1
|
Ribeiro ARS, Neuper T, Horejs-Hoeck J. The Role of STING-Mediated Activation of Dendritic Cells in Cancer Immunotherapy. Int J Nanomedicine 2024; 19:10685-10697. [PMID: 39464674 PMCID: PMC11512692 DOI: 10.2147/ijn.s477320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024] Open
Abstract
The signaling pathway that comprises cyclic guanosine monophosphate-adenosine monophosphate (cGAMP or GMP-AMP) synthase (cGAS) and Stimulator of Interferon Genes (STING) is emerging as a druggable target for immunotherapy, with tumor-resident dendritic cells (DC) playing a critical role in mediating its effects. The STING receptor is part of the DNA-sensing cellular machinery, that can trigger the secretion of pro-inflammatory mediators, priming effector T cells and initiating specific antitumor responses. Yet, recent studies have highlighted the dual role of STING activation in the context of cancer: STING can either promote antitumor responses or enhance tumor progression. This dichotomy often depends on the cell type in which cGAS-STING signaling is induced and the activation mode, namely acute versus chronic. Of note, STING activation at the DC level appears to be particularly important for tumor eradication. This review outlines the contribution of the different conventional and plasmacytoid DC subsets and describes the mechanisms underlying STING-mediated activation of DCs in cancer. We further highlight how the STING pathway plays an intricate role in modulating the function of DCs embedded in tumor tissue. Additionally, we discuss the strategies being employed to harness STING activation for cancer treatment, such as the development of synthetic agonists and nano-based delivery systems, spotlighting the current techniques used to prompt STING engagement specifically in DCs.
Collapse
Affiliation(s)
- Ana R S Ribeiro
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg (CCS), Salzburg, 5020, Austria
| | - Theresa Neuper
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg (CCS), Salzburg, 5020, Austria
- Center for Tumor biology and Immunology (CTBI), Salzburg, 5020, Austria
| | - Jutta Horejs-Hoeck
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg (CCS), Salzburg, 5020, Austria
- Center for Tumor biology and Immunology (CTBI), Salzburg, 5020, Austria
| |
Collapse
|
2
|
Wang X, Jia JK, Wang Q, Gong JW, Li A, Su J, Zhou P. Myotis bat STING attenuates aging-related inflammation in female mice. Zool Res 2024; 45:961-971. [PMID: 39016174 PMCID: PMC11491773 DOI: 10.24272/j.issn.2095-8137.2024.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/12/2024] [Indexed: 07/18/2024] Open
Abstract
Bats, notable as the only flying mammals, serve as natural reservoir hosts for various highly pathogenic viruses in humans (e.g., SARS-CoV and Ebola virus). Furthermore, bats exhibit an unparalleled longevity among mammals relative to their size, particularly the Myotis bats, which can live up to 40 years. However, the mechanisms underlying these distinctive traits remain incompletely understood. In our prior research, we demonstrated that bats exhibit dampened STING-interferon activation, potentially conferring upon them the capacity to mitigate virus- or aging-induced inflammation. To substantiate this hypothesis, we established the first in vivo bat-mouse model for aging studies by integrating Myotis davidii bat STING ( MdSTING) into the mouse genome. We monitored the genotypes of these mice and performed a longitudinal comparative transcriptomic analysis on MdSTING and wild-type mice over a 3-year aging process. Blood transcriptomic analysis indicated a reduction in aging-related inflammation in female MdSTING mice, as evidenced by significantly lower levels of pro-inflammatory cytokines and chemokines, immunopathology, and neutrophil recruitment in aged female MdSTING mice compared to aged wild-type mice in vivo. These results indicated that MdSTING knock-in attenuates the aging-related inflammatory response and may also improve the healthspan in mice in a sex-dependent manner. Although the underlying mechanism awaits further study, this research has critical implications for bat longevity research, potentially contributing to our comprehension of healthy aging in humans.
Collapse
Affiliation(s)
- Xi Wang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong 510005, China
- University of Chinese Academy of Sciences, Beijing 100000, China
| | - Jing-Kun Jia
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong 510005, China
- University of Chinese Academy of Sciences, Beijing 100000, China
| | - Qi Wang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong 510005, China
- University of Chinese Academy of Sciences, Beijing 100000, China
| | - Jing-Wen Gong
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Ang Li
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong 510005, China
- State Key Laboratory of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical School, Guangzhou, Guangdong 510005, China
| | - Jia Su
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong 510005, China
- University of Chinese Academy of Sciences, Beijing 100000, China
| | - Peng Zhou
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong 510005, China
- State Key Laboratory of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical School, Guangzhou, Guangdong 510005, China. E-mail:
| |
Collapse
|
3
|
Ma J, Xu H, Hou K, Cao Y, Xie D, Yan J, Dong W, Jiang T, Chen CP. Design and Synthesis of Cyclic Dinucleotide Analogues Containing Triazolyl C-Nucleosides. J Org Chem 2024; 89:11380-11393. [PMID: 39069788 DOI: 10.1021/acs.joc.4c01055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Natural cyclic dinucleotide (CDN) is the secondary messenger involved in bacterial hemostasis, human innate immunity, and bacterial antiphage immunity. Synthetic CDN and its analogues are key molecular probes and potential immunotherapeutic agents. Several CDN analogues are under clinical research for antitumor immunotherapy. A myriad of synthetic methods have been developed and reported for the preparation of CDN and its analogues. However, most of the protocols require multiple steps, and only one CDN or its analogue is prepared at a time. In this study, a strategy based on a macrocyclic ribose phosphate skeleton containing a 1'-alkynyl group was designed and developed to prepare CDN analogues containing triazolyl C-nucleosides by click chemistry. Combinatorial application of click chemistry and the sulfenylation cascade to the macrocyclic skeleton expanded the diversity of the CDN analogues. This macrocyclic skeleton strategy rapidly and efficiently provides CDN analogues to facilitate research on microbiology, immunology, and immunotherapy.
