1
|
Orban Z, Gill MJ. Differential rearing alters Fos in the accumbens core and ventral palidum following reinstatement of cocaine seeking in male Sprague-Dawley rats. Pharmacol Biochem Behav 2024; 243:173837. [PMID: 39053857 DOI: 10.1016/j.pbb.2024.173837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Rearing rats in environmental enrichment produces a protective effect when exposed to stimulants, as enriched rats display attenuated cocaine seeking during reinstatement. However, less is known about what changes in the brain are responsible for this protective effect. The current study investigated differences in Fos protein expression following reinstatement of cocaine seeking in differentially reared rats. Rats were reared in either enriched (EC) or impoverished (IC) conditions for 30 days, after which rats self-administered cocaine in 2-h sessions. Following self-administration, rats underwent extinction and cue-induced or cocaine-primed reinstatement of cocaine seeking, brains were extracted, and Fos immunohistochemistry was performed. IC rats sought cocaine significantly more than EC rats during cue-induced reinstatement, and cocaine seeking was positively correlated with Fos expression in the nucleus accumbens core and ventral pallidum. IC rats displayed greater Fos expression than EC rats in the accumbens and ventral pallidum, suggesting a role of these areas in the enrichment-induced protective effect.
Collapse
Affiliation(s)
- Z Orban
- Department of Psychology and Neuroscience, North Central College, 30 N Brainard St, Naperville, IL 60540, United States of America
| | - M J Gill
- Department of Psychology and Neuroscience, North Central College, 30 N Brainard St, Naperville, IL 60540, United States of America.
| |
Collapse
|
2
|
Casile A, Marraudino M, Bonaldo B, Micioni Di Bonaventura MV, Nasini S, Cifani C, Gotti S. Novel rat model of gaming disorder: assessment of social reward and sex differences in behavior and c-Fos brain activity. Psychopharmacology (Berl) 2024:10.1007/s00213-024-06576-y. [PMID: 38575792 DOI: 10.1007/s00213-024-06576-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/14/2024] [Indexed: 04/06/2024]
Abstract
RATIONALE In 2018, the International Classification of Diseases (ICD-11) classified Gaming Disorder (GD) as a mental disorder. GD mainly occurs among adolescents, who, after developing addiction, show psychopathological traits, such as social anxiety, depression, social isolation, and attention deficit. However, the different studies conducted in humans so far show several limitations, such as the lack of demographic heterogeneity and equal representation of age, differences in the type of game and in the follow-up period. Furthermore, at present, no animal models specific to GD are available. OBJECTIVES To address the lack of an experimental model for GD, in the present work, we proposed a new GD rat model to investigate some peculiar tracts of the disorder. METHODS Two-month-old Wistar Kyoto rats, both males and females, were subject to a five-week training with a new innovative touch-screen platform. After five weeks of training, rats were assessed for: (a) their attachment to the play under several conditions, (b) their hyperactivity during gaming, and (c) the maintenance of these conditions after a period of game pause and reward interruption. After sacrifice, using immunohistochemistry techniques, the immunoreactivity of c-Fos (a marker of neuronal activity) was analyzed to study different neural areas. RESULTS After the training, the rats subjected to GD protocol developed GD-related traits (e.g., hyperactivity, loss control), and the behavioral phenotype was maintained consistently over time. These aspects were completely absent in the control groups. Lastly, the analysis of c-Fos immunoreactivity in prelimbic cortex (PrL), orbitofrontal cortex (OFC), nucleus Accumbens, amygdala and bed nucleus of stria terminalis (BNST) highlighted significant alterations in the GD groups compared to controls, suggesting modifications in neural activity related to the development of the GD phenotype. CONCLUSIONS The proposal of a new GD rat model could represent an innovative tool to investigate, in both sexes, the behavioral and neurobiological features of this disorder, the possible role of external factors in the predisposition and susceptibility and the development of new pharmacological therapies.
Collapse
Affiliation(s)
- Antonino Casile
- School of Pharmacy, Pharmacology Unit, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri, 9, Camerino, 62032, Italy.
