1
|
Wang Q, Zhou J, Cheng A, Liu Y, Guo J, Li X, Chen M, Hu D, Wu J. Artesunate-binding FABP5 promotes apoptosis in lung cancer cells via the PPARγ-SCD pathway. Int Immunopharmacol 2024; 143:113381. [PMID: 39405934 DOI: 10.1016/j.intimp.2024.113381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 10/30/2024]
Abstract
Artesunate holds excellent promise for lung cancer treatment, but its target is still unclear. We used molecular docking techniques to predict artesunate and Fatty acid binding protein 5 (FABP5) binding sites. Cellular thermal shift assay (CETSA) verified that artesunate treatment could promote the stability of the FABP5 protein. There was no significant change in the strength of the FABP5 protein after the mutation of binding sites by adding artesunate treatment. Mechanistically, artesunate promotes apoptosis in lung cancer cells by binding to FABP5, inhibiting the expression of the lipid metabolism gene SCD, and suppressing the expression of the SCD transcription factor regulated by the transcription factor PPARγ. In summary, our study shows that the protein targeted by artesunate is FABP5 and that artesunate promotes apoptosis through the FABP5-PPARγ-SCD pathway, which offers excellent potential for treating lung cancer.
Collapse
Affiliation(s)
- Qingsen Wang
- School of Medicine, Anhui University of Science and Technology, Huainan 232000, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan 232000, Anhui, China
| | - Jiawei Zhou
- School of Medicine, Anhui University of Science and Technology, Huainan 232000, Anhui, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan 232000, Anhui, China
| | - Anqi Cheng
- School of Medicine, Anhui University of Science and Technology, Huainan 232000, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan 232000, Anhui, China
| | - Yafeng Liu
- School of Medicine, Anhui University of Science and Technology, Huainan 232000, Anhui, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan 232000, Anhui, China
| | - Jianqiang Guo
- School of Medicine, Anhui University of Science and Technology, Huainan 232000, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan 232000, Anhui, China
| | - Xuan Li
- School of Medicine, Anhui University of Science and Technology, Huainan 232000, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan 232000, Anhui, China
| | - Maoqian Chen
- School of Medicine, Anhui University of Science and Technology, Huainan 232000, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan 232000, Anhui, China
| | - Dong Hu
- The First Affiliated Hospital of Anhui University of Science and Technology Huainan First People's Hospital, School of Medicine, Huainan 232000, Anhui, China; Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 232001, Anhui, China.
| | - Jing Wu
- Joint Research Center for Occupational Medicine and Health of IHM, School of Medicine, Anhui University of Science and Technology, Huainan 232000, Anhui, China.
| |
Collapse
|
2
|
Gu Q, Wang Y, Yi P, Cheng C. Theoretical framework and emerging challenges of lipid metabolism in cancer. Semin Cancer Biol 2024; 108:48-70. [PMID: 39674303 DOI: 10.1016/j.semcancer.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/14/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Elevated lipid metabolism is one of hallmarks of malignant tumors. Lipids not only serve as essential structural components of biological membranes but also provide energy and substrates for the proliferation of cancer cells and tumor growth. Cancer cells meet their lipid needs by coordinating the processes of lipid absorption, synthesis, transport, storage, and catabolism. As research in this area continues to deepen, numerous new discoveries have emerged, making it crucial for scientists to stay informed about the developments of cancer lipid metabolism. In this review, we first discuss relevant concepts and theories or assumptions that help us understand the lipid metabolism and -based cancer therapies. We then systematically summarize the latest advancements in lipid metabolism including new mechanisms, novel targets, and up-to-date pre-clinical and clinical investigations of anti-cancer treatment with lipid metabolism targeted drugs. Finally, we emphasize emerging research directions and therapeutic strategies, and discuss future prospective and emerging challenges. This review aims to provide the latest insights and guidance for research in the field of cancer lipid metabolism.
Collapse
Affiliation(s)
- Qiuying Gu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Yuan Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China.
| | - Chunming Cheng
- Department of Oncology Science, OU Health Stephenson Cancer Center at University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
3
|
Muntiu A, Moresi F, Vincenzoni F, Rossetti DV, Iavarone F, Messana I, Castagnola M, La Rocca G, Mazzucchi E, Olivi A, Urbani A, Sabatino G, Desiderio C. Proteomic Profiling of Pre- and Post-Surgery Saliva of Glioblastoma Patients: A Pilot Investigation. Int J Mol Sci 2024; 25:12984. [PMID: 39684695 DOI: 10.3390/ijms252312984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/18/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Glioblastoma multiforme (GBM) is an extremely aggressive brain tumor characterized by a high infiltration capability and recurrence rate. Early diagnosis is crucial to improve the prognosis and to personalize the therapeutic approach. This research explored, by LC-MS proteomic analysis after proteolytic digestion, the molecular profile of pre- and post-operative saliva pools from newly diagnosed (ND) GBM patients by comparing different times of collection and tumor recurrence (R). CYCS, PRDX2, RAB1C, PSMB1, KLK6, TMOD3, PAI2, PLBD1, CAST, and AHNAK, all involved in processes of tumor invasiveness and chemo- and radio-resistance, were found to depict the pre-surgery saliva of both ND and R GBM. PADI4 and CRYAB proteins, identified among the most abundant proteins exclusive of ND GBM pre-surgery saliva and classified as proteins elevated in glioma, could have a potential role as disease biomarkers. Selected panels of S100 proteins were found to potentially differentiate ND from R GBM patient saliva. TPD52 and IGKV3, exclusively identified in R GBM saliva, could be additionally distinctive of tumor relapse. Among the proteins identified in all pools, label-free relative quantitation showed statistically significant different levels of TXN, SERPINB5, FABP5, and S100A11 proteins between the pools. All of these proteins showed higher levels in both ND_ and R_T0 pre-surgery saliva with respect to CTRL and different modulation after surgery or chemo-radiotherapy combined treatment, suggesting a role as a potential panel of GBM predictive and prognostic biomarkers. These results highlight and confirm that saliva, a biofluid featured for an easily accessible and low invasiveness collection, is a promising source of GBM biomarkers, showing new potential opportunities for the development of targeted therapies and diagnostic tools.
