1
|
Power GM, Sanderson E, Pagoni P, Fraser A, Morris T, Prince C, Frayling TM, Heron J, Richardson TG, Richmond R, Tyrrell J, Warrington N, Davey Smith G, Howe LD, Tilling KM. Methodological approaches, challenges, and opportunities in the application of Mendelian randomisation to lifecourse epidemiology: A systematic literature review. Eur J Epidemiol 2024; 39:501-520. [PMID: 37938447 PMCID: PMC7616129 DOI: 10.1007/s10654-023-01032-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/21/2023] [Indexed: 11/09/2023]
Abstract
Diseases diagnosed in adulthood may have antecedents throughout (including prenatal) life. Gaining a better understanding of how exposures at different stages in the lifecourse influence health outcomes is key to elucidating the potential benefits of disease prevention strategies. Mendelian randomisation (MR) is increasingly used to estimate causal effects of exposures across the lifecourse on later life outcomes. This systematic literature review explores MR methods used to perform lifecourse investigations and reviews previous work that has utilised MR to elucidate the effects of factors acting at different stages of the lifecourse. We conducted searches in PubMed, Embase, Medline and MedRXiv databases. Thirteen methodological studies were identified. Four studies focused on the impact of time-varying exposures in the interpretation of "standard" MR techniques, five presented methods for repeat measures of the same exposure, and four described methodological approaches to handling multigenerational exposures. A further 127 studies presented the results of an applied research question. Over half of these estimated effects in a single generation and were largely confined to the exploration of questions regarding body composition. The remaining mostly estimated maternal effects. There is a growing body of research focused on the development and application of MR methods to address lifecourse research questions. The underlying assumptions require careful consideration and the interpretation of results rely on select conditions. Whilst we do not advocate for a particular strategy, we encourage practitioners to make informed decisions on how to approach a research question in this field with a solid understanding of the limitations present and how these may be affected by the research question, modelling approach, instrument selection, and data availability.
Collapse
Affiliation(s)
- Grace M Power
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK.
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| | - Eleanor Sanderson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Panagiota Pagoni
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Abigail Fraser
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Tim Morris
- Centre for Longitudinal Studies, Social Research Institute, University College London, London, UK
| | - Claire Prince
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Timothy M Frayling
- Genetics of Complex Traits, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Jon Heron
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Tom G Richardson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Rebecca Richmond
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Jessica Tyrrell
- Genetics of Complex Traits, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Nicole Warrington
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- NIHR Bristol Biomedical Research Centre Bristol, University Hospitals Bristol and Weston NHS Foundation Trust, University of Bristol, Bristol, UK
| | - Laura D Howe
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Kate M Tilling
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| |
Collapse
|
2
|
Davies KJM, Richmond S, Medeiros-Mirra RJ, Abbas HH, Wilson-Nagrani CE, Davis MG, Zhurov A. The effect of maternal smoking and alcohol consumption on lip morphology. J Orthod 2022; 49:403-411. [PMID: 35723071 DOI: 10.1177/14653125221094337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To determine whether maternal smoking and/or alcohol consumption has an influence on lip morphology. Maternal smoking is a known risk factor for orofacial clefts; however, its influence on normal lip variation is unknown. Recent research regarding normal lip morphology has been contradictory. DESIGN Retrospective cohort study. SETTING AND PARTICIPANTS A total of 4747 children from the Avon Longitudinal Study of Parents and Children (ALSPAC) who each had 3D facial scans carried out at 15 years of age were included in the study. METHODS Each of the participants was automatically categorised regarding predetermined lip morphological traits. Questionnaires completed by their mothers identified smoking and alcohol habits during pregnancy. Logistic regression analyses were applied to determine the effect of maternal smoking and alcohol consumption on lip morphology. RESULTS Maternal smoking has significant effects on upper and lower lip contours, Cupid's bow, lower lip-chin shape and lower lip tone (all P < 0.05). There was also an indication of a potential epigenetic effect of smoking pre-pregnancy on upper lip contour (P = 0.0573). Alcohol consumption is significantly associated with philtrum shape, particularly when >6 units of alcohol are consumed per week (P = 0.0149, 32 weeks). Overall results suggest a deeply grooved philtrum is more likely if alcohol is consumed. Investigating the combined effect of smoking and alcohol consumption, lower lip contour (P = 0.00923) and lower lip-chin shape (P = 0.0171) are statistically significant, with lower lip contour more likely to be narrow in the midline, and lower lip-chin shape more likely to be an angular concavity. CONCLUSION Maternal smoking influences a number of lip traits, including a possible epigenetic effect on upper lip contour. Maternal alcohol consumption, particularly at a high level, influences philtrum shape. Maternal smoking and alcohol consumption have a combined effect on lower lip contour and lower lip-chin shape.
