1
|
Ivanov I, Krone B, Schulz K, Shaik RB, Parvaz MA, Newcorn JH. Effects of Stimulant Treatment on Changes in Brain Activation During Reward Notifications in Drug Naïve Youth With ADHD. J Atten Disord 2024; 28:847-860. [PMID: 38293912 DOI: 10.1177/10870547231219762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
BACKGROUND Research examining the potential effects of stimulant exposure in childhood on subsequent development of substance use disorder (SUD) have focused on differences in the brain reward system as a function of risk. METHODS 18 drug naïve children ages 7 to 12 years (11 High Risk [ADHD + ODD/CD]; 7 Low Risk [ADHD only]), underwent fMRI scans before and after treatment with mixed amphetamine salts, extended release (MAS-XR). We examined correlations between clinical ratings and fMRI activation at baseline and following treatment as a function of risk status. RESULTS High Risk children had higher activation than Low Risk children at baseline during both the Reward and Surprising Non-Reward conditions. Treatment produced strong differential effects on brain activation pertinent to group and reward outcome. CONCLUSIONS Findings support the hypothesized role of reward mechanisms in SUD risk, and suggest that stimulant treatment may have differential effects on reward processing in relation to SUD risk.
Collapse
Affiliation(s)
- Iliyan Ivanov
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Beth Krone
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kurt Schulz
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Riaz B Shaik
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | |
Collapse
|
2
|
Yates JR, Broderick MR, Berling KL, Gieske MG, Osborn E, Nelson MR, Wright MR. Effects of adolescent methylphenidate administration on methamphetamine conditioned place preference in an animal model of attention-deficit/hyperactivity disorder: Examination of potential sex differences. Drug Alcohol Depend 2023; 252:110970. [PMID: 37748422 PMCID: PMC10615784 DOI: 10.1016/j.drugalcdep.2023.110970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/21/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Individuals with attention-deficit/hyperactivity disorder (ADHD) are more likely to be diagnosed with a substance use disorder; however, the effects of long-term psychostimulant treatment on addiction are mixed. Preclinical studies are useful for further elucidating the relationship between ADHD and addiction-like behaviors, but these studies have focused on male subjects only. The goal of the current study was to determine if early-life administration of methylphenidate (MPH) augments methamphetamine (METH) conditioned place preference (CPP) and/or potentiates reinstatement of CPP in both male and female rats. METHODS Male and female spontaneously hypertensive rats (SHRs) and Wistar-Kyoto rats (WKYs) received either MPH (1.5mg/kg; p.o.) or vehicle (1.0ml/kg) during adolescence (postnatal day [PND] ~29-57). Two weeks after cessation of MPH treatment, rats were tested for METH CPP (1.0mg/kg or 2.0mg/kg; s.c.). Rats were then given extinction sessions. Once rats met extinction criteria, they were tested for reinstatement of CPP following a priming injection of METH (0.25mg/kg; s.c.). RESULTS All groups developed METH CPP, except vehicle-treated SHR males and vehicle-treated WKY females conditioned with the higher dose of METH (2.0mg/kg). Female SHRs treated with MPH showed greater reinstatement of METH CPP compared to female SHRs treated with vehicle. Adolescent MPH treatment did not augment the locomotor-stimulant effects of METH in adulthood. CONCLUSIONS These results demonstrate the importance of considering biological sex when prescribing psychostimulant medications for ADHD as long-term MPH administration may increase the risk of continued drug use in females with ADHD following a period of abstinence.
Collapse
Affiliation(s)
- Justin R Yates
- Department of Psychological Science, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY 41099, USA.
| | - Maria R Broderick
- Department of Biological Sciences, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY 41099, USA
| | - Kevin L Berling
- Department of Biological Sciences, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY 41099, USA
| | - M Grace Gieske
- Department of Biological Sciences, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY 41099, USA
| | - Ethan Osborn
- Department of Biological Sciences, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY 41099, USA
| | - M Ray Nelson
- Department of Psychological Science, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY 41099, USA
| | - Makayla R Wright
- Department of Biological Sciences, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY 41099, USA
| |
Collapse
|
3
|
Liu Y, Yang C, Meng Y, Dang Y, Yang L. Ketogenic diet ameliorates attention deficit hyperactivity disorder in rats via regulating gut microbiota. PLoS One 2023; 18:e0289133. [PMID: 37585373 PMCID: PMC10431618 DOI: 10.1371/journal.pone.0289133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/11/2023] [Indexed: 08/18/2023] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a common mental behavioral disorder in children. Alterations in gut microbiota composition are associated with neurological disorders. We aimed to investigate whether a ketogenic diet (KD) can be an alternative therapy for ADHD by altering the gut microbiota. Male spontaneously hypertensive rats (SHR) and Wistar Kyoto (WKY) rats were randomly allocated to the normal diet (ND), methylphenidate (MPH), and KD groups. SHR in groups KD and MPH exhibited a significant increase in behavioral characteristics of ADHD, such as distance moved and immobility time. KD and MPH treatment led to a significant elevation in concentrations of 5-HT, AC, cAMP, and NE of brain tissue and the expression of DRD1, DAT, PKA, DARPP32, and cAMP at the protein level in WKY rats and SHR. KD and MPH significantly increased the richness and diversity of gut microbiota in SHR. The abundance of Ruminococcus_gauvreauii_group, Bacteroides, Bifidobacterium, and Blautia significantly increased, whereas that of Lactobacillus, Romboutsia, Facklamia, and Turicibacter significantly declined in the KD group compared with the ND group. The gut microbiota in the KD group of SHR mainly participated in amino acid metabolism- and sugar metabolism-related pathways. KD might alleviate behavioral disorders in ADHD by regulating gut microbiota. This study provides novel insights for the use of KD in treating ADHD.
Collapse
Affiliation(s)
- Yu Liu
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Changhong Yang
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yingxue Meng
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yonghui Dang
- College of Medicine and Forensics, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Lin Yang
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
4
|
Mathieson E, Irving C, Koberna S, Nicholson M, Otto MW, Kantak KM. Role of preexisting inhibitory control deficits vs. drug use history in mediating insensitivity to aversive consequences in a rat model of polysubstance use. Psychopharmacology (Berl) 2022; 239:2377-2394. [PMID: 35391547 PMCID: PMC8989405 DOI: 10.1007/s00213-022-06134-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 03/30/2022] [Indexed: 10/26/2022]
Abstract
RATIONALE The nature and predictors of insensitivity to aversive consequences of heroin + cocaine polysubstance use are not well characterized. OBJECTIVES Translational methods incorporating a tightly controlled animal model of drug self-administration and measures of inhibitory control and avoidance behavior might be helpful for clarifying this issue. METHODS The key approach for distinguishing potential contributions of pre-existing inhibitory control deficits vs. drug use history in meditating insensitivity to aversive consequences was comparison of two rat strains: Wistar (WIS/Crl), an outbred strain, and the spontaneously hypertensive rat (SHR/NCrl), an inbred strain shown previously to exhibit heightened cocaine and heroin self-administration and poor inhibitory control relative to WIS/Crl. RESULTS In separate tasks, SHR/NCrl displayed greater impulsive action and compulsive-like behavior than WIS/Crl prior to drug exposure. Under two different schedules of drug delivery, SHR/NCrl self-administered more cocaine than WIS/Crl, but self-administered a similar amount of heroin + cocaine as WIS/Crl. When half the session cycles were punished by random foot shock, SHR/NCrl initially were less sensitive to punishment than WIS/Crl when self-administering cocaine, but were similarly insensitive to punishment when self-administering heroin + cocaine. Based on correlation analyses, only trait impulsivity predicted avoidance capacity in rats self-administering cocaine and receiving yoked-saline. In contrast, only amount of drug use predicted avoidance capacity in rats self-administering heroin + cocaine. Additionally, baseline drug seeking and taking predicted punishment insensitivity in rats self-administering cocaine or heroin + cocaine. CONCLUSIONS Based on the findings revealed in this animal model, human laboratory research concerning the nature and predictors of insensitivity to aversive consequences in heroin and cocaine polysubstance vs. monosubstance users is warranted.