Collapse
Affiliation(s)
- Alexandra Muntiu
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, 00168 Rome, Italy
| | - Fabiana Moresi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, 00168 Rome, Italy
- Department of Neurosurgery, Mater Olbia Hospital, 07026 Olbia, Italy
| | - Federica Vincenzoni
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, 00168 Rome, Italy
| | - Diana Valeria Rossetti
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche, 00168 Rome, Italy
| | - Federica Iavarone
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, 00168 Rome, Italy
| | - Irene Messana
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche, 00168 Rome, Italy
| | - Massimo Castagnola
- Centro Europeo di Ricerca sul Cervello-IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Giuseppe La Rocca
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, 00168 Rome, Italy
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, 00168 Rome, Italy
| | - Edoardo Mazzucchi
- Department of Neurosurgery, Mater Olbia Hospital, 07026 Olbia, Italy
| | - Alessandro Olivi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, 00168 Rome, Italy
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, 00168 Rome, Italy
| | - Andrea Urbani
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, 00168 Rome, Italy
| | - Giovanni Sabatino
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, 00168 Rome, Italy
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, 00168 Rome, Italy
| | - Claudia Desiderio
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche, 00168 Rome, Italy
| |
Collapse
|
4
|
Ainiwaer A, Qian Z, Wang J, Zhao Q, Lu Y. Single-cell analysis uncovers liver susceptibility to pancreatic cancer metastasis via myeloid cell characterization. Discov Oncol 2024; 15:696. [PMID: 39578286 PMCID: PMC11584836 DOI: 10.1007/s12672-024-01566-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024] Open
Abstract
The liver is the predominant metastatic site for diverse cancers, including pancreatic and colorectal cancers (CRC), etc. The high incidence of hepatic metastasis of pancreatic cancer is an important reason for its refractory and high mortality. Therefore, it is important to understand how metastatic pancreatic cancer affects the hepatic tumor immune microenvironment (TME) in patients. Here, we characterized the TME of liver metastases unique to pancreatic cancer by comparing them with CRC liver metastases. We integrated two single-cell RNA-seq (scRNA-seq) datasets including tumor samples of pancreatic cancer liver metastasis (P-LM), colorectal cancer liver metastasis (C-LM), primary pancreatic cancer (PP), primary colorectal cancer (PC), as well as samples of peripheral blood mono-nuclear cells (PBMC), adjacent normal pancreatic tissues (NPT), to better characterize the heterogeneities of the microenvironment of two kinds of liver metastases. We next performed comparative analysis on cellular compositions between P-LM and C-LM, found that Mph_SPP1, a subset of macrophages associated with angiogenesis and tumor invasion, was more enriched in the P-LM group, indicating this kind of macrophages provide a TME niche more vulnerable for pancreatic cancers. Analysis of the developmental trajectory implied that Mph_SPP1 may progressively be furnished with increased expression of genes regulating endothelium. Cell-cell communications analysis revealed that Mph_SPP1 potentially interacts with endothelial cells in P-LM via FN1/SPP1-ITGAV/ITGB1, implying this macrophage subset may construct an immunosuppressive TME for pancreatic cancer by regulating endothelial cells. We also found that Mph_SPP1 has a prognostic value in pancreatic adenocarcinoma that is not present in colon adenocarcinoma or rectum adenocarcinoma. This study provides a new perspective for understanding the characteristics of the hepatic TME in patients with liver metastatic cancer. And it provides a subset of macrophages specifically associated with the liver metastasis of pancreatic cancer, and its detection and intervention have potential value for preventing the metastasis of pancreatic cancer to the liver.
Collapse
Affiliation(s)
- Aizier Ainiwaer
- Comprehensive Liver Cancer Center, The 5Th Medical Center of the PLA General Hospital, Beijing, China
| | - Zhenwei Qian
- Peking University 302 Clinical Medical School, Beijing, 100039, China
| | - Jianxun Wang
- Shenzhen Cell Valley Biopharmaceuticals Co., LTD, Shenzhen, 518118, China
| | - Qi Zhao
- MoE Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.
| | - Yinying Lu
- Comprehensive Liver Cancer Center, The 5Th Medical Center of the PLA General Hospital, Beijing, China.
