1
|
Tan Y, Zhao Z, Han Q, Xu P, Shen X, Jiang Y, Xu Q, Wu X. Identification of an RNA-binding perturbing characteristic for thiopurine drugs and their derivatives to disrupt CELF1-RNA interaction. Nucleic Acids Res 2024; 52:10810-10822. [PMID: 39268573 PMCID: PMC11472155 DOI: 10.1093/nar/gkae788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/17/2024] Open
Abstract
RNA-binding proteins (RBPs) are attractive targets in human pathologies. Despite a number of efforts to target RBPs with small molecules, it is still difficult to develop RBP inhibitors, asking for a deeper understanding of how to chemically perturb RNA-binding activity. In this study, we found that the thiopurine drugs (6-mercaptopurine and 6-thioguanine) effectively disrupt CELF1-RNA interaction. The disrupting activity relies on the formation of disulfide bonds between the thiopurine drugs and CELF1. Mutating the cysteine residue proximal to the RNA recognition motifs (RRMs), or adding reducing agents, abolishes the disrupting activity. Furthermore, the 1,2,4-triazole-3-thione, a thiopurine analogue, was identified with 20-fold higher disrupting activity. Based on this analogue, we found that compound 9 disrupts CELF1-RNA interaction in living cells and ameliorates CELF1-mediated myogenesis deficiency. In summary, we identified a thiol-mediated binding mechanism for thiopurine drugs and their derivatives to perturb protein-RNA interaction, which provides novel insight for developing RBP inhibitors. Additionally, this work may benefit the pharmacological and toxicity research of thiopurine drugs.
Collapse
Affiliation(s)
- Yang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Drum Tower Hospital Affiliated to Medical School, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zhibo Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Drum Tower Hospital Affiliated to Medical School, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Qingfang Han
- State Key Laboratory of Pharmaceutical Biotechnology, Drum Tower Hospital Affiliated to Medical School, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Peipei Xu
- Department of Hematology, Drum Tower Hospital Affiliated to Medical School, Nanjing University, Nanjing 210008, China
| | - Xiaopeng Shen
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yajun Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Drum Tower Hospital Affiliated to Medical School, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xingxin Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Drum Tower Hospital Affiliated to Medical School, School of Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Park MY, Lee S, Kim HH, Jeong SH, Abusaliya A, Bhosale PB, Seong JK, Park KI, Heo JD, Ahn M, Kim HW, Kim GS. Correlation with Apoptosis Process through RNA-Seq Data Analysis of Hep3B Hepatocellular Carcinoma Cells Treated with Glehnia littoralis Extract (GLE). Int J Mol Sci 2024; 25:9462. [PMID: 39273406 PMCID: PMC11394729 DOI: 10.3390/ijms25179462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Glehnia littoralis is a perennial herb found in coastal sand dunes throughout East Asia. This herb has been reported to have hepatoprotective, immunomodulatory, antioxidant, antibacterial, antifungal, anti-inflammatory, and anticancer activities. It may be effective against hepatocellular carcinoma (HCC). However, whether this has been proven through gene-level RNA-seq analysis is still being determined. Therefore, we are attempting to identify target genes for the cell death process by analyzing the transcriptome of Hep3B cells among HCC treated with GLE (Glehnia littoralis extract) using RNA-seq. Hep3B was used for the GLE treatment, and the MTT test was performed. Hep3B was then treated with GLE at a set concentration of 300 μg/mL and stored for 24 h, followed by RNA isolation and sequencing. We then used the data to create a plot. As a result of the MTT analysis, cell death was observed when Hep3B cells were treated with GLE, and the IC50 was about 300 μg/mL. As a result of making plots using the RNA-seq data of Hep3B treated with 300 μg/mL GLE, a tendency for the apoptotic process was found. Flow cytometry and annexin V/propidium iodide (PI) staining verified the apoptosis of HEP3B cells treated with GLE. Therefore, an increase or decrease in the DEGs involved in the apoptosis process was confirmed. The top five genes increased were GADD45B, DDIT3, GADD45G, CHAC1, and PPP1R15A. The bottom five genes decreased were SGK1, CX3CL1, ZC3H12A, IER3, and HNF1A. In summary, we investigated the RNA-seq dataset of GLE to identify potential targets that may be involved in the apoptotic process in HCC. These goals may aid in the identification and management of HCC.