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole, 10, Orbassano, Turin, TO, 10043, Italy.
| | - Marilena Marraudino
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole, 10, Orbassano, Turin, TO, 10043, Italy
- Department of Neuroscience "Rita Levi-Montalcini", Via Cherasco 15, Turin, TO, 10126, Italy
| | - Brigitta Bonaldo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole, 10, Orbassano, Turin, TO, 10043, Italy
- Department of Neuroscience "Rita Levi-Montalcini", Via Cherasco 15, Turin, TO, 10126, Italy
- Department of Health Sciences and Research Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | | | - Sofia Nasini
- Laboratory of Molecular and Cellular Pharmacology, Department of Pharmacology, University of Padua, Largo Egidio Meneghetti, 2, Padua, 35131, Italy
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri, 9, Camerino, 62032, Italy.
| | - Stefano Gotti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole, 10, Orbassano, Turin, TO, 10043, Italy
- Department of Neuroscience "Rita Levi-Montalcini", Via Cherasco 15, Turin, TO, 10126, Italy
| |
Collapse
|
3
|
Malone SG, Shaykin JD, Stairs DJ, Bardo MT. Neurobehavioral effects of environmental enrichment and drug abuse vulnerability: An updated review. Pharmacol Biochem Behav 2022; 221:173471. [PMID: 36228739 DOI: 10.1016/j.pbb.2022.173471] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/16/2022] [Accepted: 10/05/2022] [Indexed: 12/14/2022]
Abstract
Environmental enrichment consisting of social peers and novel objects is known to alter neurobiological functioning and have an influence on the behavioral effects of drugs of abuse in preclinical rodent models. An earlier review from our laboratory (Stairs and Bardo, 2009) provided an overview of enrichment-specific changes in addiction-like behaviors and neurobiology. The current review updates the literature in this extensive field. Key findings from this updated review indicate that enrichment produces positive outcomes in drug abuse vulnerability beyond just psychostimulants. Additionally, recent studies indicate that enrichment activates key genes involved in cell proliferation and protein synthesis in nucleus accumbens and enhances growth factors in hippocampus and neurotransmitter signaling pathways in prefrontal cortex, amygdala, and hypothalamus. Remaining gaps in the literature and future directions for environmental enrichment and drug abuse research are identified.
Collapse
Affiliation(s)
- Samantha G Malone
- Department of Psychology, University of Kentucky, BBSRB, 741 S. Limestone, Lexington, KY, USA
| | - Jakob D Shaykin
- Department of Psychology, University of Kentucky, BBSRB, 741 S. Limestone, Lexington, KY, USA
| | - Dustin J Stairs
- Department of Psychological Science, Creighton University, Hixson-Lied Science Building, 2500 California Plaza, Omaha, NE, USA
| | - Michael T Bardo
- Department of Psychology, University of Kentucky, BBSRB, 741 S. Limestone, Lexington, KY, USA.
| |
Collapse
|
4
|
Han Y, Yuan M, Guo YS, Shen XY, Gao ZK, Bi X. The role of enriched environment in neural development and repair. Front Cell Neurosci 2022; 16:890666. [PMID: 35936498 PMCID: PMC9350910 DOI: 10.3389/fncel.2022.890666] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/29/2022] [Indexed: 12/01/2022] Open
Abstract
In addition to genetic information, environmental factors play an important role in the structure and function of nervous system and the occurrence and development of some nervous system diseases. Enriched environment (EE) can not only promote normal neural development through enhancing neuroplasticity but also play a nerve repair role in restoring functional activities during CNS injury by morphological and cellular and molecular adaptations in the brain. Different stages of development after birth respond to the environment to varying degrees. Therefore, we systematically review the pro-developmental and anti-stress value of EE during pregnancy, pre-weaning, and “adolescence” and analyze the difference in the effects of EE and its sub-components, especially with physical exercise. In our exploration of potential mechanisms that promote neurodevelopment, we have found that not all sub-components exert maximum value throughout the developmental phase, such as animals that do not respond to physical activity before weaning, and that EE is not superior to its sub-components in all respects. EE affects the developing and adult brain, resulting in some neuroplastic changes in the microscopic and macroscopic anatomy, finally contributing to enhanced learning and memory capacity. These positive promoting influences are particularly prominent regarding neural repair after neurobiological disorders. Taking cerebral ischemia as an example, we analyzed the molecular mediators of EE promoting repair from various dimensions. We found that EE does not always lead to positive effects on nerve repair, such as infarct size. In view of the classic issues such as standardization and relativity of EE have been thoroughly discussed, we finally focus on analyzing the essentiality of the time window of EE action and clinical translation in order to devote to the future research direction of EE and rapid and reasonable clinical application.