Collapse
Affiliation(s)
| | - Stephen Richmond
- Department of Orthodontics, School of Dentistry, Cardiff University, Cardiff, UK
| | | | - Hawraa Hassan Abbas
- Department of Orthodontics, School of Dentistry, Cardiff University, Cardiff, UK
| | | | - Megan Gael Davis
- Department of Orthodontics, School of Dentistry, Cardiff University, Cardiff, UK
| | - Alexei Zhurov
- Department of Orthodontics, School of Dentistry, Cardiff University, Cardiff, UK
| |
Collapse
|
3
|
Roomaney I, Nyirenda C, Chetty M. Facial imaging to screen for fetal alcohol spectrum disorder: A scoping review. Alcohol Res 2022; 46:1166-1180. [PMID: 35616438 DOI: 10.1111/acer.14875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/15/2022] [Accepted: 05/20/2022] [Indexed: 12/01/2022] Open
Abstract
Facial imaging tools have rapidly advanced in recent years and show potential for use in fetal alcohol spectrum disorder (FASD) screening and diagnosis. This scoping review describes the current state of evidence regarding the use of facial imaging being as a screening tool for FASD at a community level. This review follows the guidelines for the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) extension for scoping reviews and is registered with the Open Science Framework (osf.io/e4xw6). An electronic search of five databases was conducted. The time frame was limited to the period 2006 to 2022. The search included any form of imaging of the head, neck, oral cavity, and dentition. Animal and antenatal studies were excluded, as were those using only brain imaging. The search retrieved 730 unique titles. After title, abstract, and full-text screening, 28 primary studies were included in this review. Most studies were conducted with South African participants. Imaging included 2D photographs, 3D stereophotogrammetry, 3D laser scanning, and radiographs. Various measurements and landmarks were used to discriminate FASD from non-FASD participants, which included anthropometry, face shape analysis, and facial curvatures. Methods of data processing, analysis, and modeling ranged from manual methods to fully automated systems utilizing artificial intelligence. The use of facial imaging to screen for and diagnose patients with FASD is a rapidly advancing field. Most studies in the field remain exploratory, attempting to find accurate, reliable, and consistent landmarks and measures across different populations. For community screening, none of the tools in this review in their current form completely fulfill all the identified properties of an ideal screening tool. More research and development are needed prior to advocating for the use of any tool listed and the ethical implications are yet to be fully explored.