Collapse
Affiliation(s)
- Min-Yeong Park
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea
| | - Sujin Lee
- Research Institute of Molecular Alchemy, Gyeongsang National University, 501, Jinju-daero, Jinju 52828, Republic of Korea
| | - Hun-Hwan Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea
| | - Se-Hyo Jeong
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea
| | - Abuyaseer Abusaliya
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea
| | - Pritam Bhangwan Bhosale
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea
| | - Je-Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Kwang-Il Park
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea
| | - Jeong-Doo Heo
- Biological Resources Research Group, Gyeongnam Department of Environment Toxicology and Chemistry, Korea Institute of Toxicology, 17 Jegok-gil, Jinju 52834, Republic of Korea
| | - Meejung Ahn
- Department of Animal Science, College of Life Science, Sangji University, Wonju 26339, Republic of Korea
| | - Hyun-Wook Kim
- Division of Animal Bioscience and Integrated Biotechnology, Jinju 52725, Republic of Korea
| | - Gon-Sup Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea
| |
Collapse
|
3
|
Lun W, Zhang X, Hong Y, Luo C, Liu Y. LINC00513 promotes colorectal cancer malignant progression by binding with IGF2BP1 to enhance the stability of connective tissue growth factor mRNA. Epigenomics 2024; 16:985-998. [PMID: 39072366 PMCID: PMC11404617 DOI: 10.1080/17501911.2024.2373686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/24/2024] [Indexed: 07/30/2024] Open
Abstract
Aim: This study aimed to investigate the role of LINC00513 in colorectal cancer (CRC) progression.Materials & methods: Cell proliferation was evaluated using Cell Counting Kit-8. Cell migration was detected with transwell assay. RNA pull-down was applied for verifying the interactions between LINC00513, IGF2BP1 and connective tissue growth factor (CTGF).Results: LINC00513, IGF2BP1 and CTGF levels were upregulated in CRC. Knockdown of LINC00513 significantly inhibited the malignant behavior of CRC cells. LINC00513 increased CTGF mRNA stability by binding with IGF2BP1. Furthermore, overexpression of IGF2BP1 or CTGF reversed the inhibitory effect of LINC00513 shRNA on CRC progression.Conclusion: LINC00513 promoted CRC cell malignant behaviors through IGF2BP1/CTGF.
Collapse
Affiliation(s)
- Weijian Lun
- Department of Gastroenterology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, 528200, Guangdong Province, P.R. China
| | - Xiaobin Zhang
- Department of Gastroenterology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, 528200, Guangdong Province, P.R. China
| | - Yinsheng Hong
- Department of Internal Medicine, Foshan Women & Children Hospital, Foshan, 528200, Guangdong Province, P.R. China
| | - Canhua Luo
- Department of Gastroenterology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, 528200, Guangdong Province, P.R. China
| | - Yongjia Liu
- Department of Gastroenterology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, 528200, Guangdong Province, P.R. China
| |
Collapse
|
4
|
Olotu O, Koskenniemi AR, Ma L, Paramonov V, Laasanen S, Louramo E, Bourgery M, Lehtiniemi T, Laasanen S, Rivero-Müller A, Löyttyniemi E, Sahlgren C, Westermarck J, Ventelä S, Visakorpi T, Poutanen M, Vainio P, Mäkelä JA, Kotaja N. Germline-specific RNA helicase DDX4 forms cytoplasmic granules in cancer cells and promotes tumor growth. Cell Rep 2024; 43:114430. [PMID: 38963760 DOI: 10.1016/j.celrep.2024.114430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 05/15/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024] Open
Abstract
Cancer cells undergo major epigenetic alterations and transcriptomic changes, including ectopic expression of tissue- and cell-type-specific genes. Here, we show that the germline-specific RNA helicase DDX4 forms germ-granule-like cytoplasmic ribonucleoprotein granules in various human tumors, but not in cultured cancer cells. These cancerous DDX4 complexes contain RNA-binding proteins and splicing regulators, including many known germ granule components. The deletion of DDX4 in cancer cells induces transcriptomic changes and affects the alternative splicing landscape of a number of genes involved in cancer growth and invasiveness, leading to compromised capability of DDX4-null cancer cells to form xenograft tumors in immunocompromised mice. Importantly, the occurrence of DDX4 granules is associated with poor survival in patients with head and neck squamous cell carcinoma and higher histological grade of prostate cancer. Taken together, these results show that the germ-granule-resembling cancerous DDX4 granules control gene expression and promote malignant and invasive properties of cancer cells.