- Peking University 302 Clinical Medical School, Beijing, 100039, China.
| |
Collapse
|
5
|
Wu H, Yuan H, Duan Y, Li G, Du J, Wang P, Li Z. LncRNA495810 Promotes Proliferation and Migration of Hepatocellular Carcinoma Cells by Interacting with FABP5. BIOLOGY 2024; 13:644. [PMID: 39194582 DOI: 10.3390/biology13080644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the malignant tumors with high morbidity and mortality. Long non-coding RNAs (lncRNAs) are frequently dysregulated in human cancers and play an important role in the initiation and progression of HCC. Here, we investigated the expression of a new reported lncRNA495810 in our previous study by analyzing the publicly available datasets and using RT-qPCR assay. The cell proliferation experiment, cell cycle and apoptosis assay, wound healing assay, cell migration assay were used to explore the biological function of lncRNA495810 in HCC. The western blot, RNA pull down and RNA immunoprecipitation (RIP) detection were used to investigate the potential molecular mechanisms of lncRNA495810. The results demonstrated that lncRNA495810 was significantly upregulated in hepatocellular carcinoma and associated with poor prognosis of hepatocellular carcinoma patients. Moreover, it proved that lncRNA495810 promotes the proliferation and metastasis of hepatoma cells by directly binding and upregulating the expression of fatty acid-binding protein 5. These results reveal the oncogenic roles of lncRNA495810 in HCC and provide a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Haili Wu
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Haiyan Yuan
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Yiwei Duan
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Guangjun Li
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Jin'e Du
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Panfeng Wang
- Shanxi Provincial Inspection and Testing Center (Shanxi Provincial Institute of Standard Metrology Technology), Taiyuan 030006, China
| | - Zhuoyu Li
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
6
|
Love NR, Williams C, Killingbeck EE, Merleev A, Saffari Doost M, Yu L, McPherson JD, Mori H, Borowsky AD, Maverakis E, Kiuru M. Melanoma progression and prognostic models drawn from single-cell, spatial maps of benign and malignant tumors. SCIENCE ADVANCES 2024; 10:eadm8206. [PMID: 38996022 PMCID: PMC11244543 DOI: 10.1126/sciadv.adm8206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 06/06/2024] [Indexed: 07/14/2024]
Abstract
Melanoma clinical outcomes emerge from incompletely understood genetic mechanisms operating within the tumor and its microenvironment. Here, we used single-cell RNA-based spatial molecular imaging (RNA-SMI) in patient-derived archival tumors to reveal clinically relevant markers of malignancy progression and prognosis. We examined spatial gene expression of 203,472 cells inside benign and malignant melanocytic neoplasms, including melanocytic nevi and primary invasive and metastatic melanomas. Algorithmic cell clustering paired with intratumoral comparative two-dimensional analyses visualized synergistic, spatial gene signatures linking cellular proliferation, metabolism, and malignancy, validated by protein expression. Metastatic niches included up-regulation of CDK2 and FABP5, which independently predicted poor clinical outcome in 473 patients with melanoma via Cox regression analysis. More generally, our work demonstrates a framework for applying single-cell RNA-SMI technology toward identifying gene regulatory landscapes pertinent to cancer progression and patient survival.
Collapse
Affiliation(s)
- Nick R Love
- Department of Dermatology, University of California, Davis, Sacramento, CA 95816, USA
| | - Claire Williams
- NanoString Technologies, a Bruker Company, Seattle, WA 98109, USA
| | | | - Alexander Merleev
- Department of Dermatology, University of California, Davis, Sacramento, CA 95816, USA
| | | | - Lan Yu
- Department of Dermatology, University of California, Davis, Sacramento, CA 95816, USA
| | - John D McPherson
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA 95816, USA
| | - Hidetoshi Mori
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA 95816, USA
| | - Alexander D Borowsky
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA 95816, USA
| | - Emanual Maverakis
- Department of Dermatology, University of California, Davis, Sacramento, CA 95816, USA
| | - Maija Kiuru
- Department of Dermatology, University of California, Davis, Sacramento, CA 95816, USA
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA 95816, USA
| |
Collapse
|
7
|
Sun C, Zhang W, Liu H, Ding Y, Guo J, Xiong S, Zhai Z, Hu W. Identification of a novel lactylation-related gene signature predicts the prognosis of multiple myeloma and experiment verification. Sci Rep 2024; 14:15142. [PMID: 38956267 PMCID: PMC11219856 DOI: 10.1038/s41598-024-65937-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
Multiple myeloma (MM) is an incurable hematological malignancy with poor survival. Accumulating evidence reveals that lactylation modification plays a vital role in tumorigenesis. However, research on lactylation-related genes (LRGs) in predicting the prognosis of MM remains limited. Differentially expressed LRGs (DELRGs) between MM and normal samples were investigated from the Gene Expression Omnibus database. Univariate Cox regression and LASSO Cox regression analysis were applied to construct gene signature associated with overall survival. The signature was validated in two external datasets. A nomogram was further constructed and evaluated. Additionally, Enrichment analysis, immune analysis, and drug chemosensitivity analysis between the two groups were investigated. qPCR and immunofluorescence staining were performed to validate the expression and localization of PFN1. CCK-8 and flow cytometry were performed to validate biological function. A total of 9 LRGs (TRIM28, PPIA, SOD1, RRP1B, IARS2, RB1, PFN1, PRCC, and FABP5) were selected to establish the prognostic signature. Kaplan-Meier survival curves showed that high-risk group patients had a remarkably worse prognosis in the training and validation cohorts. A nomogram was constructed based on LRGs signature and clinical characteristics, and showed excellent predictive power by calibration curve and C-index. Moreover, biological pathways, immunologic status, as well as sensitivity to chemotherapy drugs were different between high- and low-risk groups. Additionally, the hub gene PFN1 is highly expressed in MM, knocking down PFN1 induces cell cycle arrest, suppresses cell proliferation and promotes cell apoptosis. In conclusion, our study revealed that LRGs signature is a promising biomarker for MM that can effectively early distinguish high-risk patients and predict prognosis.
