1
|
Gluvic Z, Obradovic M, Manojlovic M, Vincenza Giglio R, Maria Patti A, Ciaccio M, Suri JS, Rizzo M, Isenovic ER. Impact of different hormones on the regulation of nitric oxide in diabetes. Mol Cell Endocrinol 2024; 592:112325. [PMID: 38968968 DOI: 10.1016/j.mce.2024.112325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/10/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Polymetabolic syndrome achieved pandemic proportions and dramatically influenced public health systems functioning worldwide. Chronic vascular complications are the major contributors to increased morbidity, disability, and mortality rates in diabetes patients. Nitric oxide (NO) is among the most important vascular bed function regulators. However, NO homeostasis is significantly deranged in pathological conditions. Additionally, different hormones directly or indirectly affect NO production and activity and subsequently act on vascular physiology. In this paper, we summarize the recent literature data related to the effects of insulin, estradiol, insulin-like growth factor-1, ghrelin, angiotensin II and irisin on the NO regulation in physiological and diabetes circumstances.
Collapse
Affiliation(s)
- Zoran Gluvic
- University Clinical-Hospital Centre Zemun-Belgrade, Clinic of Internal Medicine, Department of Endocrinology and Diabetes, Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
| | - Milan Obradovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Mia Manojlovic
- Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia; Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Rosaria Vincenza Giglio
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Italy; Department of Laboratory Medicine, University Hospital, Palermo, Italy
| | - Angelo Maria Patti
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, Italy
| | - Marcello Ciaccio
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Italy; Department of Laboratory Medicine, University Hospital, Palermo, Italy
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, 95661, USA
| | - Manfredi Rizzo
- Internal Medicine Unit, "Vittorio Emanuele II" Hospital, Castelvetrano, Italy
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
Halloway S, Volgman AS, Barnes LL, Schoeny ME, Wilbur J, Pressler SJ, Laddu D, Phillips SA, Vispute S, Hall G, Shakya S, Goodyke M, Auger C, Cagin K, Borgia JA, Arvanitakis ZA. The MindMoves Trial: Cross-Sectional Analyses of Baseline Vascular Risk and Cognition in Older Women with Cardiovascular Disease. J Alzheimers Dis 2024; 100:1407-1416. [PMID: 39031356 DOI: 10.3233/jad-240100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Background Vascular diseases, including atherosclerotic cardiovascular disease (ASCVD) and stroke, increase the risk of Alzheimer's disease and cognitive impairment. Serum biomarkers, such as brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF), and insulin-like growth factor 1 (IGF-1), may be indicators of cognitive health. Objective We examined whether vascular risk was associated with levels of cognition and serum biomarkers in older women with cardiovascular disease (CVD). Methods Baseline data from a lifestyle trial in older women (n = 253) with CVD (NCT04556305) were analyzed. Vascular risk scores were calculated for ASCVD (ASCVD risk estimator) and stroke (CHA2DS2-VASc) based on published criteria. Cognition-related serum biomarkers included BDNF, VEGF, and IGF-1. Cognition was based on a battery of neuropsychological tests that assessed episodic memory, semantic memory, working memory, and executive function. A series of separate linear regression models were used to evaluate associations of vascular risk scores with outcomes of cognition and serum biomarkers. All models were adjusted for age, education level, and racial and ethnic background. Results In separate linear regression models, both ASCVD and CHA2DS2-VASc scores were inversely associated with semantic memory (β= -0.22, p = 0.007 and β= -0.15, p = 0.022, respectively), with no significant findings for the other cognitive domains. There were no significant associations between vascular risk scores and serum biomarkers. Conclusions Future studies should prospectively examine associations between vascular risk and cognition in other populations and additionally consider other serum biomarkers that may be related to vascular risk and cognition.