Collapse
Affiliation(s)
- Elon Mathieson
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA, 02215, USA
| | - Carolyn Irving
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA, 02215, USA
| | - Sarah Koberna
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA, 02215, USA
| | - Megan Nicholson
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA, 02215, USA
| | - Michael W Otto
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA, 02215, USA
| | - Kathleen M Kantak
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA, 02215, USA.
- Center for Systems Neuroscience, Boston University, Boston, MA, USA.
| |
Collapse
|
5
|
Raony Í, Domith I, Lourenco MV, Paes-de-Carvalho R, Pandolfo P. Trace amine-associated receptor 1 modulates motor hyperactivity, cognition, and anxiety-like behavior in an animal model of ADHD. Prog Neuropsychopharmacol Biol Psychiatry 2022; 117:110555. [PMID: 35346791 DOI: 10.1016/j.pnpbp.2022.110555] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 03/03/2022] [Accepted: 03/22/2022] [Indexed: 02/03/2023]
Abstract
Trace amine-associated receptor 1 (TAAR1) is a G protein-coupled receptor that has recently been implicated in several psychiatric conditions related to monoaminergic dysfunction, such as schizophrenia, substance use disorders, and mood disorders. Although attention-deficit/hyperactivity disorder (ADHD) is also related to changes in monoaminergic neurotransmission, studies that assess whether TAAR1 participates in the neurobiology of ADHD are lacking. We hypothesized that TAAR1 plays an important role in ADHD and might represent a potential therapeutic target. Here, we investigate if TAAR1 modulates behavioral phenotypes in Spontaneously Hypertensive Rats (SHR), the most validated animal model of ADHD, and Wistar Kyoto rats (WKY, used as a control strain). Our results showed that TAAR1 is downregulated in ADHD-related brain regions in SHR compared with WKY. While intracerebroventricular (i.c.v.) administration of the selective TAAR1 antagonist EPPTB impaired cognitive performance in SHR, i.c.v. administration of highly selective TAAR1 full agonist RO5256390 decreased motor hyperactivity, novelty-induced locomotion, and induced an anxiolytic-like behavior. Overall, our findings show that changes in TAAR1 levels/activity underlie behavior in SHR, suggesting that TAAR1 plays a role in the neurobiology of ADHD. Although additional confirmatory studies are required, TAAR1 might be a potential pharmacological target for individuals with this disorder.
Collapse
Affiliation(s)
- Ícaro Raony
- Laboratory of Neurobiology of Animal Behavior, Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói 24020-141, Brazil; Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ivan Domith
- Laboratory of Cellular Neurobiology, Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói 24020-141, Brazil
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Roberto Paes-de-Carvalho
- Laboratory of Cellular Neurobiology, Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói 24020-141, Brazil
| | - Pablo Pandolfo
- Laboratory of Neurobiology of Animal Behavior, Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói 24020-141, Brazil.
| |
Collapse
|
6
|
Ivanov I, Bjork JM, Blair J, Newcorn JH. Sensitization-based risk for substance abuse in vulnerable individuals with ADHD: Review and re-examination of evidence. Neurosci Biobehav Rev 2022; 135:104575. [PMID: 35151770 PMCID: PMC9893468 DOI: 10.1016/j.neubiorev.2022.104575] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023]
Abstract
Evidence of sensitization following stimulants administration in humans is just emerging, which prevents reaching more definitive conclusions in favor or against a purported protective role of stimulant treatments for ADHD for the development of substance use disorders. Existing evidence from both animal and human research suggest that stimulants produce neurophysiological changes in the brain reward system, some of which could be persistent. This could be relevant in choosing optimal treatments for young patients with ADHD who have additional clinical risk factors for substance abuse (e.g. conduct disorder (CD) and/or familial addictions). Here we stipulate that, while the majority of youth with ADHD greatly benefit from treatments with stimulants, there might be a subpopulation of individuals whose neurobiological profiles may confer risk for heightened vulnerability to the effects of stimulants on the responsiveness of the brain reward system. We propose that focused human research is needed to elucidate the unknown effects of prolonged stimulant exposure on the neurophysiology of the brain reward system in young patients with ADHD.
Collapse
Affiliation(s)
- Iliyan Ivanov
- Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | | | - James Blair
- Child and Adolescent Mental Health Centre, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | | |
Collapse
|
7
|
Kantak KM. Rodent models of attention-deficit hyperactivity disorder: An updated framework for model validation and therapeutic drug discovery. Pharmacol Biochem Behav 2022; 216:173378. [DOI: 10.1016/j.pbb.2022.173378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 01/21/2023]
|
8
|
Kantak KM, Stots C, Mathieson E, Bryant CD. Spontaneously Hypertensive Rat substrains show differences in model traits for addiction risk and cocaine self-administration: Implications for a novel rat reduced complexity cross. Behav Brain Res 2021; 411:113406. [PMID: 34097899 PMCID: PMC8265396 DOI: 10.1016/j.bbr.2021.113406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 12/17/2022]
Abstract
Forward genetic mapping of F2 crosses between closely related substrains of inbred rodents - referred to as a reduced complexity cross (RCC) - is a relatively new strategy for accelerating the pace of gene discovery for complex traits, such as drug addiction. RCCs to date were generated in mice, but rats are thought to be optimal for addiction genetic studies. Based on past literature, one inbred Spontaneously Hypertensive Rat substrain, SHR/NCrl, is predicted to exhibit a distinct behavioral profile as it relates to cocaine self-administration traits relative to another substrain, SHR/NHsd. Direct substrain comparisons are a necessary first step before implementing an RCC. We evaluated model traits for cocaine addiction risk and cocaine self-administration behaviors using a longitudinal within-subjects design. Impulsive-like and compulsive-like traits were greater in SHR/NCrl than SHR/NHsd, as were reactivity to sucrose reward, sensitivity to acute psychostimulant effects of cocaine, and cocaine use studied under fixed-ratio and tandem schedules of cocaine self-administration. Compulsive-like behavior correlated with the acute psychostimulant effects of cocaine, which in turn correlated with cocaine taking under the tandem schedule. Compulsive-like behavior also was the best predictor of cocaine seeking responses. Heritability estimates indicated that 22 %-40 % of the variances for the above phenotypes can be explained by additive genetic factors, providing sufficient genetic variance to conduct genetic mapping in F2 crosses of SHR/NCrl and SHR/NHsd. These results provide compelling support for using an RCC approach in SHR substrains to uncover candidate genes and variants that are of relevance to cocaine use disorders.
