slovenia
| |
Collapse
|
10
|
Grabrijan K, Hrast M, Proj M, Dolšak A, Zdovc I, Imre T, Petri L, Ábrányi-Balogh P, Keserű GM, Gobec S. Covalent inhibitors of bacterial peptidoglycan biosynthesis enzyme MurA with chloroacetamide warhead. Eur J Med Chem 2022; 243:114752. [PMID: 36126388 DOI: 10.1016/j.ejmech.2022.114752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/04/2022]
Abstract
MurA (UDP-N-acetylglucosamine enolpyruvyl transferase) catalyzes the first committed step in the cytoplasmic part of peptidoglycan biosynthesis and is a validated target enzyme for antibacterial drug discovery; the inhibitor fosfomycin has been used clinically for decades. Like fosfomycin, most MurA inhibitors are small heterocyclic compounds that inhibit the enzyme by forming a covalent bond with the active site cysteine. The reactive chloroacetamide group was selected from a series of suitable electrophilic thiol-reactive warheads. The predominantly one-step synthesis led to the construction of the final library of 47 fragment-sized chloroacetamide compounds. Several new E. coli MurA inhibitors were identified, with the most potent compound having an IC50 value in the low micromolar range. The electrophilic reactivity of all chloroacetamide fragments in our library was evaluated by a high-throughput spectrophotometric assay using the reduced Ellman reagent as a surrogate for the cysteine thiol. LC-MS/MS experiments confirmed the covalent binding of the most potent inhibitor to Cys115 of the digested MurA enzyme. The covalent binding was further investigated by a biochemical time-dependent assay and a dilution assay, which confirmed the irreversible and time-dependent mode of action. The efficacy of chloroacetamide derivatives against MurA does not correlate with their thiol reactivity, making the active fragments valuable starting points for fragment-based development of new antibacterial agents targeting MurA.
Collapse
Affiliation(s)
- Katarina Grabrijan
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| | - Martina Hrast
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| | - Matic Proj
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| | - Ana Dolšak
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| | - Irena Zdovc
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia.
| | - Tímea Imre
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary; MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary.
| | - László Petri
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary.
| | - Péter Ábrányi-Balogh
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary; Department of Organic Chemistry and Technology, Budapest University of Technology, Szt. Gellért tér 4., H-1117, Budapest, Hungary.
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary; Department of Organic Chemistry and Technology, Budapest University of Technology, Szt. Gellért tér 4., H-1117, Budapest, Hungary.
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
11
|
Moore R, Molyneux C, Sinclair I, Holdgate GA, Walsh J. Utilising acoustic mist ionisation mass spectrometry to identify redox cycling compounds in high throughput screening outputs. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2022; 27:369-374. [PMID: 35753605 DOI: 10.1016/j.slasd.2022.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Rapid triage of compounds acting via undesired mechanisms is a crucial stage in a high-throughput screening (HTS) cascade to ensure time and resource is efficiently assigned to the most propitious hits. Redox cycling compounds (RCCs) produce reactive oxygen species, such as hydrogen peroxide, which can impair protein function and appear as hits against liable targets. Direct measurement of tris(2-carboxyethyl)phosphine (TCEP) oxidation has been demonstrated as a sensitive and accurate measure of redox cycling [1]. However, the current nuclear magnetic resonance (NMR) based detection method is not compatible with the throughput required for triage of a HTS campaign. Here we employ Acoustic Mist Ionisation Mass Spectrometry (AMI-MS) [2] to rapidly measure oxidation of TCEP and accurately identify redox cyclers in a high throughput manner.
Collapse
Affiliation(s)
- Rachel Moore
- High Throughput Screening, Hit Discovery, Discovery Sciences, R&D Biopharmaceuticals, AstraZeneca, Alderley Park, UK.
| | - Corinne Molyneux
- High Throughput Screening, Hit Discovery, Discovery Sciences, R&D Biopharmaceuticals, AstraZeneca, Alderley Park, UK
| | - Ian Sinclair
- Sample management, Discovery Sciences, R&D Biopharmaceuticals, AstraZeneca, Alderley Park, UK
| | - Geoffrey A Holdgate
- High Throughput Screening, Hit Discovery, Discovery Sciences, R&D Biopharmaceuticals, AstraZeneca, Alderley Park, UK
| | - Jarrod Walsh
- High Throughput Screening, Hit Discovery, Discovery Sciences, R&D Biopharmaceuticals, AstraZeneca, Alderley Park, UK
| |
Collapse
|
12
|
Knez D, Gobec S, Hrast M. Screening of Big Pharma’s Library against Various in-house Biological Targets. Molecules 2022; 27:molecules27144484. [PMID: 35889355 PMCID: PMC9320114 DOI: 10.3390/molecules27144484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/27/2022] [Accepted: 07/08/2022] [Indexed: 12/04/2022] Open
Abstract
Open innovation initiatives provide opportunities for collaboration and sharing of knowledge and experience between industry, academia, and government institutions. Through open innovation, Merck is offering a Mini Library of 80 carefully selected compounds from previous research and development projects to a broader scientific community for testing in academic drug discovery projects. These compounds are predominantly drug-like and cover a broad range of molecular targets. They could potentially interact with other enzymes, receptors, transporters, and ion channels of interest. The Mini Library was tested on seven in-house enzymes (bacterial MurA, MurC ligase, and DdlB enzyme, human MAO-A/B, human BChE, and murine AChE), and several hits were identified. A follow-up series of structural analogues provided by Merck gave a more detailed insight into the accessibility and the quality of the hit compounds. For example, sartan derivatives were moderate inhibitors of MurC, whereas bisarylureas were potent, selective, nanomolar inhibitors of hMAO-B. Importantly, 3-n-butyl-substituted indoles were identified as low nanomolar selective inhibitors of hBChE. All in all, the hit derivatives provide new starting points for the further exploration of the chemical space of high-quality enzyme inhibitors.
Collapse
|