Collapse
Affiliation(s)
- Imaan Roomaney
- Department of Craniofacial Biology, Faculty of Dentistry, University of Western Cape, Cape Town, South Africa
| | - Clement Nyirenda
- Department of Computer Science, Faculty of Natural Science, University of Western Cape, Cape Town, South Africa
| | - Manogari Chetty
- Department of Craniofacial Biology, Faculty of Dentistry, University of Western Cape, Cape Town, South Africa
| |
Collapse
|
4
|
Farnell DJJ, Richmond S, Galloway J, Zhurov AI, Pirttiniemi P, Heikkinen T, Harila V, Matthews H, Claes P. An exploration of adolescent facial shape changes with age via multilevel partial least squares regression. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 200:105935. [PMID: 33485077 PMCID: PMC7920996 DOI: 10.1016/j.cmpb.2021.105935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/05/2021] [Indexed: 05/24/2023]
Abstract
BACKGROUND AND OBJECTIVES Multilevel statistical models represent the existence of hierarchies or clustering within populations of subjects (or shapes in this work). This is a distinct advantage over single-level methods that do not. Multilevel partial-least squares regression (mPLSR) is used here to study facial shape changes with age during adolescence in Welsh and Finnish samples comprising males and females. METHODS 3D facial images were obtained for Welsh and Finnish male and female subjects at multiple ages from 12 to 17 years old. 1000 3D points were defined regularly for each shape by using "meshmonk" software. A three-level model was used here, including level 1 (sex/ethnicity); level 2, all "subject" variations excluding sex, ethnicity, and age; and level 3, age. The mathematical formalism of mPLSR is given in an Appendix. RESULTS Differences in facial shape between the ages of 12 and 17 predicted by mPLSR agree well with previous results of multilevel principal components analysis (mPCA); buccal fat is reduced with increasing age and features such as the nose, brow, and chin become larger and more distinct. Differences due to ethnicity and sex are also observed. Plausible simulated faces are predicted from the model for different ages, sexes and ethnicities. Our models provide good representations of the shape data by consideration of appropriate measures of model fit (RMSE and R2). CONCLUSIONS Repeat measures in our dataset for the same subject at different ages can only be modelled indirectly at the lowest level of the model at discrete ages via mPCA. By contrast, mPLSR models age explicitly as a continuous covariate, which is a strong advantage of mPLSR over mPCA. These investigations demonstrate that multivariate multilevel methods such as mPLSR can be used to describe such age-related changes for dense 3D point data. mPLSR might be of much use in future for the prediction of facial shapes for missing persons at specific ages or for simulating shapes for syndromes that affect facial shape in new subject populations.
Collapse
Affiliation(s)
- D J J Farnell
- School of Dentistry, Cardiff University, Heath Park, Cardiff CF14 4XY, United Kingdom.
| | - S Richmond
- School of Dentistry, Cardiff University, Heath Park, Cardiff CF14 4XY, United Kingdom
| | - J Galloway
- School of Dentistry, Cardiff University, Heath Park, Cardiff CF14 4XY, United Kingdom
| | - A I Zhurov
- School of Dentistry, Cardiff University, Heath Park, Cardiff CF14 4XY, United Kingdom
| | - P Pirttiniemi
- Research Unit of Oral Health Sciences, Faculty of Medicine, University of Oulu, Oulu, Finland; Medical Research Center Oulu (MRC Oulu), Oulu University Hospital, Oulu, Finland
| | - T Heikkinen
- Research Unit of Oral Health Sciences, Faculty of Medicine, University of Oulu, Oulu, Finland; Medical Research Center Oulu (MRC Oulu), Oulu University Hospital, Oulu, Finland
| | - V Harila
- Research Unit of Oral Health Sciences, Faculty of Medicine, University of Oulu, Oulu, Finland; Medical Research Center Oulu (MRC Oulu), Oulu University Hospital, Oulu, Finland
| | - H Matthews
- Medical Imaging Research Center, UZ Leuven, 3000 Leuven, Belgium; Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium; Facial Sciences Research Group, Murdoch Children's Research Institute, Melbourne; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - P Claes
- Medical Imaging Research Center, UZ Leuven, 3000 Leuven, Belgium; Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium; Department of Electrical Engineering, ESAT/PSI, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
5
|