Collapse
Affiliation(s)
- Opeyemi Olotu
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland
| | - Anna-Riina Koskenniemi
- Department of Pathology, Laboratory Division, Turku University Hospital and University of Turku, 20520 Turku, Finland
| | - Lin Ma
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland
| | - Valeriy Paramonov
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland; Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20500 Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Sini Laasanen
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland
| | - Elina Louramo
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland
| | - Matthieu Bourgery
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland; Centre for Population Health Research, Turku University Hospital and University of Turku, 20520 Turku, Finland
| | - Tiina Lehtiniemi
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland
| | - Samuli Laasanen
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Eliisa Löyttyniemi
- Department of Biostatistics, University of Turku and Turku University Hospital, 20520 Turku, Finland
| | - Cecilia Sahlgren
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20500 Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Jukka Westermarck
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Sami Ventelä
- Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Department for Otorhinolaryngology, Head, and Neck Surgery, University of Turku and Turku University Hospital, 20520 Turku, Finland
| | - Tapio Visakorpi
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, 33520 Tampere, Finland; Fimlab Laboratories, Tampere University Hospital, 33520 Tampere, Finland
| | - Matti Poutanen
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland; Turku Center for Disease Modeling, University of Turku, 20520 Turku, Finland; FICAN West Cancer Center, University of Turku, Turku University Hospital, 20500 Turku, Finland
| | - Paula Vainio
- Department of Pathology, Laboratory Division, Turku University Hospital and University of Turku, 20520 Turku, Finland
| | - Juho-Antti Mäkelä
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland
| | - Noora Kotaja
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland.
| |
Collapse
|
5
|
Cortese GP, Bartosch AMW, Xiao H, Gribkova Y, Lam TG, Argyrousi EK, Sivakumar S, Cardona C, Teich AF. ZCCHC17 knockdown phenocopies Alzheimer's disease-related loss of synaptic proteins and hyperexcitability. J Neuropathol Exp Neurol 2024; 83:626-635. [PMID: 38630575 PMCID: PMC11187431 DOI: 10.1093/jnen/nlae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
ZCCHC17 is a master regulator of synaptic gene expression and has recently been shown to play a role in splicing of neuronal mRNA. We previously showed that ZCCHC17 protein declines in Alzheimer's disease (AD) brain tissue before there is significant gliosis and neuronal loss, that ZCCHC17 loss partially replicates observed splicing abnormalities in AD brain tissue, and that maintenance of ZCCHC17 levels is predicted to support cognitive resilience in AD. Here, we assessed the functional consequences of reduced ZCCHC17 expression in primary cortical neuronal cultures using siRNA knockdown. Consistent with its previously identified role in synaptic gene expression, loss of ZCCHC17 led to loss of synaptic protein expression. Patch recording of neurons shows that ZCCHC17 loss significantly disrupted the excitation/inhibition balance of neurotransmission, and favored excitatory-dominant synaptic activity as measured by an increase in spontaneous excitatory post synaptic currents and action potential firing rate, and a decrease in spontaneous inhibitory post synaptic currents. These findings are consistent with the hyperexcitable phenotype seen in AD animal models and in patients. We are the first to assess the functional consequences of ZCCHC17 knockdown in neurons and conclude that ZCCHC17 loss partially phenocopies AD-related loss of synaptic proteins and hyperexcitability.