Collapse
Affiliation(s)
- Kathleen M Kantak
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA; Center for Systems Neuroscience, Boston University, Boston, MA, USA.
| | - Carissa Stots
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Elon Mathieson
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Camron D Bryant
- Departments of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA; Center for Systems Neuroscience, Boston University, Boston, MA, USA
| |
Collapse
|
9
|
Integrating data science into the translational science research spectrum: A substance use disorder case study. J Clin Transl Sci 2020; 5:e29. [PMID: 33948252 PMCID: PMC8057445 DOI: 10.1017/cts.2020.521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The availability of large healthcare datasets offers the opportunity for researchers to navigate the traditional clinical and translational science research stages in a nonlinear manner. In particular, data scientists can harness the power of large healthcare datasets to bridge from preclinical discoveries (T0) directly to assessing population-level health impact (T4). A successful bridge from T0 to T4 does not bypass the other stages entirely; rather, effective team science makes a direct progression from T0 to T4 impactful by incorporating the perspectives of researchers from every stage of the clinical and translational science research spectrum. In this exemplar, we demonstrate how effective team science overcame challenges and, ultimately, ensured success when a diverse team of researchers worked together, using healthcare big data to test population-level substance use disorder (SUD) hypotheses generated from preclinical rodent studies. This project, called Advancing Substance use disorder Knowledge using Big Data (ASK Big Data), highlights the critical roles that data science expertise and effective team science play in quickly translating preclinical research into public health impact.
Collapse
|
10
|
Facilitating Complex Trait Analysis via Reduced Complexity Crosses. Trends Genet 2020; 36:549-562. [PMID: 32482413 DOI: 10.1016/j.tig.2020.05.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 05/05/2020] [Accepted: 05/12/2020] [Indexed: 01/02/2023]
Abstract
Genetically diverse inbred strains are frequently used in quantitative trait mapping to identify sequence variants underlying trait variation. Poor locus resolution and high genetic complexity impede variant discovery. As a solution, we explore reduced complexity crosses (RCCs) between phenotypically divergent, yet genetically similar, rodent substrains. RCCs accelerate functional variant discovery via decreasing the number of segregating variants by orders of magnitude. The simplified genetic architecture of RCCs often permit immediate identification of causal variants or rapid fine-mapping of broad loci to smaller intervals. Whole-genome sequences of substrains make RCCs possible by supporting the development of array- and targeted sequencing-based genotyping platforms, coupled with rapid genome editing for variant validation. In summary, RCCs enhance discovery-based genetics of complex traits.
Collapse
|
11
|
Dow-Edwards D, MacMaster FP, Peterson BS, Niesink R, Andersen S, Braams BR. Experience during adolescence shapes brain development: From synapses and networks to normal and pathological behavior. Neurotoxicol Teratol 2019; 76:106834. [PMID: 31505230 DOI: 10.1016/j.ntt.2019.106834] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/27/2019] [Accepted: 09/06/2019] [Indexed: 12/20/2022]
Abstract
Adolescence is a period of dramatic neural reorganization creating a period of vulnerability and the possibility for the development of psychopathology. The maturation of various neural circuits during adolescence depends, to a large degree, on one's experiences both physical and psychosocial. This occurs through a process of plasticity which is the structural and functional adaptation of the nervous system in response to environmental demands, physiological changes and experiences. During adolescence, this adaptation proceeds upon a backdrop of structural and functional alterations imparted by genetic and epigenetic factors and experiences both prior to birth and during the postnatal period. Plasticity entails an altering of connections between neurons through long-term potentiation (LTP) (which alters synaptic efficiency), synaptogenesis, axonal sprouting, dendritic remodeling, neurogenesis and recruitment (Skaper et al., 2017). Although most empirical evidence for plasticity derives from studies of the sensory systems, recent studies have suggested that during adolescence, social, emotional, and cognitive experiences alter the structure and function of the networks subserving these domains of behavior. Each of these neural networks exhibits heightened vulnerability to experience-dependent plasticity during the sensitive periods which occur in different circuits and different brain regions at specific periods of development. This report will summarize some examples of adaptation which occur during adolescence and some evidence that the adolescent brain responds differently to stimuli compared to adults and children. This symposium, "Experience during adolescence shapes brain development: from synapses and networks to normal and pathological behavior" occurred during the Developmental Neurotoxicology Society/Teratology Society Annual Meeting in Clearwater Florida, June 2018. The sections will describe the maturation of the brain during adolescence as studied using imaging technologies, illustrate how plasticity shapes the structure of the brain using examples of pathological conditions such as Tourette's' syndrome and attention deficit hyperactivity disorder, and a review of the key molecular systems involved in this plasticity and how some commonly abused substances alter brain development. The role of stimulants used in the treatment of attention deficit hyperactivity disorder (ADHD) in the plasticity of the reward circuit is then described. Lastly, clinical data promoting an understanding of peer-influences on risky behavior in adolescents provides evidence for the complexity of the roles that peers play in decision making, a phenomenon different from that in the adult. Imaging studies have revealed that activation of the social network by the presence of peers at times of decision making is unique in the adolescent. Since normal brain development relies on experiences which alter the functional and structural connections between cells within circuits and networks to ultimately alter behavior, readers can be made aware of the myriad of ways normal developmental processes can be hijacked. The vulnerability of developing adolescent brain places the adolescent at risk for the development of a life time of abnormal behaviors and mental disorders.
Collapse
Affiliation(s)
- Diana Dow-Edwards
- Department of Physiology & Pharmacology, State University of New York, Downstate Medical Center, Brooklyn, NY, United States of America.