Richmond S, Zhurov AI, Ali ABM, Pirttiniemi P, Heikkinen T, Harila V, Silinevica S, Jakobsone G, Urtane I. Exploring the midline soft tissue surface changes from 12 to 15 years of age in three distinct country population cohorts. Eur J Orthod 2021; 42:517-524. [PMID: 31748803 DOI: 10.1093/ejo/cjz080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Several studies have highlighted differences in the facial features in a White European population. Genetics appear to have a major influence on normal facial variation, and environmental factors are likely to have minor influences on face shape directly or through epigenetic mechanisms. AIM The aim of this longitudinal cohort study is to determine the rate of change in midline facial landmarks in three distinct homogenous population groups (Finnish, Latvian, and Welsh) from 12.8 to 15.3 years of age. This age range covers the pubertal growth period for the majority of boys and girls. METHODS A cohort of children aged 12 were monitored for facial growth in three countries [Finland (n = 60), Latvia (n = 107), and Wales (n = 96)]. Three-dimensional facial surface images were acquired (using either laser or photogrammetric methods) at regular intervals (6-12 months) for 4 years. Ethical approval was granted in each country. Nine midline landmarks were identified and the relative spatial positions of these surface landmarks were measured relative to the mid-endocanthion (men) over a 4-year period. RESULTS This study reports the children who attended 95 per cent of all scanning sessions (Finland 48 out of 60; Latvia 104 out of 107; Wales 50 out of 96). Considerable facial variation is seen for all countries and sexes. There are clear patterns of growth that show different magnitudes at different age groups for the different country groups, sexes, and facial parameters. The greatest single yearly growth rate (5.4 mm) was seen for Welsh males for men-pogonion distance at 13.6 years of age. Males exhibit greater rates of growth compared to females. These variations in magnitude and timings are likely to be influenced by genetic ancestry as a result of population migration. CONCLUSION The midline points are a simple and valid method to assess the relative spatial positions of facial surface landmarks. This study confirms previous reports on the subtle differences in facial shapes and sizes of male and female children in different populations and also highlights the magnitudes and timings of growth for various midline landmark distances to the men point.
Collapse
Affiliation(s)
- Stephen Richmond
- Orthodontic Department, Applied Clinical Research and Public Health, School of Dentistry, College of Biomedical and Life Sciences, Heath Park, Cardiff, UK
| | - Alexei I Zhurov
- Orthodontic Department, Applied Clinical Research and Public Health, School of Dentistry, College of Biomedical and Life Sciences, Heath Park, Cardiff, UK
| | - Azrul Bin Mohd Ali
- Orthodontic Department, Applied Clinical Research and Public Health, School of Dentistry, College of Biomedical and Life Sciences, Heath Park, Cardiff, UK
| | - Pertti Pirttiniemi
- Oral Development and Orthodontics, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Tuomo Heikkinen
- Oral Development and Orthodontics, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Virpi Harila
- Oral Development and Orthodontics, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Signe Silinevica
- Orthodontic Department, RSU Institute of Stomatology, Rīga, Latvia
| | | | - Ilga Urtane
- Orthodontic Department, RSU Institute of Stomatology, Rīga, Latvia
| |
Collapse
|
6
|
Prenatal Alcohol Exposure and the Facial Phenotype in Adolescents: A Study Based on Meconium Ethyl Glucuronide. Brain Sci 2021; 11:brainsci11020154. [PMID: 33503863 PMCID: PMC7911744 DOI: 10.3390/brainsci11020154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
Here, we explore the effects of prenatal alcohol exposure (PAE) in adolescence. We investigated associations between meconium ethyl glucoronide (EtG) and facial malformation. For 129 children (66/63 male/female; M = 13.3, SD = 0.32, 12–14 years), PAE was implemented by newborn meconium EtG and maternal self-reports during the third trimester. Cognitive development was operationalized by standardized scores (WISC V). The EtG cut-off values were set at ≥10 ng/g (n = 32, 24.8% EtG10+) and ≥112 ng/g (n = 20, 15.5% EtG112+). The craniofacial shape was measured using FAS Facial Photographic Analysis Software. EtG10+− and EtG112+-affected children exhibited a shorter palpebral fissure length (p = 0.031/p = 0.055). Lip circularity was smaller in EtG112+-affected children (p = 0.026). Maternal self-reports were not associated (p > 0.164). Lip circularity correlated with fluid reasoning (EtG10+ p = 0.031; EtG112+ p = 0.298) and working memory (EtG10+ p = 0.084; EtG112+ p = 0.144). The present study demonstrates visible effects of the facial phenotype in exposed adolescents. Facial malformation was associated with a child’s cognitive performance in the alcohol-exposed group. The EtG biomarker was a better predictor than maternal self-reports.