Collapse
Affiliation(s)
- Yu Han
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Mei Yuan
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Yi-Sha Guo
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xin-Ya Shen
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Graduate School, Shanghai University of Medicine and Health Sciences Affiliated Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen-Kun Gao
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Graduate School, Shanghai University of Medicine and Health Sciences Affiliated Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xia Bi
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- *Correspondence: Xia Bi
| |
Collapse
|
5
|
Li R, Wang X, Lin F, Song T, Zhu X, Lei H. Mapping accumulative whole-brain activities during environmental enrichment with manganese-enhanced magnetic resonance imaging. Neuroimage 2020; 210:116588. [PMID: 32004718 DOI: 10.1016/j.neuroimage.2020.116588] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/10/2020] [Accepted: 01/24/2020] [Indexed: 11/17/2022] Open
Abstract
An enriched environment (EE) provides multi-dimensional stimuli to the brain. EE exposure for days to months induces functional and structural neuroplasticity. In this study, manganese-enhanced magnetic resonance imaging (MEMRI) was used to map the accumulative whole-brain activities associated with a 7-day EE exposure in freely-moving adult male mice, followed by c-Fos immunochemical assessments. Relative to the mice residing in a standard environment (SE), the mice subjected to EE treatment had significantly enhanced regional MEMRI signal intensities in the prefrontal cortex, somatosensory cortices, basal ganglia, amygdala, motor thalamus, lateral hypothalamus, ventral hippocampus and midbrain dopaminergic areas at the end of the 7-day exposure, likely attributing to enhanced Mn2+ uptake/transport associated with brain activities at both the regional and macroscale network levels. Some of, but not all, the brain regions in the EE-treated mice showing enhanced MEMRI signal intensity had accompanying increases in c-Fos expression. The EE-treated mice were also found to have significantly increased overall amount of food consumption, decreased body weight gain and upregulated tyrosine hydroxylase (TH) expression in the midbrain dopaminergic areas. Taken together, these results demonstrated that the 7-day EE exposure was associated with elevated cumulative activities in the nigrostriatal, mesolimbic and corticostriatal circuits underpinning reward, motivation, cognition, motor control and appetite regulation. Such accumulative activities might have served as the substrate of EE-related neuroplasticity and the beneficial effects of EE treatment on neurological/psychiatric conditions including drug addiction, Parkinson's disease and eating disorder.
Collapse
Affiliation(s)
- Ronghui Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, PR China; National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Xuxia Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Fuchun Lin
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Tao Song
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, PR China; National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Xutao Zhu
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hao Lei
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, PR China; National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China.
| |
Collapse
|
6
|
Sampedro-Piquero P, Ladrón de Guevara-Miranda D, Pavón FJ, Serrano A, Suárez J, Rodríguez de Fonseca F, Santín LJ, Castilla-Ortega E. Neuroplastic and cognitive impairment in substance use disorders: a therapeutic potential of cognitive stimulation. Neurosci Biobehav Rev 2019; 106:23-48. [DOI: 10.1016/j.neubiorev.2018.11.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/15/2018] [Accepted: 11/23/2018] [Indexed: 01/08/2023]
|
7
|
Sucrose Abstinence and Environmental Enrichment Effects on Mesocorticolimbic DARPP32 in Rats. Sci Rep 2018; 8:13174. [PMID: 30181585 PMCID: PMC6123458 DOI: 10.1038/s41598-018-29625-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/13/2018] [Indexed: 01/09/2023] Open
Abstract
Dopamine- and cAMP-regulated neuronal phosphoprotein 32 kDa (DARPP32) is a signaling molecule that could serve as a molecular switch, promoting or restraining sucrose seeking. We measured DARPP32 and pThr34 DARPP32 in the brains of male Long-Evans rats with a history of sucrose self-administration followed by 1 or 30 days of abstinence and exposure to either overnight (acute) or one month (chronic) environmental enrichment (EE). Brains were extracted following a 1 h cue reactivity test or no exposure to the test environment. Micropunches (prelimbic, infralimbic, and anterior cingulate areas of the medial prefrontal cortex, orbitofrontal cortex, dorsal striatum, nucleus accumbens, and ventral tegmental area) were then processed using Western blot. Abstinence increased, while EE decreased, sucrose seeking. DARPP32 and pThr34 DARPP32 levels were affected by testing, abstinence, and/or EE in most regions. Especially salient results were observed in the nucleus accumbens core, a region associated with relapse behaviors. Both acute and chronic EE reduced DARPP32 in the nucleus accumbens core and acute EE increased the ratio of phosphorylated to total DARPP32. Degree of DARPP32 phosphorylation negatively correlated with sucrose seeking. These findings demonstrate a potential role for DARPP32 in mediating the “anti-craving” effect of EE.