| | - Frank P MacMaster
- Departments of Psychiatry & Pediatrics, University of Calgary, Addiction and Mental Health Strategic Clinical Network, Calgary, Alberta, Canada
| | - Bradley S Peterson
- Children's Hospital Los Angeles, The Keck School of Medicine at the University of Southern California, Los Angeles, CA, United States of America
| | - Raymond Niesink
- Trimbos Institute, Netherlands Institute of Mental Health and Addiction, Utrecht, the Netherlands; Faculty of Management, Science and Technology, School of Science, Open University of the Netherlands, Heerlen, the Netherlands
| | - Susan Andersen
- McLean Hospital, Department of Psychiatry, Harvard Medical School, Boston, MA, United States of America
| | - B R Braams
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA, United States of America
| |
Collapse
|
12
|
Fouladvand S, Hankosky ER, Bush H, Chen J, Dwoskin LP, Freeman PR, Henderson DW, Kantak K, Talbert J, Tao S, Zhang GQ. Predicting substance use disorder using long-term attention deficit hyperactivity disorder medication records in Truven. Health Informatics J 2019; 26:787-802. [PMID: 31106686 DOI: 10.1177/1460458219844075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
About 20% of individuals with attention deficit hyperactivity disorder are first diagnosed during adolescence. While preclinical experiments suggest that adolescent-onset exposure to attention deficit hyperactivity disorder medication is an important factor in the development of substance use disorder phenotypes in adulthood, the long-term impact of attention deficit hyperactivity disorder medication initiated during adolescence has been largely unexplored in humans. Our analysis of 11,624 adolescent enrollees with attention deficit hyperactivity disorder in the Truven database indicates that temporal medication features, rather than stationary features, are the most important factors on the health consequences related to substance use disorder and attention deficit hyperactivity disorder medication initiation during adolescence.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Guo-Qiang Zhang
- University of Kentucky, USA; The University of Texas Health Science Center at Houston, USA
| |
Collapse
|
13
|
Di Miceli M, Omoloye A, Gronier B. Chronic methylphenidate treatment during adolescence has long-term effects on monoaminergic function. J Psychopharmacol 2019; 33:109-121. [PMID: 30334678 DOI: 10.1177/0269881118805494] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Psychostimulants like methylphenidate or D-amphetamine are often prescribed for attention deficit and hyperactivity disorders in children. Whether such drugs can be administered into a developing brain without consequences in adulthood is still an open question. METHODS Here, using in vivo extracellular electrophysiology in anesthetised preparations, combined with behavioural assays, we have examined the long-term consequences in adulthood of a chronic methylphenidate oral administration (5 mg/kg/day, 15 days) in early adolescent (post-natal day 28) and late adolescent (post-natal day 42) rats, by evaluating body weight change, sucrose preference (indicator of anhedonia), locomotor sensitivity to D-amphetamine and electrical activities of ventral tegmental area dopamine and dorsal raphe nucleus serotonin neurons. RESULTS Chronic methylphenidate treatment during early or late adolescence did not induce weight deficiencies and anhedonia-like behaviours at adulthood. However, it increased bursting activities of dorsal raphe nucleus serotonin neurons. Furthermore, chronic methylphenidate treatment during early but not during late adolescence enhanced D-amphetamine-induced rearing activity, as well as ventral tegmental area dopamine cell excitability (firing, burst and population activity), associated with a partial desensitisation of dopamine D2 auto-receptors. CONCLUSIONS We have demonstrated here that early, but not late, adolescent exposure to oral methylphenidate may induce long-lasting effects on monoamine neurotransmission. The possible clinical implication of these data will be discussed.
Collapse
Affiliation(s)
- Mathieu Di Miceli
- Pharmacology and Neuroscience Research Group, Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Adesina Omoloye
- Pharmacology and Neuroscience Research Group, Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Benjamin Gronier
- Pharmacology and Neuroscience Research Group, Leicester School of Pharmacy, De Montfort University, Leicester, UK
| |
Collapse
|
14
|
Weissenberger S, Ptacek R, Vnukova M, Raboch J, Klicperova-Baker M, Domkarova L, Goetz M. ADHD and lifestyle habits in Czech adults, a national sample. Neuropsychiatr Dis Treat 2018; 14:293-299. [PMID: 29391802 PMCID: PMC5774466 DOI: 10.2147/ndt.s148921] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Adult attention-deficit/hyperactivity disorder (ADHD) has been added as a diagnosis to the Diagnostic and Statistical Manual of Mental Disorders version 5 (DSM5) in 2013, thus making ADHD, which has been classically known as a childhood disorder, a life-long disorder. Those suffering from the condition show very specific behavioral traits, which manifest as lifestyle habits; they also show comorbidities that can be the symptoms and/or consequences of certain lifestyles. MATERIALS AND METHODS The targeted population was adults aged 18-65 years. The total sample was 1,012 (507 males and 505 females). The Adult ADHD Self-Report Scale (ASRS V. 1.1) was administered to evaluate the current symptoms of ADHD and a questionnaire regarding lifestyles that are pertinent to ADHD, exercise, drug use, and diet. RESULTS An ASRS score of 4-6 points was found in 11.4% of the male population and 9.7% of the female population (5-6 points indicate very high-intensity symptoms). A score of 6, the highest intensity of symptomatology, was found in 1.18% of males and 0.99% of females. Gender differences in scores were not statistically significant. In terms of self-reported lifestyles, we calculated an ordered logistic regression and the odds ratios of those with ASRS scores >4. Those with higher ASRS scores had higher rates of self-reported unhealthy lifestyles and poor diets with high consumption of sweets. We also ascertained a paradoxical finding that is not in line with the current literature on the disorder - lower rates of cigarette smoking among people with higher ADHD symptomatology. CONCLUSION Several specific lifestyles were found to be associated with higher ADHD symptoms such as poor diet and cannabis use. Other factors classically associated with the disorder such as cocaine addiction and nicotinism were either insignificant or surprisingly less prominent among the Czech sample. However, ADHD-prone respondents reported to be more physically active, which fits the clinical picture of hyperactivity but contrasts with literature that reports sedentary ADHD lifestyle.
Collapse
Affiliation(s)
- Simon Weissenberger
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague.,Department of Psychology, University of New York in Prague, Prague
| | - Radek Ptacek
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague.,Department of Psychology, University of New York in Prague, Prague
| | - Martina Vnukova
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague.,Department of Psychology, University of New York in Prague, Prague
| | - Jiri Raboch
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague
| | | | - Lucie Domkarova
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague
| | - Michal Goetz
- Department of Paediatric Psychiatry, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| |
Collapse
|
15
|
Blockade of α2-adrenergic receptors in prelimbic cortex: impact on cocaine self-administration in adult spontaneously hypertensive rats following adolescent atomoxetine treatment. Psychopharmacology (Berl) 2017; 234:2897-2909. [PMID: 28730282 PMCID: PMC5693724 DOI: 10.1007/s00213-017-4681-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/25/2017] [Indexed: 12/17/2022]
Abstract
RATIONALE Research with the spontaneously hypertensive rat (SHR) model of attention deficit/hyperactivity disorder demonstrated that chronic methylphenidate treatment during adolescence increased cocaine self-administration established during adulthood under a progressive ratio (PR) schedule. Compared to vehicle, chronic atomoxetine treatment during adolescence failed to increase cocaine self-administration under a PR schedule in adult SHR. OBJECTIVES We determined if enhanced noradrenergic transmission at α2-adrenergic receptors within prefrontal cortex contributes to this neutral effect of adolescent atomoxetine treatment in adult SHR. METHODS Following treatment from postnatal days 28-55 with atomoxetine (0.3 mg/kg) or vehicle, adult male SHR and control rats from Wistar-Kyoto (WKY) and Wistar (WIS) strains were trained to self-administer 0.3 mg/kg cocaine. Self-administration performance was evaluated under a PR schedule of cocaine delivery following infusion of the α2-adrenergic receptor antagonist idazoxan (0 and 10-56 μg/side) directly into prelimbic cortex. RESULTS Adult SHR attained higher PR break points and had greater numbers of active lever responses and infusions than WKY and WIS. Idazoxan dose-dependently increased PR break points and active lever responses in SHR following adolescent atomoxetine vs. vehicle treatment. Behavioral changes were negligible after idazoxan pretreatment in SHR following adolescent vehicle or in WKY and WIS following adolescent atomoxetine or vehicle. CONCLUSIONS α2-Adrenergic receptor blockade in prelimbic cortex of SHR masked the expected neutral effect of adolescent atomoxetine on adult cocaine self-administration behavior. Moreover, greater efficacy of acute idazoxan challenge in adult SHR after adolescent atomoxetine relative to vehicle is consistent with the idea that chronic atomoxetine may downregulate presynaptic α2A-adrenergic autoreceptors in SHR.