Collapse
Affiliation(s)
- Giuseppe P Cortese
- College of Arts, Sciences, and Education, Program in Biology, Montana State University Northern, Havre, Montana, USA
| | - Anne Marie W Bartosch
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, USA
| | - Harrison Xiao
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, USA
| | - Yelizaveta Gribkova
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, USA
| | - Tiffany G Lam
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, USA
| | - Elentina K Argyrousi
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, USA
| | - Sharanya Sivakumar
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, USA
| | - Christopher Cardona
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, USA
| | - Andrew F Teich
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
6
|
Rosemann J, Pyko J, Jacob R, Macho J, Kappler M, Eckert AW, Haemmerle M, Gutschner T. NANOS1 restricts oral cancer cell motility and TGF-ß signaling. Eur J Cell Biol 2024; 103:151400. [PMID: 38401491 DOI: 10.1016/j.ejcb.2024.151400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/04/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most frequent type of cancer of the head and neck area accounting for approx. 377,000 new cancer cases every year. The epithelial-to-mesenchymal transition (EMT) program plays an important role in OSCC progression and metastasis therefore contributing to a poor prognosis in patients with advanced disease. Transforming growth factor beta (TGF-ß) is a powerful inducer of EMT thereby increasing cancer cell aggressiveness. Here, we aimed at identifying RNA-binding proteins (RBPs) that affect TGF-ß-induced EMT. To this end we treated oral cancer cells with TGF-ß and identified a total of 643 significantly deregulated protein-coding genes in response to TGF-ß. Of note, 19 genes encoded RBPs with NANOS1 being the most downregulated RBP. Subsequent cellular studies demonstrated a strong inhibitory effect of NANOS1 on migration and invasion of SAS oral cancer cells. Further mechanistic studies revealed an interaction of NANOS1 with the TGF-ß receptor 1 (TGFBR1) mRNA, leading to increased decay of this transcript and a reduced TGFBR1 protein expression, thereby preventing downstream TGF-ß/SMAD signaling. In summary, we identified NANOS1 as negative regulator of TGF-ß signaling in oral cancer cells.
Collapse
Affiliation(s)
- Julia Rosemann
- Institute of Molecular Medicine, Section for RNA biology and pathogenesis, Martin Luther University Halle-Wittenberg, Halle 06120, Germany
| | - Jonas Pyko
- Institute of Molecular Medicine, Section for RNA biology and pathogenesis, Martin Luther University Halle-Wittenberg, Halle 06120, Germany
| | - Roland Jacob
- Institute of Molecular Medicine, Section for RNA biology and pathogenesis, Martin Luther University Halle-Wittenberg, Halle 06120, Germany
| | - Jana Macho
- Institute of Molecular Medicine, Section for RNA biology and pathogenesis, Martin Luther University Halle-Wittenberg, Halle 06120, Germany
| | - Matthias Kappler
- Department of Oral and Maxillofacial Plastic Surgery, Martin Luther University Halle-Wittenberg, Halle 06120, Germany
| | - Alexander W Eckert
- Department of Cranio Maxillofacial Surgery, Paracelsus Medical University, Nuremberg 90471, Germany
| | - Monika Haemmerle
- Institute of Pathology, Section for Experimental Pathology, Martin Luther University Halle-Wittenberg, Halle 06120, Germany
| | - Tony Gutschner
- Institute of Molecular Medicine, Section for RNA biology and pathogenesis, Martin Luther University Halle-Wittenberg, Halle 06120, Germany.
| |
Collapse
|
7
|
Jaiswal AK, Thaxton ML, Scherer GM, Sorrentino JP, Garg NK, Rao DS. Small molecule inhibition of RNA binding proteins in haematologic cancer. RNA Biol 2024; 21:1-14. [PMID: 38329136 PMCID: PMC10857685 DOI: 10.1080/15476286.2024.2303558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 02/09/2024] Open
Abstract
In recent years, advances in biomedicine have revealed an important role for post-transcriptional mechanisms of gene expression regulation in pathologic conditions. In cancer in general and leukaemia specifically, RNA binding proteins have emerged as important regulator of RNA homoeostasis that are often dysregulated in the disease state. Having established the importance of these pathogenetic mechanisms, there have been a number of efforts to target RNA binding proteins using oligonucleotide-based strategies, as well as with small organic molecules. The field is at an exciting inflection point with the convergence of biomedical knowledge, small molecule screening strategies and improved chemical methods for synthesis and construction of sophisticated small molecules. Here, we review the mechanisms of post-transcriptional gene regulation, specifically in leukaemia, current small-molecule based efforts to target RNA binding proteins, and future prospects.