Collapse
|
8
|
Garcia EJ, Haddon TN, Saucier DA, Cain ME. Differential housing and novelty response: Protection and risk from locomotor sensitization. Pharmacol Biochem Behav 2017; 154:20-30. [PMID: 28108176 PMCID: PMC5370571 DOI: 10.1016/j.pbb.2017.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 12/17/2016] [Accepted: 01/16/2017] [Indexed: 01/23/2023]
Abstract
High novelty seeking increases the risk for drug experimentation and locomotor sensitization. Locomotor sensitization to psychostimulants is thought to reflect neurological adaptations that promote the transition to compulsive drug taking. Rats reared in enrichment (EC) show less locomotor sensitization when compared to rats reared in isolation (IC) or standard conditions (SC). The current research study was designed to test if novelty response contributed locomotor sensitization and more importantly, if the different housing environments could change the novelty response to protect against the development of locomotor sensitization in both adolescence and adulthood. Experiment 1: rats were tested for their response to novelty using the inescapable novelty test (IEN) and pseudorandomly assigned to enriched (EC), isolated (IC), or standard (SC) housing conditions for 30days. After housing, they were tested with IEN. Rats were then administered amphetamine (0.5mg/kg) or saline and locomotor activity was measured followed by a sensitization test 14days later. Experiment 2: rats were tested in the IEN test early adulthood and given five administrations of amphetamine (0.3mg/kg) or saline and then either stayed in or switched housing environments for 30days. Rats were then re-tested in the IEN test in late adulthood and administered five more injections of their respective treatments and tested for locomotor sensitization. Results indicate that IC and SC increased the response to novelty. EC housing decreased locomotor response to amphetamine and saline, and SC housing increased the locomotor response to amphetamine. Mediation results indicated that the late adult novelty response fully mediates the locomotor response to amphetamine and saline, while the early adulthood novelty response did not. CONCLUSIONS Differential housing changes novelty and amphetamine locomotor response. Novelty response is altered into adulthood and provides evidence that enrichment can be used to reduce drug vulnerability.
Collapse
Affiliation(s)
- Erik J Garcia
- Kansas State University, Department of Psychological Sciences, 492 Bluemont Hall, Manhattan, KS 66506-5302, United States.
| | - Tara N Haddon
- Kansas State University, Department of Psychological Sciences, 492 Bluemont Hall, Manhattan, KS 66506-5302, United States
| | - Donald A Saucier
- Kansas State University, Department of Psychological Sciences, 492 Bluemont Hall, Manhattan, KS 66506-5302, United States.
| | - Mary E Cain
- Kansas State University, Department of Psychological Sciences, 492 Bluemont Hall, Manhattan, KS 66506-5302, United States.
| |
Collapse
|
9
|
Kaniuga E, Taracha E, Stępień T, Wierzba-Bobrowicz T, Płaźnik A, Chrapusta SJ. Rats showing low and high sensitization of frequency-modulated 50-kHz vocalization response to amphetamine differ in amphetamine-induced brain Fos expression. Brain Res 2016; 1648:356-364. [DOI: 10.1016/j.brainres.2016.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/18/2016] [Accepted: 08/05/2016] [Indexed: 12/27/2022]
|