1
|
Pushpam M, Talukdar A, Anilkumar S, Maurya SK, Issac TG, Diwakar L. Recurrent endothelin-1 mediated vascular insult leads to cognitive impairment protected by trophic factor pleiotrophin. Exp Neurol 2024; 381:114938. [PMID: 39197707 DOI: 10.1016/j.expneurol.2024.114938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/12/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
Vascular dementia (VaD) is a complex neurodegenerative condition, with cerebral small vessel dysfunctions as the central role in its pathogenesis. Given the lack of suitable animal models to study the disease pathogenesis, we developed a mouse model to closely emulate the clinical scenarios of recurrent transient ischemic attacks (TIAs) leading to VaD using vasoconstricting peptide Endothelin-1(ET-1). We observed that administration of ET-1 led to blood-brain barrier (BBB) disruption and detrimental changes in its components, such as endothelial cells and pericytes, along with neuronal loss and synaptic dysfunction, resulting in irreversible memory loss. Further, in our pursuit of understanding potential interventions, we co-administered pleiotrophin (PTN) alongside ET-1 injections. PTN exhibited remarkable efficacy in preserving vital components of the BBB, including endothelial cells and pericytes, thereby restoring BBB integrity, preventing neuronal loss, and enhancing memory function. Our findings give a valuable framework for understanding the detrimental effects of multiple TIAs on brain health and provide a useful animal model to explore VaD's underlying mechanisms further and pave the way for promising therapies.
Collapse
Affiliation(s)
- Mayank Pushpam
- Centre for Brain Research, Indian Institute of Science, Bangalore 560012, India; Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Ankita Talukdar
- Centre for Brain Research, Indian Institute of Science, Bangalore 560012, India
| | - Shobha Anilkumar
- Centre for Brain Research, Indian Institute of Science, Bangalore 560012, India
| | | | - Thomas Gregor Issac
- Centre for Brain Research, Indian Institute of Science, Bangalore 560012, India
| | - Latha Diwakar
- Centre for Brain Research, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
2
|
Akhter-Khan SC, Tao Q, Ang TFA, Karjadi C, Itchapurapu IS, Libon DJ, Alosco M, Mez J, Qiu WQ, Au R. Cerebral Microbleeds in Different Brain Regions and Their Associations With the Digital Clock-Drawing Test: Secondary Analysis of the Framingham Heart Study. J Med Internet Res 2024; 26:e45780. [PMID: 39073857 PMCID: PMC11319892 DOI: 10.2196/45780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/18/2024] [Accepted: 03/31/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Cerebral microbleeds (CMB) increase the risk for Alzheimer disease. Current neuroimaging methods that are used to detect CMB are costly and not always accessible. OBJECTIVE This study aimed to explore whether the digital clock-drawing test (DCT) may provide a behavioral indicator of CMB. METHODS In this study, we analyzed data from participants in the Framingham Heart Study offspring cohort who underwent both brain magnetic resonance imaging scans (Siemens 1.5T, Siemens Healthcare Private Limited; T2*-GRE weighted sequences) for CMB diagnosis and the DCT as a predictor. Additionally, paper-based clock-drawing tests were also collected during the DCT. Individuals with a history of dementia or stroke were excluded. Robust multivariable linear regression models were used to examine the association between DCT facet scores with CMB prevalence, adjusting for relevant covariates. Receiver operating characteristic (ROC) curve analyses were used to evaluate DCT facet scores as predictors of CMB prevalence. Sensitivity analyses were conducted by further including participants with stroke and dementia. RESULTS The study sample consisted of 1020 (n=585, 57.35% female) individuals aged 45 years and older (mean 72, SD 7.9 years). Among them, 64 (6.27%) participants exhibited CMB, comprising 46 with lobar-only, 11 with deep-only, and 7 with mixed (lobar+deep) CMB. Individuals with CMB tended to be older and had a higher prevalence of mild cognitive impairment and higher white matter hyperintensities compared to those without CMB (P<.05). While CMB were not associated with the paper-based clock-drawing test, participants with CMB had a lower overall DCT score (CMB: mean 68, SD 23 vs non-CMB: mean 76, SD 20; P=.009) in the univariate comparison. In the robust multiple regression model adjusted for covariates, deep CMB were significantly associated with lower scores on the drawing efficiency (β=-0.65, 95% CI -1.15 to -0.15; P=.01) and simple motor (β=-0.86, 95% CI -1.43 to -0.30; P=.003) domains of the command DCT. In the ROC curve analysis, DCT facets discriminated between no CMB and the CMB subtypes. The area under the ROC curve was 0.76 (95% CI 0.69-0.83) for lobar CMB, 0.88 (95% CI 0.78-0.98) for deep CMB, and 0.98 (95% CI 0.96-1.00) for mixed CMB, where the area under the ROC curve value nearing 1 indicated an accurate model. CONCLUSIONS The study indicates a significant association between CMB, especially deep and mixed types, and reduced performance in drawing efficiency and motor skills as assessed by the DCT. This highlights the potential of the DCT for early detection of CMB and their subtypes, providing a reliable alternative for cognitive assessment and making it a valuable tool for primary care screening before neuroimaging referral.