Collapse
Affiliation(s)
- Cheng Sun
- College of Pharmacy, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Wanqiu Zhang
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Hao Liu
- College of Pharmacy, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Yangyang Ding
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Jingjing Guo
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Shudao Xiong
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Zhimin Zhai
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.
| | - Wei Hu
- College of Pharmacy, Anhui Medical University, Hefei, Anhui, People's Republic of China.
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.
| |
Collapse
|
8
|
Roshan-Zamir M, Khademolhosseini A, Rajalingam K, Ghaderi A, Rajalingam R. The genomic landscape of the immune system in lung cancer: present insights and continuing investigations. Front Genet 2024; 15:1414487. [PMID: 38983267 PMCID: PMC11231382 DOI: 10.3389/fgene.2024.1414487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Lung cancer is one of the most prevalent malignancies worldwide, contributing to over a million cancer-related deaths annually. Despite extensive research investigating the genetic factors associated with lung cancer susceptibility and prognosis, few studies have explored genetic predispositions regarding the immune system. This review discusses the most recent genomic findings related to the susceptibility to or protection against lung cancer, patient survival, and therapeutic responses. The results demonstrated the effect of immunogenetic variations in immune system-related genes associated with innate and adaptive immune responses, cytokine, and chemokine secretions, and signaling pathways. These genetic diversities may affect the crosstalk between tumor and immune cells within the tumor microenvironment, influencing cancer progression, invasion, and prognosis. Given the considerable variability in the individual immunegenomics profiles, future studies should prioritize large-scale analyses to identify potential genetic variations associated with lung cancer using highthroughput technologies across different populations. This approach will provide further information for predicting response to targeted therapy and promotes the development of new measures for individualized cancer treatment.
Collapse
Affiliation(s)
- Mina Roshan-Zamir
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Khademolhosseini
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kavi Rajalingam
- Cowell College, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Abbas Ghaderi
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Raja Rajalingam
- Immunogenetics and Transplantation Laboratory, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
9
|
Matas-Nadal C, Gatius S, Ribes-Santolaria M, Guasch-Vallés M, Gomez Arbones X, Casanova JM, Aguayo-Ortiz RS, Garí E. FABP5 in keratinocyte carcinomas: expression, secretion, and its impact on tumor aggressiveness. Arch Dermatol Res 2024; 316:342. [PMID: 38847933 DOI: 10.1007/s00403-024-03111-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/10/2024] [Accepted: 04/26/2024] [Indexed: 09/11/2024]
Affiliation(s)
- Clara Matas-Nadal
- Cell cycle lab, Institut de Recerca Biomèdica de Lleida (IRB Lleida), Lleida, Spain.
- Dermatology department, Hospital Santa Caterina, carrer del Dr. Castany, s/n, Salt, Girona, 17190, Girona, Spain.
| | - Sonia Gatius
- Servei d'anatomia patològica, Hospital Universitari Arnau de Vilanova, Lleida, Spain
- Dept. Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, Lleida, Spain
| | - Marina Ribes-Santolaria
- Cell cycle lab, Institut de Recerca Biomèdica de Lleida (IRB Lleida), Lleida, Spain
- Dept. Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, Lleida, Spain
| | - Marta Guasch-Vallés
- Cell cycle lab, Institut de Recerca Biomèdica de Lleida (IRB Lleida), Lleida, Spain
- Dept. Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, Lleida, Spain
| | - Xavier Gomez Arbones
- Dept. Medicina i Cirurgia, Facultat de Medicina, Universitat de Lleida, Lleida, Spain
| | - Josep Manel Casanova
- Cell cycle lab, Institut de Recerca Biomèdica de Lleida (IRB Lleida), Lleida, Spain
- Dept. Medicina i Cirurgia, Facultat de Medicina, Universitat de Lleida, Lleida, Spain
- Servei de Dermatologia, Hospital Universitari Arnau de Vilanova, Lleida, Spain
| | - Rafael Sergio Aguayo-Ortiz
- Cell cycle lab, Institut de Recerca Biomèdica de Lleida (IRB Lleida), Lleida, Spain
- Dept. Medicina i Cirurgia, Facultat de Medicina, Universitat de Lleida, Lleida, Spain
- Servei de Dermatologia, Hospital Universitari Arnau de Vilanova, Lleida, Spain
| | - Eloi Garí
- Cell cycle lab, Institut de Recerca Biomèdica de Lleida (IRB Lleida), Lleida, Spain
- Dept. Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, Lleida, Spain
| |
Collapse
|
10
|
Wei X, Liang J, Liu J, Dai Y, Leng X, Cheng Y, Chi L. Anchang Yuyang Decoction inhibits experimental colitis-related carcinogenesis by regulating PPAR signaling pathway and affecting metabolic homeostasis of host and microbiota. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117995. [PMID: 38428656 DOI: 10.1016/j.jep.2024.117995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inflammatory bowel disease (IBD) presents a risk of carcinogenesis, which escalates with the duration of IBD. Persistent histological inflammation is considered to be the driving factor of colitis carcinogenesis. Effective control of inflammation is helpful to prevent and treat colitis-related colorectal cancer (CAC). Anchang Yuyang Decoction (AYD), a traditional Chinese medicine (TCM) formula, is originated from the ancient prescription of TCM for treating colitis and colorectal cancer. AYD has demonstrated efficacy in treating IBD and potential anti-carcinogenic properties. AIM OF THE STUDY This research aims to assess the therapeutic efficacy of AYD in ameliorating experimental colitis-related carcinogenesis induced by AOM/DSS. It further seeks to elucidate its potential mechanisms by integrating multiple omics sequencing approaches. MATERIALS AND METHODS A rat model for colitis-related carcinogenesis was developed using azoxymethane (AOM)/dextran sulfate sodium (DSS). UPLC-MS identified AYD's chemical constituents. Rats were administered varying doses of AYD (18.37, 9.19 and 4.59 g/kg) orally for 53 days, with mesalazine as a positive control. The study evaluated anti-carcinogenic effects by examining adenoma number, adenoma load, abnormal crypt foci (ACF), histopathological damage, and tumor-related protein expression. Anti-inflammatory and reparative effects were assessed through body weight, disease activity index (DAI), colon length, spleen index, inflammatory cytokine levels, and tight junction protein expression. The effects on intestinal microbiota and host metabolism were explored through 16S rRNA sequencing, targeted short-chain fatty acid (SCFA) metabonomics, and non-targeted colon metabolomics. Potential AYD targets were identified through transcriptomic sequencing and validated by qRT-PCR and western blotting. RESULTS AYD significantly reduced adenoma number, adenoma load, neoplasm-associated lesions, ACF, and tumor-related protein expression (e.g., p53, PCNA) in AOM/DSS-induced rats, thus impeding colitis-related carcinogenesis progression. AYD also alleviated histopathological damage and inflammation, promoting intestinal mucosal barrier repair. Furthermore, AYD modulated intestinal flora structure, enhanced SCFA production, and regulated colon metabolites. Transcriptomic sequencing revealed a significant impact on the peroxisome proliferator-activated receptor (PPAR) signaling pathway. Subsequent qRT-PCR and western blotting experiments indicated AYD's influence in up-regulating PPAR-γ and down-regulating PPAR-α, PPAR-β/δ, and related proteins (thrombomodulin [Thbd], fatty acid binding protein 5 [Fabp5], stearoyl-CoA desaturase 2 [Scd2], phospholipid transfer protein [Pltp]). CONCLUSIONS This study demonstrates AYD's ability to inhibit experimental colitis-related carcinogenesis induced by AOM/DSS. Its mechanism likely involves modulation of the PPAR signaling pathway, impacting intestinal microbiota and host metabolic equilibrium.
Collapse
Affiliation(s)
- Xiunan Wei
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| | - Junwei Liang
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| | - Jiahui Liu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| | - Yonggang Dai
- Department of Clinical Laboratory Medicine, Shandong Provincial Third Hospital, Jinan, 250014, China.
| | - Xiaohui Leng
- Department of Cardiovascular Medicine, Weifang Traditional Chinese Hospital, Weifang, 261000, China.
| | - Yan Cheng
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| | - Lili Chi
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| |
Collapse
|
11
|
Zhong D, Chen J, Qiao R, Song C, Hao C, Zou Y, Bai M, Su W, Yang B, Sun D, Jia Z, Sun Y. Genetic or pharmacologic blockade of mPGES-2 attenuates renal lipotoxicity and diabetic kidney disease by targeting Rev-Erbα/FABP5 signaling. Cell Rep 2024; 43:114075. [PMID: 38583151 DOI: 10.1016/j.celrep.2024.114075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/05/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024] Open
Abstract
Diabetic kidney disease (DKD) is one of the most common complications of diabetes, and no specific drugs are clinically available. We have previously demonstrated that inhibiting microsomal prostaglandin E synthase-2 (mPGES-2) alleviated type 2 diabetes by enhancing β cell function and promoting insulin production. However, the involvement of mPGES-2 in DKD remains unclear. Here, we aimed to analyze the association of enhanced mPGES-2 expression with impaired metabolic homeostasis of renal lipids and subsequent renal damage. Notably, global knockout or pharmacological blockage of mPGES-2 attenuated diabetic podocyte injury and tubulointerstitial fibrosis, thereby ameliorating lipid accumulation and lipotoxicity. These findings were further confirmed in podocyte- or tubule-specific mPGES-2-deficient mice. Mechanistically, mPGES-2 and Rev-Erbα competed for heme binding to regulate fatty acid binding protein 5 expression and lipid metabolism in the diabetic kidney. Our findings suggest a potential strategy for treating DKD via mPGES-2 inhibition.
Collapse
Affiliation(s)
- Dandan Zhong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Jingshuo Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Ranran Qiao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China; Public Experimental Research Center of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Chang Song
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China; Public Experimental Research Center of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Chang Hao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China; Public Experimental Research Center of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Yingying Zou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Mi Bai
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Wen Su
- Department of Pathophysiology, Shenzhen University, Shenzhen 518060, China; Shenzhen University Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Baoxue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Dong Sun
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, Jiangsu 221002, China.
| | - Zhanjun Jia
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China.
| | - Ying Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China.