Collapse
Affiliation(s)
- Jinliang Ma
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Hui Xu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Ke Hou
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yaru Cao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Di Xie
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Jiayin Yan
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Wenpei Dong
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Tao Jiang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Chang-Po Chen
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
4
|
Delaunay T, Son S, Park S, Kaur B, Ahn J, Barber GN. Exogenous non-coding dsDNA-dependent trans-activation of phagocytes augments anti-tumor immunity. Cell Rep Med 2024; 5:101528. [PMID: 38677283 PMCID: PMC11148645 DOI: 10.1016/j.xcrm.2024.101528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/25/2024] [Accepted: 04/03/2024] [Indexed: 04/29/2024]
Abstract
Stimulator of interferon genes (STING)-dependent signaling is requisite for effective anti-microbial and anti-tumor activity. STING signaling is commonly defective in cancer cells, which enables tumor cells to evade the immunosurveillance system. We evaluate here whether intrinsic STING signaling in such tumor cells could be reconstituted by creating recombinant herpes simplex viruses (rHSVs) that express components of the STING signaling pathway. We observe that rHSVs expressing STING and/or cGAS replicate inefficiently yet retain in vivo anti-tumor activity, independent of oncolytic activity requisite on the trans-activation of extrinsic STING signaling in phagocytes by engulfed microbial dsDNA species. Accordingly, the in vivo effects of virotherapy could be simulated by nanoparticles incorporating non-coding dsDNA species, which comparably elicit the trans-activation of phagocytes and augment the efficacy of established cancer treatments including checkpoint inhibition and radiation therapy. Our results help elucidate mechanisms of virotherapeutic anti-tumor activity as well as provide alternate strategies to treat cancer.
Collapse
Affiliation(s)
- Tiphaine Delaunay
- Department of Cell Biology, Sylvester Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sehee Son
- Department of Cell Biology, Sylvester Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Seongji Park
- Department of Cell Biology, Sylvester Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Balveen Kaur
- Georgia Cancer Center, Augusta University Medical Center, Augusta, GA, USA
| | - Jeonghyun Ahn
- Department of Cell Biology, Sylvester Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Glen N Barber
- Department of Cell Biology, Sylvester Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
5
|
Wang L, Yu Z, Zhang J, Guo J. Nanoformulations of chemotherapeutic activators of the cGAS-STING pathway in tumor chemoimmunotherapy. Drug Discov Today 2024; 29:103892. [PMID: 38272174 DOI: 10.1016/j.drudis.2024.103892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
Chemotherapeutic drugs to activate the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) pathway have been exploited for tumor chemoimmunotherapy. The clinical translation of chemotherapeutic cGAS-STING activators is hindered by the lack of safe, efficient, and specific delivery strategies. Nanodrug delivery systems (NDDS) designed for reducing toxic effects and improving transport effectiveness potentiate in vivo delivery of chemotherapeutic cGAS-STING activators. cGAS-STING monotherapy often encounters tumor resistance without providing satisfactory therapeutic benefit; therefore combination therapy is desirable. This review describes NDDS strategies for surmounting delivery obstacles of chemotherapeutic cGAS-STING activators and highlights combinatorial regimens, which utilize therapeutics that work by different mechanisms, for optimal therapy.
Collapse
Affiliation(s)
- Lingzhi Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Zhuo Yu
- Department of Hepatopathy, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jihong Zhang
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang 110022, China.
| | - Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
6
|
Xuan C, Hu R. Chemical Biology Perspectives on STING Agonists as Tumor Immunotherapy. ChemMedChem 2023; 18:e202300405. [PMID: 37794702 DOI: 10.1002/cmdc.202300405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/06/2023]
Abstract
Stimulator of interferon genes (STING) is a crucial adaptor protein in the innate immune response. STING activation triggers cytokine secretion, including type I interferon and initiates T cell-mediated adaptive immunity. The activated immune system converts "cold tumors" into "hot tumors" that are highly responsive to T cells by recruiting them to the tumor microenvironment, ultimately leading to potent and long-lasting antitumor effects. Unlike most immune checkpoint inhibitors, STING agonists represent a groundbreaking class of innate immune agonists that hold great potential for effectively targeting various cancer populations and are poised to become a blockbuster in tumor immunotherapy. This review will focus on the correlation between the STING signaling pathway and tumor immunity, as well as explore the impact of STING activation on other biological processes. Ultimately, we will summarize the development and optimization of STING agonists from a medicinal chemistry perspective, evaluate their potential in cancer therapy, and identify possible challenges for future advancement.
Collapse
Affiliation(s)
- Chenyuan Xuan
- Department of Pharmacology, China Pharmaceutical University, No 24, TongJiaXiang, Gulou District, Nanjing, 210009, P. R. China
| | - Rong Hu
- Department of Pharmacology, China Pharmaceutical University, No 24, TongJiaXiang, Gulou District, Nanjing, 210009, P. R. China
| |
Collapse
|