Collapse
Affiliation(s)
- Samia C Akhter-Khan
- Department of Global Health & Social Medicine, King's College London, London, United Kingdom
- Framingham Heart Study, Boston University School of Medicine, Boston, MA, United States
| | - Qiushan Tao
- Framingham Heart Study, Boston University School of Medicine, Boston, MA, United States
- Pharmacology, Physiology & Biophysics, Boston University School of Medicine, Boston, MA, United States
| | - Ting Fang Alvin Ang
- Framingham Heart Study, Boston University School of Medicine, Boston, MA, United States
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, United States
- Slone Epidemiology Center, Boston University School of Medicine, Boston, MA, United States
| | - Cody Karjadi
- Framingham Heart Study, Boston University School of Medicine, Boston, MA, United States
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Indira Swetha Itchapurapu
- Pharmacology, Physiology & Biophysics, Boston University School of Medicine, Boston, MA, United States
| | - David J Libon
- Department of Geriatrics and Gerontology, Rowan University, Glassboro, NJ, United States
- Department of Psychology, New Jersey Institute for Successful Aging, School of Osteopathic Medicine, Rowan University, Glassboro, NJ, United States
| | - Michael Alosco
- Department of Neurology, Boston University School of Medicine, Boston, MA, United States
- Alzheimer's Disease and Chronic Traumatic Encephalopathy Centers, Boston University, Boston, MA, United States
| | - Jesse Mez
- Framingham Heart Study, Boston University School of Medicine, Boston, MA, United States
- Department of Neurology, Boston University School of Medicine, Boston, MA, United States
- Alzheimer's Disease and Chronic Traumatic Encephalopathy Centers, Boston University, Boston, MA, United States
| | - Wei Qiao Qiu
- Framingham Heart Study, Boston University School of Medicine, Boston, MA, United States
- Pharmacology, Physiology & Biophysics, Boston University School of Medicine, Boston, MA, United States
- Alzheimer's Disease and Chronic Traumatic Encephalopathy Centers, Boston University, Boston, MA, United States
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, United States
| | - Rhoda Au
- Framingham Heart Study, Boston University School of Medicine, Boston, MA, United States
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, United States
- Slone Epidemiology Center, Boston University School of Medicine, Boston, MA, United States
- Department of Neurology, Boston University School of Medicine, Boston, MA, United States
- Alzheimer's Disease and Chronic Traumatic Encephalopathy Centers, Boston University, Boston, MA, United States
| |
Collapse
|
3
|
Miller LR, Bickel MA, Vance ML, Vaden H, Nagykaldi D, Nyul-Toth A, Bullen EC, Gautam T, Tarantini S, Yabluchanskiy A, Kiss T, Ungvari Z, Conley SM. Vascular smooth muscle cell-specific Igf1r deficiency exacerbates the development of hypertension-induced cerebral microhemorrhages and gait defects. GeroScience 2024; 46:3481-3501. [PMID: 38388918 PMCID: PMC11009188 DOI: 10.1007/s11357-024-01090-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/03/2024] [Indexed: 02/24/2024] Open
Abstract
Cerebrovascular fragility and cerebral microhemorrhages (CMH) contribute to age-related cognitive impairment, mobility defects, and vascular cognitive impairment and dementia, impairing healthspan and reducing quality of life in the elderly. Insulin-like growth factor 1 (IGF-1) is a key vasoprotective growth factor that is reduced during aging. Circulating IGF-1 deficiency leads to the development of CMH and other signs of cerebrovascular dysfunction. Here our goal was to understand the contribution of IGF-1 signaling on vascular smooth muscle cells (VSMCs) to the development of CMH and associated gait defects. We used an inducible VSMC-specific promoter and an IGF-1 receptor (Igf1r) floxed mouse line (Myh11-CreERT2 Igf1rf/f) to knockdown Igf1r. Angiotensin II in combination with L-NAME-induced hypertension was used to elicit CMH. We observed that VSMC-specific Igf1r knockdown mice had accelerated development of CMH, and subsequent associated gait irregularities. These phenotypes were accompanied by upregulation of a cluster of pro-inflammatory genes associated with VSMC maladaptation. Collectively our findings support an essential role for VSMCs as a target for the vasoprotective effects of IGF-1, and suggest that VSMC dysfunction in aging may contribute to the development of CMH.