Collapse
|
16
|
DeVito EE, Herman AI, Konkus NS, Zhang H, Sofuoglu M. Atomoxetine in abstinent cocaine users: Sex differences. Data Brief 2017; 14:566-572. [PMID: 28861456 PMCID: PMC5568877 DOI: 10.1016/j.dib.2017.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 12/04/2022] Open
Abstract
Data presented are from a sex-differences secondary analysis of a human laboratory investigation of single doses of atomoxetine (40 mg and 80 mg) versus placebo in abstinent individuals with cocaine use disorders (CUD). Subjective drug effects, cognitive performance and cardiovascular measures were assessed. The primary atomoxetine dose analyses (which do not consider sex as a factor) are reported in full elsewhere (DeVito et al., 2017) [1].
Collapse
Affiliation(s)
- Elise E DeVito
- Department of Psychiatry, Yale School of Medicine, United States.,Veterans Affairs Medical Center, West Haven, CT, United States
| | - Aryeh I Herman
- Department of Psychiatry, Yale School of Medicine, United States.,Veterans Affairs Medical Center, West Haven, CT, United States
| | - Noah S Konkus
- Department of Psychiatry, Yale School of Medicine, United States
| | - Huiping Zhang
- Department of Psychiatry, Yale School of Medicine, United States
| | - Mehmet Sofuoglu
- Department of Psychiatry, Yale School of Medicine, United States.,Veterans Affairs Medical Center, West Haven, CT, United States
| |
Collapse
|
17
|
DeVito EE, Herman AI, Konkus NS, Zhang H, Sofuoglu M. Atomoxetine in abstinent cocaine users: Cognitive, subjective and cardiovascular effects. Pharmacol Biochem Behav 2017; 159:55-61. [PMID: 28716656 DOI: 10.1016/j.pbb.2017.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/01/2017] [Accepted: 07/03/2017] [Indexed: 01/09/2023]
Abstract
No pharmacotherapies are approved for the treatment of cocaine use disorders (CUD). Behavioral treatments for CUD are efficacious for some individuals, but recovery rates from CUD remain low. Cognitive impairments in CUD have been linked with poorer clinical outcomes. Cognitive enhancing pharmacotherapies have been proposed as promising treatments for CUD. Atomoxetine, a norepinephrine transporter inhibitor, shows potential as a treatment for CUD based on its efficacy as a cognitive enhancer in other clinical populations and impact on addictive processes in preclinical and human laboratory studies. In this randomized, double-blind, crossover study, abstinent individuals with CUD (N=39) received placebo, 40 and 80mg atomoxetine, over three sessions. Measures of attention, response inhibition and working memory; subjective medication effects and mood; and cardiovascular effects were collected. Analyses assessed acute, dose-dependent effects of atomoxetine. In addition, preliminary analyses investigating the modulation of atomoxetine dose effects by sex were performed. Atomoxetine increased heart rate and blood pressure, was rated as having positive and negative subjective drug effects, and had only modest effects on mood and cognitive enhancement.
Collapse
Affiliation(s)
- Elise E DeVito
- Department of Psychiatry, Yale School of Medicine, 1 Church Street, New Haven, CT 06510, USA; Veterans Affairs Medical Center, 950 Campbell Avenue, West Haven, CT 06516, USA.
| | - Aryeh I Herman
- Veterans Affairs Medical Center, 950 Campbell Avenue, West Haven, CT 06516, USA; Department of Psychiatry, Yale School of Medicine, 300 George Street, New Haven, CT 06511, USA
| | - Noah S Konkus
- Department of Psychiatry, Yale School of Medicine, 1 Church Street, New Haven, CT 06510, USA.
| | - Huiping Zhang
- Department of Psychiatry, Yale School of Medicine, 300 George Street, New Haven, CT 06511, USA.
| | - Mehmet Sofuoglu
- Veterans Affairs Medical Center, 950 Campbell Avenue, West Haven, CT 06516, USA; Department of Psychiatry, Yale School of Medicine, 300 George Street, New Haven, CT 06511, USA.
| |
Collapse
|
18
|
Methylphenidate effects in the young brain: friend or foe? Int J Dev Neurosci 2017; 60:34-47. [PMID: 28412445 DOI: 10.1016/j.ijdevneu.2017.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/07/2017] [Accepted: 04/06/2017] [Indexed: 01/17/2023] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is one of the most prevalent neuropsychiatry disorders in children and adolescents, and methylphenidate (MPH) is a first-line stimulant drug available worldwide for its treatment. Despite the proven therapeutic efficacy, concerns have been raised regarding the possible consequences of chronic MPH exposure during childhood and adolescence. Disturbances in the neurodevelopment at these crucial stages are major concerns given the unknown future life consequences. This review is focused on the long-term adverse effects of MPH to the brain biochemistry. Reports conducted with young and/or adolescent animals and studies with humans are reviewed in the context of long-term consequences after early life-exposure. MPH pharmacokinetics is also reviewed as there are differences among laboratory animals and humans that may be relevant to extrapolate the findings. Studies reveal that exposure to MPH in laboratory animals during young and/or adolescent ages can impact the brain, but the outcomes are dependent on MPH dose, treatment period, and animal's age. Importantly, the female sex is largely overlooked in both animal and human studies. Unfortunately, human reports that evaluate adults following adolescent or child exposure to MPH are very scarce. In general, human data indicates that MPH is generally safe, although it can promote several brain changes in early ages. Even so, there is a lack of long course patient evaluation to clearly establish whether MPH-induced changes are friendly or foe to the brain and more human studies are needed to assess the adult brain changes that arise from early MPH treatment.
Collapse
|
19
|
Jordan CJ, Lemay C, Dwoskin LP, Kantak KM. Adolescent d-amphetamine treatment in a rodent model of attention deficit/hyperactivity disorder: impact on cocaine abuse vulnerability in adulthood. Psychopharmacology (Berl) 2016; 233:3891-3903. [PMID: 27600990 PMCID: PMC5026317 DOI: 10.1007/s00213-016-4419-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 08/24/2016] [Indexed: 12/17/2022]
Abstract
RATIONALE Stimulant medications for attention-deficit/hyperactivity disorder (ADHD) in adolescents remain controversial with respect to later development of cocaine abuse. Past research demonstrated that adolescent methylphenidate treatment increased several aspects of cocaine self-administration during adulthood using the spontaneously hypertensive rat (SHR) model of ADHD. Presently, we determined effects of the alternate stimulant medication, d-amphetamine, on cocaine self-administration. OBJECTIVES We tested the hypothesis that adolescent d-amphetamine would not increase cocaine self-administration in adult SHR, given that d-amphetamine has a different mechanism of action than methylphenidate. METHODS A pharmacologically relevant dose of d-amphetamine (0.5 mg/kg) or vehicle was administered throughout adolescence to SHR and two control strains, Wistar-Kyoto (WKY) and Wistar (WIS). Three aspects of cocaine abuse vulnerability were assessed in adulthood after discontinuing adolescent treatments: acquisition rate and dose-related responding under fixed (FR) and progressive (PR) ratio schedules. RESULTS Adult SHR acquired cocaine self-administration faster and self-administered more cocaine across multiple doses compared to WKY and WIS under FR and PR schedules, indicating that SHR is a reliable animal model of comorbid ADHD and cocaine abuse. Relative to vehicle, SHR and WIS with adolescent d-amphetamine treatment self-administered less cocaine upon reaching acquisition criteria, and WIS additionally acquired cocaine self-administration more slowly and had downward shifts in FR and PR cocaine dose-response curves. WKY with adolescent d-amphetamine treatment acquired cocaine self-administration more quickly relative to vehicle. CONCLUSIONS In contrast to methylphenidate, adolescent d-amphetamine did not augment cocaine self-administration in SHR. Adolescent d-amphetamine treatment actually protected against cocaine abuse vulnerability in adult SHR and WIS.