Collapse
Affiliation(s)
- Amit K. Jaiswal
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, USA
| | - Michelle L. Thaxton
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, USA
| | - Georgia M. Scherer
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Jacob P. Sorrentino
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Neil K. Garg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Dinesh S. Rao
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, CA, USA
- Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA
| |
Collapse
|
8
|
Li C, Yin Y, Tao R, Lin Y, Wang T, Shen Q, Li R, Tao K, Liu W. ESRP1-driven alternative splicing of CLSTN1 inhibits the metastasis of gastric cancer. Cell Death Discov 2023; 9:464. [PMID: 38114495 PMCID: PMC10730894 DOI: 10.1038/s41420-023-01757-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023] Open
Abstract
Tumor metastasis severely limits the prognosis of gastric cancer patients. RNA-binding proteins (RBPs) are crucial in tumor metastasis, yet there is limited research into their involvement in gastric cancer. Here, we found that ESRP1, a RBP specific in epithelial cells, is important in regulating the metastasis of gastric cancer cells. ESRP1 is negatively correlated with distant metastasis and lymph node metastasis in gastric cancer patients. And we demonstrated that ESRP1 inhibit migration and invasion of gastric cancer in vitro and in vivo. Mechanistically, ESRP1 promotes exon 11 alternative splicing of CLSTN1 pre-mRNA. The post-splicing short CLSTN1 stabilizes the Ecadherin/β-catenin binding structure, and promotes β-catenin protein ubiquitination and degradation, thereby inhibiting the migration and invasion of gastric cancer cells. Our study highlights the role of ESRP1 in regulating metastasis of gastric cancer and extends its mechanism. These results provide a possibility for ESRP1 and CLSTN1 to become therapeutic targets for metastasis of gastric cancer.
Collapse
Affiliation(s)
- Chengguo Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuping Yin
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ruikang Tao
- Center for Biomolecular Science and Engineering, University of California, Santa Cruz, CA, 95064, USA
| | - Yao Lin
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tao Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qian Shen
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Runze Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Weizhen Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
9
|
Goswami B, Nag S, Ray PS. Fates and functions of RNA-binding proteins under stress. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023:e1825. [PMID: 38014833 DOI: 10.1002/wrna.1825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/03/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023]
Abstract
Exposure to stress activates a well-orchestrated set of changes in gene expression programs that allow the cell to cope with and adapt to the stress, or undergo programmed cell death. RNA-protein interactions, mediating all aspects of post-transcriptional regulation of gene expression, play crucial roles in cellular stress responses. RNA-binding proteins (RBPs), which interact with sequence/structural elements in RNAs to control the steps of RNA metabolism, have therefore emerged as central regulators of post-transcriptional responses to stress. Following exposure to a variety of stresses, the dynamic alterations in the RNA-protein interactome enable cells to respond to intracellular or extracellular perturbations by causing changes in mRNA splicing, polyadenylation, stability, translation, and localization. As RBPs play a central role in determining the cellular proteome both qualitatively and quantitatively, it has become increasingly evident that their abundance, availability, and functions are also highly regulated in response to stress. Exposure to stress initiates a series of signaling cascades that converge on post-translational modifications (PTMs) of RBPs, resulting in changes in their subcellular localization, association with stress granules, extracellular export, proteasomal degradation, and RNA-binding activities. These alterations in the fate and function of RBPs directly impact their post-transcriptional regulatory roles in cells under stress. Adopting the ubiquitous RBP HuR as a prototype, three scenarios illustrating the changes in nuclear-cytoplasmic localization, RNA-binding activity, export and degradation of HuR in response to inflammation, genotoxic stress, and heat shock depict the complex and interlinked regulatory mechanisms that control the fate and functions of RBPs under stress. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Binita Goswami
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohanpur, West Bengal, India
| | - Sharanya Nag
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohanpur, West Bengal, India
| | - Partho Sarothi Ray
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohanpur, West Bengal, India
| |
Collapse
|
10
|
Velayutham S, Seerattan R, Sultan M, Seal T, Danthurthy S, Chinnappan B, Landi J, Pearl K, Singh A, Smalley KSM, Zaias J, Choi JY, Minond D. Novel Anti-Melanoma Compounds Are Efficacious in A375 Cell Line Xenograft Melanoma Model in Nude Mice. Biomolecules 2023; 13:1276. [PMID: 37759675 PMCID: PMC10526148 DOI: 10.3390/biom13091276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/20/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023] Open
Abstract
Despite the successes of immunotherapy, melanoma remains one of the deadliest cancers, therefore, the need for innovation remains high. We previously reported anti-melanoma compounds that work by downregulating spliceosomal proteins hnRNPH1 and H2. In a separate study, we reported that these compounds were non-toxic to Balb/C mice at 50 mg/kg suggesting their utility in in vivo studies. In the present study, we aimed to assess the efficacy of these compounds by testing them in A375 cell-line xenograft in nude athymic mice. Animals were randomized into four groups (n = 12/group): 10 mg/kg vemurafenib, and 25 mg/kg 2155-14 and 2155-18 thrice a week for 15 days along with a control group. The results revealed that both 2155-14 and 2155-18 significantly decreased the growth of A375 tumors, which was comparable to vemurafenib. These results were confirmed by tumor volume, weight, and histopathological examination. In conclusion, these results demonstrate the therapeutic potential of targeting spliceosomal proteins hnRNPH1 and H2.