Collapse
Affiliation(s)
- Lauren R Miller
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd, BMSB 553, Oklahoma City, OK, 73104, USA
- Currently at: Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Marisa A Bickel
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd, BMSB 553, Oklahoma City, OK, 73104, USA
| | - Michaela L Vance
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd, BMSB 553, Oklahoma City, OK, 73104, USA
| | - Hannah Vaden
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd, BMSB 553, Oklahoma City, OK, 73104, USA
| | - Domonkos Nagykaldi
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd, BMSB 553, Oklahoma City, OK, 73104, USA
| | - Adam Nyul-Toth
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Elizabeth C Bullen
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd, BMSB 553, Oklahoma City, OK, 73104, USA
| | - Tripti Gautam
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Tamas Kiss
- Pediatric Center, Semmelweis University, Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University Cerebrovascular and Neurocognitive Disorders Research Group, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shannon M Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd, BMSB 553, Oklahoma City, OK, 73104, USA.
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
4
|
Zhang Z, Lim MJR. Incident Dementia After Spontaneous Intracerebral Hemorrhage. J Alzheimers Dis 2024; 99:41-51. [PMID: 38640161 DOI: 10.3233/jad-240111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Post-stroke cognitive impairment and dementia (PSCID) is a complication that affects long-term functional outcomes after stroke. Studies on dementia after long-term follow-up in stroke have focused predominantly on ischemic stroke, which may be different from the development of dementia after spontaneous intracerebral hemorrhage (ICH). In this review, we summarize the existing data and hypotheses on the development of dementia after spontaneous ICH, review the management of post-ICH dementia, and suggest areas for future research. Dementia after spontaneous ICH has a cumulative incidence of up to 32.0-37.4% at 5 years post-ICH. Although the pathophysiology of post-ICH dementia has not been fully understood, two main theoretical frameworks can be considered: 1) the triggering role of ICH (both primary and secondary brain injury) in precipitating cognitive decline and dementia; and 2) the contributory role of pre-existing brain pathology (including small vessel disease and neurodegenerative pathology), reduced cognitive reserve, and genetic factors predisposing to cognitive dysfunction. These pathophysiological pathways may have synergistic effects that converge on dysfunction of the neurovascular unit and disruptions in functional connectivity leading to dementia post-ICH. Management of post-ICH dementia may include screening and monitoring, cognitive therapy, and pharmacotherapy. Non-invasive brain stimulation is an emerging therapeutic modality under investigation for safety and efficacy. Our review highlights that there remains a paucity of data and standardized reporting on incident dementia after spontaneous ICH. Further research is imperative for determining the incidence, risk factors, and pathophysiology of post-ICH dementia, in order to identify new therapies for the treatment of this debilitating condition.
Collapse
Affiliation(s)
- Zheting Zhang
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | | |
Collapse
|
5
|
Blum S, Conen D. Mechanisms and Clinical Manifestations of Cognitive Decline in Atrial Fibrillation Patients: Potential Implications for Preventing Dementia. Can J Cardiol 2023; 39:159-171. [PMID: 36252904 DOI: 10.1016/j.cjca.2022.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 02/07/2023] Open
Abstract
Atrial fibrillation (AF) patients face an approximate 1.5-fold increased risk of cognitive decline compared with the general population. Among poststroke AF patients, the risk of cognitive decline is even higher with an estimated threefold increase. This article provides a narrative review on the current evidence and highlights gaps in knowledge and areas for future research. Although earlier studies hypothesized that the association between AF and cognitive decline is mainly a consequence of previous ischemic strokes, more recent evidence also suggests such an association in AF patients without a history of clinical stroke. Because AF and cognitive decline mainly occur among elderly individuals, it is not surprising that both entities share multiple risk factors. In addition to clinically overt ischemic strokes, silent brain infarcts and other brain injury are likely mechanisms for the increased risk of cognitive decline among AF patients. Oral anticoagulation for stroke prevention in AF patients with additional stroke risk factors is one of the only proven therapies to prevent brain injury. Whether a broader use of oral anticoagulation, or more intense anticoagulation in some patients are beneficial in this context needs to be addressed in future studies. Although direct studies are lacking, it is reasonable to recommend optimal treatment of comorbidities and risk factors for the prevention of cognitive decline and dementia.