Collapse
|
7
|
Diemer EW, Labrecque JA, Neumann A, Tiemeier H, Swanson SA. Mendelian randomisation approaches to the study of prenatal exposures: A systematic review. Paediatr Perinat Epidemiol 2021; 35:130-142. [PMID: 32779786 PMCID: PMC7891574 DOI: 10.1111/ppe.12691] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Mendelian randomisation (MR) designs apply instrumental variable techniques using genetic variants to study causal effects. MR is increasingly used to evaluate the role of maternal exposures during pregnancy on offspring health. OBJECTIVES We review the application of MR to prenatal exposures and describe reporting of methodologic challenges in this area. DATA SOURCES We searched PubMed, EMBASE, Medline Ovid, Cochrane Central, Web of Science, and Google Scholar. STUDY SELECTION AND DATA EXTRACTION Eligible studies met the following criteria: (a) a maternal pregnancy exposure; (b) an outcome assessed in offspring of the pregnancy; and (c) a genetic variant or score proposed as an instrument or proxy for an exposure. SYNTHESIS We quantified the frequency of reporting of MR conditions stated, techniques used to examine assumption plausibility, and reported limitations. RESULTS Forty-three eligible studies were identified. When discussing challenges or limitations, the most common issues described were known potential biases in the broader MR literature, including population stratification (n = 29), weak instrument bias (n = 18), and certain types of pleiotropy (n = 30). Of 22 studies presenting point estimates for the effect of exposure, four defined their causal estimand. Twenty-four studies discussed issues unique to prenatal MR, including selection on pregnancy (n = 1) and pleiotropy via postnatal exposure (n = 10) or offspring genotype (n = 20). CONCLUSIONS Prenatal MR studies frequently discuss issues that affect all MR studies, but rarely discuss problems specific to the prenatal context, including selection on pregnancy and effects of postnatal exposure. Future prenatal MR studies should report and attempt to falsify their assumptions, with particular attention to issues specific to prenatal MR. Further research is needed to evaluate the impacts of biases unique to prenatal MR in practice.
Collapse
Affiliation(s)
- Elizabeth W. Diemer
- Department of Child and Adolescent PsychiatryErasmus MCRotterdamThe Netherlands
| | | | - Alexander Neumann
- Department of Child and Adolescent PsychiatryErasmus MCRotterdamThe Netherlands,Lady Davis Institute for Medical ResearchJewish General HospitalMontrealQCCanada
| | - Henning Tiemeier
- Department of Child and Adolescent PsychiatryErasmus MCRotterdamThe Netherlands,Department of Social and Behavioral ScienceHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Sonja A. Swanson
- Department of EpidemiologyErasmus MCRotterdamThe Netherlands,Department of EpidemiologyHarvard T.H. Chan School of Public HealthBostonMAUSA
| |
Collapse
|
8
|
Galloway J, Farnell DJ, Richmond S, Zhurov AI. Multilevel Analysis of the Influence of Maternal Smoking and Alcohol Consumption on the Facial Shape of English Adolescents. J Imaging 2020; 6:34. [PMID: 34460736 PMCID: PMC8321032 DOI: 10.3390/jimaging6050034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/10/2020] [Accepted: 05/15/2020] [Indexed: 12/01/2022] Open
Abstract
This cross-sectional study aims to assess the influence of maternal smoking and alcohol consumption during pregnancy on the facial shape of non-syndromic English adolescents and demonstrate the potential benefits of using multilevel principal component analysis (mPCA). A cohort of 3755 non-syndromic 15-year-olds from the Avon Longitudinal Study of Parents and Children (ALSPAC), England, were included. Maternal smoking and alcohol consumption during the 1st and 2nd trimesters of pregnancy were determined via questionnaire at 18 weeks gestation. 21 facial landmarks, used as a proxy for the main facial features, were manually plotted onto 3D facial scans of the participants. The effect of maternal smoking and maternal alcohol consumption (average 1-2 glasses per week) was minimal, with 0.66% and 0.48% of the variation in the 21 landmarks of non-syndromic offspring explained, respectively. This study provides a further example of mPCA being used effectively as a descriptive analysis in facial shape research. This is the first example of mPCA being extended to four levels to assess the influence of environmental factors. Further work on the influence of high/low levels of smoking and alcohol and providing inferential evidence is required.