Collapse
Affiliation(s)
- Chloe J Jordan
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA, 02215, USA
| | - Carley Lemay
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA, 02215, USA
| | - Linda P Dwoskin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
| | - Kathleen M Kantak
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA, 02215, USA.
| |
Collapse
|
20
|
Jordan CJ, Andersen SL. Sensitive periods of substance abuse: Early risk for the transition to dependence. Dev Cogn Neurosci 2016; 25:29-44. [PMID: 27840157 PMCID: PMC5410194 DOI: 10.1016/j.dcn.2016.10.004] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/10/2016] [Indexed: 12/20/2022] Open
Abstract
Early substance use dramatically increases the risk of substance use disorder (SUD). Although many try drugs, only a small percentage transition to SUD. High reactivity of reward, habit, and stress systems increase risk. Identification of early risk enables targeted, preventative interventions for SUD. Prevention must start before the sensitive adolescent period to maximize resilience.
Early adolescent substance use dramatically increases the risk of lifelong substance use disorder (SUD). An adolescent sensitive period evolved to allow the development of risk-taking traits that aid in survival; today these may manifest as a vulnerability to drugs of abuse. Early substance use interferes with ongoing neurodevelopment to induce neurobiological changes that further augment SUD risk. Although many individuals use drugs recreationally, only a small percentage transition to SUD. Current theories on the etiology of addiction can lend insights into the risk factors that increase vulnerability from early recreational use to addiction. Building on the work of others, we suggest individual risk for SUD emerges from an immature PFC combined with hyper-reactivity of reward salience, habit, and stress systems. Early identification of risk factors is critical to reducing the occurrence of SUD. We suggest preventative interventions for SUD that can be either tailored to individual risk profiles and/or implemented broadly, prior to the sensitive adolescent period, to maximize resilience to developing substance dependence. Recommendations for future research include a focus on the juvenile and adolescent periods as well as on sex differences to better understand early risk and identify the most efficacious preventions for SUD.
Collapse
Affiliation(s)
- Chloe J Jordan
- Department of Psychiatry, Mclean Hospital/Harvard Medical School, Belmont, MA 02478, United States.
| | - Susan L Andersen
- Department of Psychiatry, Mclean Hospital/Harvard Medical School, Belmont, MA 02478, United States
| |
Collapse
|
21
|
Sex differences, learning flexibility, and striatal dopamine D1 and D2 following adolescent drug exposure in rats. Behav Brain Res 2016; 308:104-14. [PMID: 27091300 DOI: 10.1016/j.bbr.2016.04.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/23/2016] [Accepted: 04/14/2016] [Indexed: 02/06/2023]
Abstract
Corticostriatal circuitry supports flexible reward learning and emotional behavior from the critical neurodevelopmental stage of adolescence through adulthood. It is still poorly understood how prescription drug exposure in adolescence may impact these outcomes in the long-term. We studied adolescent methylphenidate (MPH) and fluoxetine (FLX) exposure in rats and their impact on learning and emotion in adulthood. In Experiment 1, male and female rats were administered MPH, FLX, or saline (SAL), and compared with methamphetamine (mAMPH) treatment beginning in postnatal day (PND) 37. The rats were then tested on discrimination and reversal learning in adulthood. In Experiment 2, animals were administered MPH or SAL also beginning in PND 37 and later tested in adulthood for anxiety levels. In Experiment 3, we analyzed striatal dopamine D1 and D2 receptor expression in adulthood following either extensive learning (after Experiment 1) or more brief emotional measures (after Experiment 2). We found sex differences in discrimination learning and attenuated reversal learning after MPH and only sex differences in adulthood anxiety. In learners, there was enhanced striatal D1, but not D2, after either adolescent MPH or mAMPH. Lastly, also in learners, there was a sex x treatment group interaction for D2, but not D1, driven by the MPH-pretreated females, who expressed significantly higher D2 levels compared to SAL. These results show enduring effects of adolescent MPH on reversal learning in rats. Developmental psychostimulant exposure may interact with learning to enhance D1 expression in adulthood, and affect D2 expression in a sex-dependent manner.
Collapse
|
22
|
Kantak KM, Dwoskin LP. Necessity for research directed at stimulant type and treatment-onset age to access the impact of medication on drug abuse vulnerability in teenagers with ADHD. Pharmacol Biochem Behav 2016; 145:24-6. [PMID: 27012495 DOI: 10.1016/j.pbb.2016.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/17/2016] [Accepted: 03/19/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Kathleen M Kantak
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA.
| | - Linda P Dwoskin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
23
|
Jaboinski J, Cabral JCC, Campos R, Barros DM. Exposure to methylphenidate during infancy and adolescence in non-human animals and sensitization to abuse of psychostimulants later in life: a systematic review. TRENDS IN PSYCHIATRY AND PSYCHOTHERAPY 2015; 37:107-17. [PMID: 26630401 DOI: 10.1590/2237-6089-2014-0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/25/2015] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Attention deficit hyperactivity disorder (ADHD) is a neuropsychiatric pathology that has an important prevalence among young people and is difficult to diagnose. It is usually treated with methylphenidate, a psychostimulant with a mechanism of action similar to that of cocaine. Previous studies show that repeated use of psychostimulants during childhood or adolescence may sensitize subjects, making them more prone to later abuse of psychostimulant drugs such as cocaine and methamphetamine. OBJECTIVE To review experimental studies in non-human models (rodents and monkeys) treated with methylphenidate during infancy or adolescence and tested for reinforcing effects on psychostimulant drugs in adulthood. METHOD Systematic collection of data was performed on four databases (Web of Knowledge, PsycARTICLE, PubMed and SciELO). The initial search identified 202 articles published from 2009 to 2014, which were screened for eligibility. Seven articles met the inclusion criteria and were reviewed in this study. RESULTS The findings indicate that early exposure to methylphenidate has an effect on an ADHD animal model, specifically, on spontaneously hypertensive strain rats, especially those tested using the self-administration paradigm. CONCLUSION Future studies should prioritize the spontaneously hypertensive rat strain - an animal model of ADHD. Experimental designs comparing different behavioral paradigms and modes of administration using this strain could lead to improved understanding of the effects of exposure to methylphenidate during childhood and adolescence.