| |
Collapse
|
12
|
He G, Zhang Y, Feng Y, Chen T, Liu M, Zeng Y, Yin X, Qu S, Huang L, Ke Y, Liang L, Yan J, Liu W. SBFI26 induces triple-negative breast cancer cells ferroptosis via lipid peroxidation. J Cell Mol Med 2024; 28:e18212. [PMID: 38516826 PMCID: PMC10958404 DOI: 10.1111/jcmm.18212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/13/2024] [Accepted: 02/09/2024] [Indexed: 03/23/2024] Open
Abstract
SBFI26, an inhibitor of FABP5, has been shown to suppress the proliferation and metastasis of tumour cells. However, the underlying mechanism by which SBFI26 induces ferroptosis in breast cancer cells remains largely unknown. Three breast cancer cell lines were treated with SBFI26 and CCK-8 assessed cytotoxicity. Transcriptome was performed on the Illumina platform and verified by qPCR. Western blot evaluated protein levels. Malondialdehyde (MDA), total superoxide dismutase (T-SOD), Fe, glutathione (GSH) and oxidized glutathione (GSSG) were measured. SBFI26 induced cell death time- and dose-dependent, with a more significant inhibitory effect on MDA-MB-231 cells. Fer-1, GSH and Vitamin C attenuated the effects but not erastin. RNA-Seq analysis revealed that SBFI26 treatment significantly enriched differentially expressed genes related to ferroptosis. Furthermore, SBFI26 increased intracellular MDA, iron ion, and GSSG levels while decreasing T-SOD, total glutathione (T-GSH), and GSH levels.SBFI26 dose-dependently up-regulates the expression of HMOX1 and ALOX12 at both gene and protein levels, promoting ferroptosis. Similarly, it significantly increases the expression of SAT1, ALOX5, ALOX15, ALOXE3 and CHAC1 that, promoting ferroptosis while downregulating the NFE2L2 gene and protein that inhibit ferroptosis. SBFI26 leads to cellular accumulation of fatty acids, which triggers excess ferrous ions and subsequent lipid peroxidation for inducing ferroptosis.
Collapse
Affiliation(s)
- Gang He
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Yiyuan Zhang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Yanjiao Feng
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Tangcong Chen
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Mei Liu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Yue Zeng
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Xiaojing Yin
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Shaokui Qu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Lifen Huang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Youqiang Ke
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Li Liang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Jun Yan
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Wei Liu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| |
Collapse
|
13
|
Sheng B, Pan S, Ye M, Liu H, Zhang J, Zhao B, Ji H, Zhu X. Single-cell RNA sequencing of cervical exfoliated cells reveals potential biomarkers and cellular pathogenesis in cervical carcinogenesis. Cell Death Dis 2024; 15:130. [PMID: 38346944 PMCID: PMC10861450 DOI: 10.1038/s41419-024-06522-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/15/2024]
Abstract
Cervical cancer (CC) is a common gynecological malignancy. Despite the current screening methods have been proved effectively and significantly decreased CC morbidity and mortality, deficiencies still exist. Single-cell RNA sequencing (scRNA-seq) approach can identify the complex and rare cell populations at single-cell resolution. By scRNA-seq, the heterogeneity of tumor microenvironment across cervical carcinogenesis has been mapped and described. Whether these alterations could be detected and applied to CC screening is unclear. Herein, we performed scRNA-seq of 56,173 cervical exfoliated cells from 15 samples, including normal cervix, low-grade squamous intraepithelial lesion (LSIL), high-grade squamous intraepithelial lesion (HSIL), and malignancy. The present study delineated the alteration of immune and epithelial cells derived during the cervical lesion progression. A subset of lipid-associated macrophage was identified as a tumor-promoting element and could serve as a biomarker for predicting the progression of LSIL into HSIL, which was then verified by immunofluorescence. Furthermore, cell-cell communication analysis indicated the SPP1-CD44 axis might exhibit a protumor interaction between epithelial cell and macrophage. In this study, we investigated the cervical multicellular ecosystem in cervical carcinogenesis and identified potential biomarkers for early detection.
Collapse
Affiliation(s)
- Bo Sheng
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Shuya Pan
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Miaomiao Ye
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Hejing Liu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Jiamin Zhang
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Bo Zhao
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Huihui Ji
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Xueqiong Zhu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
14
|
Just U, Burtscher H, Jeratsch S, Fischer M, Stocking C, Preussner J, Looso M, Schwanbeck R, Günther S, Huss R, Mullen L, Braun T. Proteomic and transcriptomic characterisation of FIA10, a novel murine leukemic cell line that metastasizes into the brain. PLoS One 2024; 19:e0295641. [PMID: 38215076 PMCID: PMC10786371 DOI: 10.1371/journal.pone.0295641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/27/2023] [Indexed: 01/14/2024] Open
Abstract
Brain metastasis leads to increased mortality and is a major site of relapse for several cancers, yet the molecular mechanisms of brain metastasis are not well understood. In this study, we established and characterized a new leukemic cell line, FIA10, that metastasizes into the central nervous system (CNS) following injection into the tail vein of syngeneic mice. Mice injected with FIA10 cells developed neurological symptoms such as loss of balance, tremor, ataxic gait and seizures, leading to death within 3 months. Histopathology coupled with PCR analysis clearly showed infiltration of leukemic FIA10 cells into the brain parenchyma of diseased mice, with little involvement of bone marrow, peripheral blood and other organs. To define pathways that contribute to CNS metastasis, global transcriptome and proteome analysis was performed on FIA10 cells and compared with that of the parental stem cell line FDCP-Mix and the related FIA18 cells, which give rise to myeloid leukemia without CNS involvement. 188 expressed genes (RNA level) and 189 proteins were upregulated (log2 ratio FIA10/FIA18 ≥ 1) and 120 mRNAs and 177 proteins were downregulated (log2 ratio FIA10/FIA18 ≤ 1) in FIA10 cells compared with FIA18 cells. Major upregulated pathways in FIA10 cells revealed by biofunctional analyses involved immune response components, adhesion molecules and enzymes implicated in extracellular matrix remodeling, opening and crossing the blood-brain barrier (BBB), molecules supporting migration within the brain parenchyma, alterations in metabolism necessary for growth within the brain microenvironment, and regulators for these functions. Downregulated RNA and protein included several tumor suppressors and DNA repair enzymes. In line with the function of FIA10 cells to specifically infiltrate the brain, FIA10 cells have acquired a phenotype that permits crossing the BBB and adapting to the brain microenvironment thereby escaping immune surveillance. These data and our model system FIA10 will be valuable resources to study the occurrence of brain metastases and may help in the development of potential therapies against brain invasion.