Collapse
Affiliation(s)
- Jennifer Galloway
- School of Dentistry, Cardiff University, Heath Park, Cardiff CF14 4XY, UK; (D.J.J.F.); (S.R.); (A.I.Z.)
| | | | | | | |
Collapse
|
9
|
Farnell DJJ, Richmond S, Galloway J, Zhurov AI, Pirttiniemi P, Heikkinen T, Harila V, Matthews H, Claes P. Multilevel principal components analysis of three-dimensional facial growth in adolescents. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 188:105272. [PMID: 31865094 DOI: 10.1016/j.cmpb.2019.105272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/19/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVES The study of age-related facial shape changes across different populations and sexes requires new multivariate tools to disentangle different sources of variations present in 3D facial images. Here we wish to use a multivariate technique called multilevel principal components analysis (mPCA) to study three-dimensional facial growth in adolescents. METHODS These facial shapes were captured for Welsh and Finnish subjects (both male and female) at multiple ages from 12 to 17 years old (i.e., repeated-measures data). 1000 "dense" 3D points were defined regularly for each shape by using a deformable template via "meshmonk" software. A three-level model was used here, namely: level 1 (sex/ethnicity); level 2, all "subject" variations excluding sex, ethnicity, and age; and level 3, age. The technicalities underpinning the mPCA method are presented in Appendices. RESULTS Eigenvalues via mPCA predicted that: level 1 (ethnicity/sex) contained 7.9% of variation; level 2 contained 71.5%; and level 3 (age) contained 20.6%. The results for the eigenvalues via mPCA followed a similar pattern to those results of single-level PCA. Results for modes of variation made sense, where effects due to ethnicity, sex, and age were reflected in modes at appropriate levels of the model. Standardised scores at level 1 via mPCA showed much stronger differentiation between sex and ethnicity groups than results of single-level PCA. Results for standardised scores from both single-level PCA and mPCA at level 3 indicated that females had different average "trajectories" with respect to these scores than males, which suggests that facial shape matures in different ways for males and females. No strong evidence of differences in growth patterns between Finnish and Welsh subjects was observed. CONCLUSIONS mPCA results agree with existing research relating to the general process of facial changes in adolescents with respect to age quoted in the literature. They support previous evidence that suggests that males demonstrate larger changes and for a longer period of time compared to females, especially in the lower third of the face. These calculations are therefore an excellent initial test that multivariate multilevel methods such as mPCA can be used to describe such age-related changes for "dense" 3D point data.
Collapse
Affiliation(s)
- D J J Farnell
- School of Dentistry, Cardiff University, Heath Park, Cardiff CF14 4XY, United Kingdom.