Collapse
Affiliation(s)
- Sadeeshkumar Velayutham
- College of Pharmacy, Nova Southeastern University, 3321 College Avenue, Fort Lauderdale, FL 33314, USA
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, 3321 College Avenue, CCR r.605, Fort Lauderdale, FL 33314, USA;
| | - Ryan Seerattan
- Department of Chemistry and Biochemistry, Queens College, 65-30 Kissena Boulevard, Flushing, NY 11367, USA
| | - Maab Sultan
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, 3321 College Avenue, CCR r.605, Fort Lauderdale, FL 33314, USA;
| | - Trisha Seal
- Halmos College of Arts and Sciences, Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, FL 33314, USA
| | - Samaya Danthurthy
- Honors College, Nova Southeastern University, 8000 N Ocean Dr., Dania Beach, FL 33004, USA
| | - Baskaran Chinnappan
- College of Pharmacy, Nova Southeastern University, 3321 College Avenue, Fort Lauderdale, FL 33314, USA
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, 3321 College Avenue, CCR r.605, Fort Lauderdale, FL 33314, USA;
| | - Jessica Landi
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, 3321 College Avenue, Fort Lauderdale, FL 33314, USA
| | - Kaitlyn Pearl
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, 3321 College Avenue, Fort Lauderdale, FL 33314, USA
| | - Aveta Singh
- Department of Chemistry and Biochemistry, Queens College, 65-30 Kissena Boulevard, Flushing, NY 11367, USA
| | - Keiran S. M. Smalley
- Department of Tumor Biology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, USA;
| | - Julia Zaias
- Division of Comparative Pathology, University of Miami, 1501 NW 10th Ave, Miami, FL 33136, USA;
| | - Jun Yong Choi
- Department of Chemistry and Biochemistry, Queens College, 65-30 Kissena Boulevard, Flushing, NY 11367, USA
- Ph.D. Programs in Chemistry and Biochemistry, The Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016, USA
| | - Dmitriy Minond
- College of Pharmacy, Nova Southeastern University, 3321 College Avenue, Fort Lauderdale, FL 33314, USA
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, 3321 College Avenue, CCR r.605, Fort Lauderdale, FL 33314, USA;
| |
Collapse
|
11
|
Glaß M, Hüttelmaier S. IGF2BP1-An Oncofetal RNA-Binding Protein Fuels Tumor Virus Propagation. Viruses 2023; 15:1431. [PMID: 37515119 PMCID: PMC10385356 DOI: 10.3390/v15071431] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/13/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
The oncofetal RNA-binding protein IGF2BP1 has been reported to be a driver of tumor progression in a multitude of cancer entities. Its main function is the stabilization of target transcripts by shielding these from miRNA-mediated degradation. However, there is growing evidence that several virus species recruit IGF2BP1 to promote their propagation. In particular, tumor-promoting viruses, such as hepatitis B/C and human papillomaviruses, benefit from IGF2BP1. Moreover, recent evidence suggests that non-oncogenic viruses, such as SARS-CoV-2, also take advantage of IGF2BP1. The only virus inhibited by IGF2BP1 reported to date is HIV-1. This review summarizes the current knowledge about the interactions between IGF2BP1 and different virus species. It further recapitulates several findings by presenting analyses from publicly available high-throughput datasets.
Collapse
Affiliation(s)
- Markus Glaß
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany
| |
Collapse
|