Collapse
Affiliation(s)
- Steffen Blum
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland; Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - David Conen
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
6
|
Jang J, Kang J, Nam Y. [Brain Iron Imaging in Aging and Cognitive Disorders: MRI Approaches]. TAEHAN YONGSANG UIHAKHOE CHI 2022; 83:527-537. [PMID: 36238502 PMCID: PMC9514519 DOI: 10.3348/jksr.2022.0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 11/23/2022]
Abstract
Iron has a vital role in the human body, including the central nervous system. Increased deposition of iron in the brain has been reported in aging and important neurodegenerative diseases. Owing to the unique magnetic resonance properties of iron, MRI has great potential for in vivo assessment of iron deposition, distribution, and non-invasive quantification. In this paper, we will review the MRI methods for iron assessment and their changes in aging and neurodegenerative diseases, focusing on Alzheimer's disease. In addition, we will summarize the limitations of current approaches and introduce new areas and MRI methods for iron imaging that are expected in the future.
Collapse
|
7
|
Lin CY, Jhan SR, Lee WJ, Chen PL, Chen JP, Chen HC, Chen TB. Imaging Markers of Subcortical Vascular Dementia in Patients With Multiple-Lobar Cerebral Microbleeds. Front Neurol 2021; 12:747536. [PMID: 34867731 PMCID: PMC8636110 DOI: 10.3389/fneur.2021.747536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/08/2021] [Indexed: 01/16/2023] Open
Abstract
Background and Purpose: Small vessel disease (SVD) imaging markers are related to ischemic and hemorrhage stroke and to cognitive dysfunction. This study aimed to clarify the relationship between SVD imaging markers and subcortical vascular dementia in severe SVD burden. Methods: A total of 57 subjects with multiple lobar cerebral microbleeds (CMBs) and four established SVD imaging markers were enrolled from the dementia and stroke registries of a single center. Visual rating scales that are used to semi-quantify SVD imaging changes were analyzed individually and compositely to make correlations with cognitive domains and subcortical vascular dementia. Results: Dementia group had higher subcortical and total white matter hyperintensities (WMHs) and SVD composite scores than non-dementia group. Individual imaging markers correlated differently with one another and had distinct cognitive correlations. After adjusting for demographic factors, multivariate logistic regression indicated associations of subcortical WMHs (odds ratio [OR] 2.03, CI 1.24–3.32), total WMHs (OR 1.43, CI 1.09–1.89), lacunes (OR 1.18, CI 1.02–1.35), cerebral amyloid angiopathy-SVD scores (OR 2.33, CI 1.01–5.40), C1 scores (imaging composite scores of CMB and WMH) (OR 1.41, CI 1.09–1.83), and C2 scores (imaging composite scores of CMB, WMH, perivascular space, and lacune) (OR 1.38, CI 1.08–1.76) with dementia. Conclusions: SVD imaging markers might have differing associations with cognitive domains and dementia. They may provide valuable complementary information in support of personalized treatment planning against cognitive impairment, particularly in patients with a heavy SVD load.
Collapse
Affiliation(s)
- Chia-Yen Lin
- Department of Neurology, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Song-Ru Jhan
- Division of Neuroradiology, Department of Radiology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wei-Ju Lee
- Department of Neurology, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan.,Dementia Center, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Po-Lin Chen
- Department of Neurology, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Jun-Peng Chen
- Biostatistics Task Force of Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hung-Chieh Chen
- Division of Neuroradiology, Department of Radiology, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Ting-Bin Chen
- Department of Neurology, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan.,Dementia Center, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Applied Cosmetology, Hungkuang University, Taichung, Taiwan
| |
Collapse
|