Collapse
Affiliation(s)
- Ursula Just
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
- Leibniz Institute for Virology, Hamburg, Germany
- Department of Biochemistry, Christian-Albrechts-University zu Kiel, Kiel, Germany
| | - Helmut Burtscher
- Pharma Research Penzberg, Roche Diagnostics GmbH, Penzberg, Germany
| | - Sylvia Jeratsch
- Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | | | | | - Jens Preussner
- Bioinformatics Core Unit, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mario Looso
- Bioinformatics Core Unit, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ralf Schwanbeck
- Department of Biochemistry, Christian-Albrechts-University zu Kiel, Kiel, Germany
| | - Stefan Günther
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ralf Huss
- Pharma Research Penzberg, Roche Diagnostics GmbH, Penzberg, Germany
| | - Lynne Mullen
- QIAGEN, Redwood City, California, United States of America
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
15
|
Li X, Qu X, Li S, Lin K, Yao N, Wang N, Shi Y. Development of a Novel CD8 + T Cell-Associated Signature for Prognostic Assessment in Hepatocellular Carcinoma. Cancer Control 2024; 31:10732748241270583. [PMID: 39152700 PMCID: PMC11331481 DOI: 10.1177/10732748241270583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/22/2024] [Accepted: 06/13/2024] [Indexed: 08/19/2024] Open
Abstract
OBJECTIVE The aim of this study was to analyze the clinical significance and prognostic value of CD8+ T cell-related regulatory genes in hepatocellular carcinoma (HCC). METHODS This was a retrospective study. We combined TCGA-LIHC and single-cell RNA sequencing data for Lasso-Cox regression analysis to screen for CD8+ T cell-associated genes to construct a novel signature. The expression of the signature genes was detected at cellular and tissue levels using qRT-PCR, immunohistochemistry, and tissue microarrays. The CIBERSORT algorithm was then used to assess the immune microenvironmental differences between the different risk groups and a drug sensitivity analysis was performed to screen for potential HCC therapeutic agents. RESULTS An 8-gene CD8 + T cell-associated signature (FABP5, GZMH, ANXA2, KLRB1, CD7, IL7R, BATF, and RGS2) was constructed. Survival analysis showed that high-risk patients had a poorer prognosis in all cohorts. Tumor immune microenvironment analysis revealed 22 immune cell types that differed significantly between patients in different risk groups, with patients in the low-risk group having an immune system that was more active in terms of immune function. Patients in the high-risk group were more prone to immune escape and had a poorer response to immunotherapy, and AZD7762 was screened as the most sensitive drug in the high-risk group. Finally, preliminary experiments have shown that BATF has a promoting effect on the proliferation, migration and invasion of HuH-7 cells. CONCLUSIONS The CD8+ T-cell-associated signature is expected to be a tool for optimizing individual patient decision-making and monitoring protocols, and to provide new ideas for treatment and prognostic assessment of HCC.
Collapse
Affiliation(s)
- Xuezhi Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Xiaodong Qu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Songbo Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Kexin Lin
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Nuo Yao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Na Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Yongquan Shi
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
16
|
Kim TJ, Kim YG, Jung W, Jang S, Ko HG, Park CH, Byun JS, Kim DY. Non-Coding RNAs as Potential Targets for Diagnosis and Treatment of Oral Lichen Planus: A Narrative Review. Biomolecules 2023; 13:1646. [PMID: 38002328 PMCID: PMC10669845 DOI: 10.3390/biom13111646] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Oral lichen planus (OLP) is a chronic inflammatory disease that is characterized by the infiltration of T cells into the oral mucosa, causing the apoptosis of basal keratinocytes. OLP is a multifactorial disease of unknown etiology and is not solely caused by the malfunction of a single key gene but rather by various intracellular and extracellular factors. Non-coding RNAs play a critical role in immunological homeostasis and inflammatory response and are found in all cell types and bodily fluids, and their expression is closely regulated to preserve normal physiologies. The dysregulation of non-coding RNAs may be highly implicated in the onset and progression of diverse inflammatory disorders, including OLP. This narrative review summarizes the role of non-coding RNAs in molecular and cellular changes in the oral epithelium during OLP pathogenesis.