Collapse
Affiliation(s)
- Juliana Jaboinski
- Institute of Psychology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Renan Campos
- Institute of Biological Sciences, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Daniela Marti Barros
- Institute of Biological Sciences, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| |
Collapse
|
24
|
Adolescent D-amphetamine treatment in a rodent model of ADHD: Pro-cognitive effects in adolescence without an impact on cocaine cue reactivity in adulthood. Behav Brain Res 2015; 297:165-79. [PMID: 26467602 DOI: 10.1016/j.bbr.2015.10.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/02/2015] [Accepted: 10/06/2015] [Indexed: 12/17/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is comorbid with cocaine abuse. Whereas initiating ADHD medication in childhood does not alter later cocaine abuse risk, initiating medication during adolescence may increase risk. Preclinical work in the Spontaneously Hypertensive Rat (SHR) model of ADHD found that adolescent methylphenidate increased cocaine self-administration in adulthood, suggesting a need to identify alternatively efficacious medications for teens with ADHD. We examined effects of adolescent d-amphetamine treatment on strategy set shifting performance during adolescence and on cocaine self-administration and reinstatement of cocaine-seeking behavior (cue reactivity) during adulthood in male SHR, Wistar-Kyoto (inbred control), and Wistar (outbred control) rats. During the set shift phase, adolescent SHR needed more trials and had a longer latency to reach criterion, made more regressive errors and trial omissions, and exhibited slower and more variable lever press reaction times. d-Amphetamine improved performance only in SHR by increasing choice accuracy and decreasing errors and latency to criterion. In adulthood, SHR self-administered more cocaine, made more cocaine-seeking responses, and took longer to extinguish lever responding than control strains. Adolescent d-amphetamine did not alter cocaine self-administration in adult rats of any strain, but reduced cocaine seeking during the first of seven reinstatement test sessions in adult SHR. These findings highlight utility of SHR in modeling cognitive dysfunction and comorbid cocaine abuse in ADHD. Unlike methylphenidate, d-amphetamine improved several aspects of flexible learning in adolescent SHR and did not increase cocaine intake or cue reactivity in adult SHR. Thus, adolescent d-amphetamine was superior to methylphenidate in this ADHD model.
Collapse
|
25
|
Noradrenergic modulation of risk/reward decision making. Psychopharmacology (Berl) 2015; 232:2681-96. [PMID: 25761840 DOI: 10.1007/s00213-015-3904-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/23/2015] [Indexed: 10/23/2022]
Abstract
RATIONALE Catecholamine transmission modulates numerous cognitive and reward-related processes that can subserve more complex functions such as cost/benefit decision making. Dopamine has been shown to play an integral role in decisions involving reward uncertainty, yet there is a paucity of research investigating the contributions of noradrenaline (NA) transmission to these functions. OBJECTIVES The present study was designed to elucidate the contribution of NA to risk/reward decision making in rats, assessed with a probabilistic discounting task. METHODS We examined the effects of reducing noradrenergic transmission with the α2 agonist clonidine (10-100 μg/kg), and increasing activity at α2A receptor sites with the agonist guanfacine (0.1-1 mg/kg), the α2 antagonist yohimbine (1-3 mg/kg), and the noradrenaline transporter (NET) inhibitor atomoxetine (0.3-3 mg/kg) on probabilistic discounting. Rats chose between a small/certain reward and a larger/risky reward, wherein the probability of obtaining the larger reward either decreased (100-12.5 %) or increased (12.5-100 %) over a session. RESULTS In well-trained rats, clonidine reduced risky choice by decreasing reward sensitivity, whereas guanfacine did not affect choice behavior. Yohimbine impaired adjustments in decision biases as reward probability changed within a session by altering negative feedback sensitivity. In a subset of rats that displayed prominent discounting of probabilistic rewards, the lowest dose of atomoxetine increased preference for the large/risky reward when this option had greater long-term utility. CONCLUSIONS These data highlight an important and previously uncharacterized role for noradrenergic transmission in mediating different aspects of risk/reward decision making and mediating reward and negative feedback sensitivity.
Collapse
|
26
|
Jastrzębska J, Frankowska M, Szumiec Ł, Sadakierska-Chudy A, Haduch A, Smaga I, Bystrowska B, Daniel WA, Filip M. Cocaine self-administration in Wistar-Kyoto rats: a behavioral and biochemical analysis. Behav Brain Res 2015; 293:62-73. [PMID: 26192911 DOI: 10.1016/j.bbr.2015.06.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/19/2015] [Accepted: 06/25/2015] [Indexed: 01/06/2023]
Abstract
Depression and cocaine abuse disorders are common concurrent diagnoses. In the present study, we employed Wistar-Kyoto (WKY) rats that showed a depressive-like phenotype to study intravenous cocaine self-administration and extinction/reinstatement procedures. We also investigated the basal tissue level of neurotransmitters, their metabolites and plasma corticosterone (CORT) concentrations in WKY rats, bulbectomized (OBX) rats, and control rats. The WKY rats exhibited an attenuation of the cocaine-associated lever presses and cocaine intake during the acquisition/maintenance of cocaine self-administration only under specific conditions. Active lever presses exhibited by the WKY rats and control animals did not differ during the extinction training and cocaine-seeking behaviors. The WKY rats demonstrated alterations in the basal levels of dopamine, norepinephrine, and serotonin in selected brain structures involved in depression and drug addiction. The changes in the level of neurotransmitters in these animals refer not only to the control (Wistar) rats but also to bulbectomized animals, which represent another depression model. Furthermore, we identified unchanged levels of CORT in the WKY and OBX rats during the light phase and free-stress conditions. This finding suggests that WKY rats should not be used to investigate the co-occurrence of depression and cocaine addiction, as this rat strain does not show an enhanced risk of relapse.
Collapse
Affiliation(s)
- Joanna Jastrzębska
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Smętna 12, Poland
| | - Małgorzata Frankowska
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Smętna 12, Poland
| | - Łukasz Szumiec
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Smętna 12, Poland
| | - Anna Sadakierska-Chudy
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Smętna 12, Poland
| | - Anna Haduch
- Department of Pharmacokinetics and Drug Metabolism, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Smętna 12, Poland
| | - Irena Smaga
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University, Kraków, Medyczna 9, Poland
| | - Beata Bystrowska
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University, Kraków, Medyczna 9, Poland
| | - Wladyslawa A Daniel
- Department of Pharmacokinetics and Drug Metabolism, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Smętna 12, Poland
| | - Małgorzata Filip
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Smętna 12, Poland; Department of Toxicology, Faculty of Pharmacy, Jagiellonian University, Kraków, Medyczna 9, Poland.