| | - S Richmond
- School of Dentistry, Cardiff University, Heath Park, Cardiff CF14 4XY, United Kingdom
| | - J Galloway
- School of Dentistry, Cardiff University, Heath Park, Cardiff CF14 4XY, United Kingdom
| | - A I Zhurov
- School of Dentistry, Cardiff University, Heath Park, Cardiff CF14 4XY, United Kingdom
| | - P Pirttiniemi
- Research Unit of Oral Health Sciences, Faculty of Medicine, University of Oulu, Oulu, Finland; Medical Research Center Oulu (MRC Oulu), Oulu University Hospital, Oulu, Finland
| | - T Heikkinen
- Research Unit of Oral Health Sciences, Faculty of Medicine, University of Oulu, Oulu, Finland; Medical Research Center Oulu (MRC Oulu), Oulu University Hospital, Oulu, Finland
| | - V Harila
- Research Unit of Oral Health Sciences, Faculty of Medicine, University of Oulu, Oulu, Finland; Medical Research Center Oulu (MRC Oulu), Oulu University Hospital, Oulu, Finland
| | - H Matthews
- Medical Imaging Research Center, UZ Leuven, 3000 Leuven, Belgium; Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium; OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Leuven, Belgium; Facial Sciences Research Group, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - P Claes
- Medical Imaging Research Center, UZ Leuven, 3000 Leuven, Belgium; Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium; Department of Electrical Engineering, ESAT/PSI, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
10
|
Lawson DJ, Davies NM, Haworth S, Ashraf B, Howe L, Crawford A, Hemani G, Davey Smith G, Timpson NJ. Is population structure in the genetic biobank era irrelevant, a challenge, or an opportunity? Hum Genet 2020; 139:23-41. [PMID: 31030318 PMCID: PMC6942007 DOI: 10.1007/s00439-019-02014-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 04/12/2019] [Indexed: 12/11/2022]
Abstract
Replicable genetic association signals have consistently been found through genome-wide association studies in recent years. The recent dramatic expansion of study sizes improves power of estimation of effect sizes, genomic prediction, causal inference, and polygenic selection, but it simultaneously increases susceptibility of these methods to bias due to subtle population structure. Standard methods using genetic principal components to correct for structure might not always be appropriate and we use a simulation study to illustrate when correction might be ineffective for avoiding biases. New methods such as trans-ethnic modeling and chromosome painting allow for a richer understanding of the relationship between traits and population structure. We illustrate the arguments using real examples (stroke and educational attainment) and provide a more nuanced understanding of population structure, which is set to be revisited as a critical aspect of future analyses in genetic epidemiology. We also make simple recommendations for how problems can be avoided in the future. Our results have particular importance for the implementation of GWAS meta-analysis, for prediction of traits, and for causal inference.
Collapse
Affiliation(s)
- Daniel John Lawson
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK.
| | - Neil Martin Davies
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Simon Haworth
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Bilal Ashraf
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Laurence Howe
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, Gower Street, London, WC1E 6BT, UK
| | - Andrew Crawford
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Gibran Hemani
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Nicholas John Timpson
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| |
Collapse
|
11
|
Howe LJ, Lawson DJ, Davies NM, St Pourcain B, Lewis SJ, Davey Smith G, Hemani G. Genetic evidence for assortative mating on alcohol consumption in the UK Biobank. Nat Commun 2019; 10:5039. [PMID: 31745073 PMCID: PMC6864067 DOI: 10.1038/s41467-019-12424-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 09/09/2019] [Indexed: 12/11/2022] Open
Abstract
Alcohol use is correlated within spouse-pairs, but it is difficult to disentangle effects of alcohol consumption on mate-selection from social factors or the shared spousal environment. We hypothesised that genetic variants related to alcohol consumption may, via their effect on alcohol behaviour, influence mate selection. Here, we find strong evidence that an individual's self-reported alcohol consumption and their genotype at rs1229984, a missense variant in ADH1B, are associated with their partner's self-reported alcohol use. Applying Mendelian randomization, we estimate that a unit increase in an individual's weekly alcohol consumption increases partner's alcohol consumption by 0.26 units (95% C.I. 0.15, 0.38; P = 8.20 × 10-6). Furthermore, we find evidence of spousal genotypic concordance for rs1229984, suggesting that spousal concordance for alcohol consumption existed prior to cohabitation. Although the SNP is strongly associated with ancestry, our results suggest some concordance independent of population stratification. Our findings suggest that alcohol behaviour directly influences mate selection.
Collapse
Affiliation(s)
- Laurence J Howe
- Medical Research Council Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, UK. .,Institute of Cardiovascular Science, University College London, London, UK.
| | - Daniel J Lawson
- Medical Research Council Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, UK
| | - Neil M Davies
- Medical Research Council Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, UK
| | - Beate St Pourcain
- Medical Research Council Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, UK.,Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Sarah J Lewis
- Medical Research Council Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, UK
| | - George Davey Smith
- Medical Research Council Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, UK
| | - Gibran Hemani
- Medical Research Council Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, UK
| |
Collapse
|