Collapse
Affiliation(s)
- Tae-Jun Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Yu Gyung Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Won Jung
- Department of Oral Medicine, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Sungil Jang
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Hyoung-Gon Ko
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Chan Ho Park
- Department of Dental Biomaterials, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Jin-Seok Byun
- Department of Oral Medicine, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Do-Yeon Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| |
Collapse
|
17
|
Lunde NN, Osoble NMM, Fernandez AD, Antobreh AS, Jafari A, Singh S, Nyman TA, Rustan AC, Solberg R, Thoresen GH. Interplay between Cultured Human Osteoblastic and Skeletal Muscle Cells: Effects of Conditioned Media on Glucose and Fatty Acid Metabolism. Biomedicines 2023; 11:2908. [PMID: 38001909 PMCID: PMC10669731 DOI: 10.3390/biomedicines11112908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
The interplay between skeletal muscle and bone is primarily mechanical; however, biochemical crosstalk by secreted mediators has recently gained increased attention. The aim of this study was to investigate metabolic effects of conditioned medium from osteoblasts (OB-CM) on myotubes and vice versa. Human skeletal muscle cells incubated with OB-CM showed increased glucose uptake and oxidation, and mRNA expression of the glucose transporter (GLUT) 1, while fatty acid uptake and oxidation, and mRNA expression of the fatty acid transporter CD36 were decreased. This was supported by proteomic analysis, where expression of proteins involved in glucose uptake, glycolytic pathways, and the TCA cycle were enhanced, and expression of several proteins involved in fatty acid metabolism were reduced. Similar effects on energy metabolism were observed in human bone marrow stromal cells differentiated to osteoblastic cells incubated with conditioned medium from myotubes (SKM-CM), with increased glucose uptake and reduced oleic acid uptake. Proteomic analyses of the two conditioned media revealed many common proteins. Thus, our data may indicate a shift in fuel preference from fatty acid to glucose metabolism in both cell types, induced by conditioned media from the opposite cell type, possibly indicating a more general pattern in communication between these tissues.
Collapse
Affiliation(s)
- Ngoc Nguyen Lunde
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway; (N.N.L.); (N.M.M.O.); (A.D.F.); (A.C.R.); (R.S.)
| | - Nimo Mukhtar Mohamud Osoble
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway; (N.N.L.); (N.M.M.O.); (A.D.F.); (A.C.R.); (R.S.)
| | - Andrea Dalmao Fernandez
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway; (N.N.L.); (N.M.M.O.); (A.D.F.); (A.C.R.); (R.S.)
| | - Alfreda S. Antobreh
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway; (N.N.L.); (N.M.M.O.); (A.D.F.); (A.C.R.); (R.S.)
| | - Abbas Jafari
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Sachin Singh
- Department of Immunology, Oslo University Hospital, Rikshospitalet, University of Oslo, 0372 Oslo, Norway; (S.S.); (T.A.N.)
| | - Tuula A. Nyman
- Department of Immunology, Oslo University Hospital, Rikshospitalet, University of Oslo, 0372 Oslo, Norway; (S.S.); (T.A.N.)
| | - Arild C. Rustan
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway; (N.N.L.); (N.M.M.O.); (A.D.F.); (A.C.R.); (R.S.)
| | - Rigmor Solberg
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway; (N.N.L.); (N.M.M.O.); (A.D.F.); (A.C.R.); (R.S.)
| | - G. Hege Thoresen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway; (N.N.L.); (N.M.M.O.); (A.D.F.); (A.C.R.); (R.S.)
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
18
|
Chen J, Ye M, Bai J, Gong Z, Yan L, Gu D, Hu C, Lu F, Yu P, Xu L, Wang Y, Tian Y, Tang Q. ALKBH5 enhances lipid metabolism reprogramming by increasing stability of FABP5 to promote pancreatic neuroendocrine neoplasms progression in an m6A-IGF2BP2-dependent manner. J Transl Med 2023; 21:741. [PMID: 37858219 PMCID: PMC10588038 DOI: 10.1186/s12967-023-04578-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/28/2023] [Indexed: 10/21/2023] Open
Abstract
The process of post-transcriptional regulation has been recognized to be significantly impacted by the presence of N6-methyladenosine (m6A) modification. As an m6A demethylase, ALKBH5 has been shown to contribute to the progression of different cancers by increasing expression of several oncogenes. Hence, a better understanding of the key targets of ALKBH5 in cancer cells could potentially lead to the development of new therapeutic targets. However, the specific role of ALKBH5 in pancreatic neuroendocrine neoplasms (pNENs) remains largely unknown. Here, we demonstrated that ALKBH5 was up-regulated in pNENs and played a critical role in tumor growth and lipid metabolism. Mechanistically, ALKBH5 over-expression was found to increase the expression of FABP5 in an m6A-IGF2BP2 dependent manner, leading to disorders in lipid metabolism. Additionally, ALKBH5 was found to activate PI3K/Akt/mTOR signaling pathway, resulting in enhanced lipid metabolism and proliferation abilities. In conclusion, our study uncovers the ALKBH5/IGF2BP2/FABP5/mTOR axis as a mechanism for aberrant m6A modification in lipid metabolism and highlights a new molecular basis for the development of therapeutic strategies for pNENs treatment.
Collapse
Affiliation(s)
- Jinhao Chen
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
- Digestive Endoscopy, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mujie Ye
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
- Digestive Endoscopy, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianan Bai
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
- Digestive Endoscopy, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhihui Gong
- Department of Gastroenterology, The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Ili & Jiangsu Joint Institute of Health, Yining, 835000, Ili State, China
| | - Lijun Yan
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
- Digestive Endoscopy, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Danyang Gu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
- Digestive Endoscopy, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chunhua Hu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
- Digestive Endoscopy, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feiyu Lu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
- Digestive Endoscopy, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ping Yu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
- Digestive Endoscopy, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lin Xu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
- Digestive Endoscopy, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Wang
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China.
- Digestive Endoscopy, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
- Department of Gastroenterology, The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Ili & Jiangsu Joint Institute of Health, Yining, 835000, Ili State, China.
| | - Ye Tian
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China.
- Digestive Endoscopy, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Qiyun Tang
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China.
- Digestive Endoscopy, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|