| |
Collapse
|
27
|
Blum K, Febo M, Smith DE, Roy AK, Demetrovics Z, Cronjé FJ, Femino J, Agan G, Fratantonio JL, Pandey SC, Badgaiyan RD, Gold MS. Neurogenetic and epigenetic correlates of adolescent predisposition to and risk for addictive behaviors as a function of prefrontal cortex dysregulation. J Child Adolesc Psychopharmacol 2015; 25:286-92. [PMID: 25919973 PMCID: PMC4442554 DOI: 10.1089/cap.2014.0146] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
As addiction professionals, we are becoming increasingly concerned about preteenagers and young adults' involvement with substance abuse as a way of relieving stress and anger. The turbulent underdeveloped central nervous system, especially in the prefrontal cortex (PFC), provides impetus to not only continue important neuroimaging studies in both human and animal models, but also to encourage preventive measures and cautions embraced by governmental and social media outlets. It is well known that before people reach their 20s, PFC development is undergoing significant changes and, as such, hijacks appropriate decision making in this population. We are further proposing that early genetic testing for addiction risk alleles will offer important information that could potentially be utilized by their parents and caregivers prior to use of psychoactive drugs by these youth. Understandably, family history, parenting styles, and attachment may be modified by various reward genes, including the known bonding substances oxytocin/vasopressin, which effect dopaminergic function. Well-characterized neuroimaging studies continue to reflect region-specific differential responses to drugs and food (including other non-substance-addictive behaviors) via either "surfeit" or "deficit." With this in mind, we hereby propose a "reward deficiency solution system" that combines early genetic risk diagnosis, medical monitoring, and nutrigenomic dopamine agonist modalities to combat this significant global dilemma that is preventing our youth from leading normal productive lives, which will in turn make them happier.
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry and McKnight Brain Institute, University of Florida, College of Medicine, Gainesville, Florida.,Division of Addiction Services, Dominion Diagnostics, LLC, North Kingstown, Rhode Island.,Department of Addiction Research & Therapy, Malibu Beach Recovery Center, Malibu Beach, California.,Human Integrative Services & Translational Science, Department of Psychiatry, University of Vermont College of Medicine, Burlington, Vermont
| | - Marcelo Febo
- Department of Psychiatry and McKnight Brain Institute, University of Florida, College of Medicine, Gainesville, Florida
| | - David E. Smith
- Division of Addiction Services, Dominion Diagnostics, LLC, North Kingstown, Rhode Island.,Institute of Health & Aging, University of California, San Francisco, California
| | | | - Zsolt Demetrovics
- Department of Clinical Psychology and Addiction, Institute of Psychology, Eötvös Loránd University, Budapest, Hungary
| | | | - John Femino
- Department of Clinical Medicine, Meadows Edge Recovery Center, North Kingston, Rhode Island
| | - Gozde Agan
- Division of Addiction Services, Dominion Diagnostics, LLC, North Kingstown, Rhode Island
| | - James L. Fratantonio
- Division of Applied Clinical Research, Dominion Diagnostics, LLC, North Kingstown, Rhode Island
| | - Subhash C. Pandey
- Department of Psychiatry, University of Illinois at Chicago and Jesse Brown VA Medical Center, Chicago, Illinois
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, University of Minnesota College of Medicine, Minneapolis, Minnesota
| | - Mark S. Gold
- Department of Psychiatry and McKnight Brain Institute, University of Florida, College of Medicine, Gainesville, Florida.,Department of Addiction Research & Therapy, Malibu Beach Recovery Center, Malibu Beach, California
| |
Collapse
|
28
|
Clemow DB, Walker DJ. The Potential for Misuse and Abuse of Medications in ADHD: A Review. Postgrad Med 2015; 126:64-81. [DOI: 10.3810/pgm.2014.09.2801] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
29
|
Baskin BM, Dwoskin LP, Kantak KM. Methylphenidate treatment beyond adolescence maintains increased cocaine self-administration in the spontaneously hypertensive rat model of attention deficit/hyperactivity disorder. Pharmacol Biochem Behav 2015; 131:51-6. [PMID: 25643872 DOI: 10.1016/j.pbb.2015.01.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/21/2015] [Accepted: 01/26/2015] [Indexed: 10/24/2022]
Abstract
Past research with the spontaneously hypertensive rat (SHR) model of attention deficit/hyperactivity disorder showed that adolescent methylphenidate treatment enhanced cocaine abuse risk in SHR during adulthood. The acquisition of cocaine self-administration was faster, and cocaine dose-response functions were shifted upward under fixed-ratio and progressive ratio schedules compared to adult SHR that received adolescent vehicle treatment or to control strains that received adolescent methylphenidate treatment. The current study determined if extending treatment beyond adolescence would ameliorate long-term consequences of adolescent methylphenidate treatment on cocaine abuse risk in adult SHR. Treatments (vehicle or 1.5mg/kg/day oral methylphenidate) began on postnatal day 28. Groups of male SHR were treated with vehicle during adolescence and adulthood, with methylphenidate during adolescence and vehicle during adulthood, or with methylphenidate during adolescence and adulthood. The group receiving adolescent-only methylphenidate was switched to vehicle on P56. Cocaine self-administration began on postnatal day 77, and groups receiving methylphenidate during adolescence and adulthood were treated either 1-h before or 1-h after daily sessions. At baseline under a fixed-ratio 1 schedule, cocaine self-administration (2h sessions; 0.3mg/kg unit dose) did not differ among the four treatment groups. Under a progressive ratio schedule (4.5h maximum session length; 0.01-1.0mg/kg unit doses), breakpoints for self-administered cocaine in SHR receiving the adult methylphenidate treatment 1-h pre-session were not different from the vehicle control group. However, compared to the vehicle control group, breakpoints for self-administered cocaine at the 0.3 and 1.0mg/kg unit doses were greater in adult SHR that received adolescent-only methylphenidate or received methylphenidate that was continued into adulthood and administered 1-h post-session. These findings suggest that extending methylphenidate treatment beyond adolescence does not ameliorate explicitly the long-term consequences of adolescent methylphenidate treatment. Pre-session methylphenidate may mask temporarily the detection of an increase in cocaine self-administration following chronic methylphenidate treatment.
Collapse
Affiliation(s)
- Britahny M Baskin
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA..
| | - Linda P Dwoskin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536 USA.
| | - Kathleen M Kantak
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA..
| |
Collapse
|
30
|
Abstract
This chapter reviews methylphenidate misuse, abuse, dependence, diversion, and malingering associated with its use as a prescription medication for attention-deficit/hyperactivity disorder and the nonmedical use linked to its stimulant effects. Methylphenidate-induced regional elevations in brain dopamine appear to be integral to both efficacy in attention-deficit/hyperactivity disorder and potential for abuse, raising potential concerns for drug safety and prescription drug diversion costs associated with nonmedical use. Regardless, methylphenidate is an important treatment option, and detecting malingering for the purpose of illicit access to methylphenidate for subsequent misuse or diversion is a difficult challenge. Also discussed are the effects of methylphenidate in patients with comorbid substance use disorder and the potential linkage of methylphenidate use with subsequent substance abuse. The current data suggest that methylphenidate misuse and diversion are common health-care problems with a stimulant prescription drug diversion prevalence of approximately 5-10 % of high school students and 5-35 % of college students. The effectiveness and speed of action of methylphenidate are deemed desirable to enhance attention and focus performance for activities such as studying for exams, but methylphenidate is also misused recreationally. These data suggest a need for close screening and therapeutic monitoring of methylphenidate use in the treatment of attention-deficit/hyperactivity disorder.
Collapse
Affiliation(s)
- David B Clemow
- Senior Clinical Research Scientist, Lilly Corporate Center, 46285, Indianapolis, IN, USA.
| |
Collapse
|