Collapse
Affiliation(s)
- Shannon Halloway
- College of Nursing, University of Illinois Chicago, Chicago, IL, USA
| | | | - Lisa L Barnes
- Rush Medical College, Rush University, Chicago, IL, USA
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Michael E Schoeny
- Rush University College of Nursing, Rush University, Chicago, IL, USA
| | - JoEllen Wilbur
- Rush University College of Nursing, Rush University, Chicago, IL, USA
| | - Susan J Pressler
- Indiana University School of Nursing, Indiana University, IN, USA
| | - Deepika Laddu
- Arbor Research Collaborative for Health, Ann Arbor, MI, USA
| | - Shane A Phillips
- College of Applied Health Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Sachin Vispute
- Rush University College of Nursing, Rush University, Chicago, IL, USA
| | - Gabriel Hall
- Rush University College of Nursing, Rush University, Chicago, IL, USA
| | - Shamatree Shakya
- College of Nursing, University of Illinois Chicago, Chicago, IL, USA
| | - Madison Goodyke
- College of Nursing, University of Illinois Chicago, Chicago, IL, USA
| | - Claire Auger
- Rush Medical College, Rush University, Chicago, IL, USA
| | - Kelly Cagin
- Rush Medical College, Rush University, Chicago, IL, USA
| | | | - Zoe A Arvanitakis
- Rush Medical College, Rush University, Chicago, IL, USA
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
3
|
Ni X, Wang Z, Gao D, Yuan H, Sun L, Zhu X, Zhou Q, Yang Z. A description of the relationship in healthy longevity and aging-related disease: from gene to protein. Immun Ageing 2021; 18:30. [PMID: 34172062 PMCID: PMC8229348 DOI: 10.1186/s12979-021-00241-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/14/2021] [Indexed: 11/22/2022]
Abstract
Human longevity is a complex phenotype influenced by both genetic and environmental factors. It is also known to be associated with various types of age-related diseases, such as Alzheimer's disease (AD) and cardiovascular disease (CVD). The central dogma of molecular biology demonstrates the conversion of DNA to RNA to the encoded protein. These proteins interact to form complex cell signaling pathways, which perform various biological functions. With prolonged exposure to the environment, the in vivo homeostasis adapts to the changes, and finally, humans adopt the phenotype of longevity or aging-related diseases. In this review, we focus on two different states: longevity and aging-related diseases, including CVD and AD, to discuss the relationship between genetic characteristics, including gene variation, the level of gene expression, regulation of gene expression, the level of protein expression, both genetic and environmental influences and homeostasis based on these phenotypes shown in organisms.
Collapse
Affiliation(s)
- Xiaolin Ni
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, P.R. China
- Graduate School of Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100001, P.R. China
| | - Zhaoping Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, P.R. China
| | - Danni Gao
- Peking University Fifth School of Clinical Medicine, Beijing Hospital, Beijing, P.R. China
| | - Huiping Yuan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, P.R. China
| | - Liang Sun
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, P.R. China
| | - Xiaoquan Zhu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, P.R. China
| | - Qi Zhou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, P.R. China
| | - Ze Yang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, P.R. China.
- Graduate School of Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100001, P.R. China.
| |
Collapse
|
4
|
Yang L, Liu Z, Ling W, Wang L, Wang C, Ma J, Peng X, Chen J. Effect of Anthocyanins Supplementation on Serum IGFBP-4 Fragments and Glycemic Control in Patients with Fasting Hyperglycemia: A Randomized Controlled Trial. Diabetes Metab Syndr Obes 2020; 13:3395-3404. [PMID: 33061500 PMCID: PMC7532046 DOI: 10.2147/dmso.s266751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Insulin-like growth factor binding protein-4 (IGFBP-4) fragments have been shown to be associated with cardiometabolic diseases. Anthocyanins as a subgroup of natural polyphenols could have benefits on treating cardiometabolic diseases. The aim of this study was to examine the effects of purified anthocyanins on serum IGFBP-4 fragments and glycemic control in patients with fasting hyperglycemia. METHODS A set of 121 participants with elevated fasting glucose (≥5.6 mmol/L), who were originally randomly assigned to anthocyanins (320 mg/day) or placebo groups, were included in this study. Serum IGFBP-4 fragments, fasting and postload glucose, insulin, and C-peptide after a three-hour oral glucose tolerance test (OGTT) were measured at baseline and at the end of 12 weeks. RESULTS Compared with placebo, anthocyanins increased serum IGFBP-4 fragments (net change 8.33 ng/mL, 95% CI [1.2, 15.47], p=0.023) and decreased fasting glucose (-0.4 mmol/L [-0.71, -0.1], p=0.01), 2-hour C-peptide (-1.02 ng/mL [-1.99, -0.04], p=0.041) and the 3-hour area under the curve (AUC) of C-peptide (-2.19 [-4.11, -0.27], p=0.026). No other significant difference in parameters for glycemic control and insulin resistance was observed. CONCLUSION Anthocyanins supplementation for 12 weeks improved serum IGFBP-4 fragments and decreased fasting glucose and postload C-peptide in patients with fasting hyperglycemia. Further studies are needed to confirm our findings and clarify the potential mechanism. TRIAL REGISTRATION ClinicalTrials.gov, NCT02689765. Registered on 6 February 2016, https://clinicaltrials.gov/ct2/show/NCT02689765.
Collapse
Affiliation(s)
- Liping Yang
- Center for Chronic Disease Control, Nanshan, Shenzhen, People’s Republic of China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Zhaomin Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Wenhua Ling
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Li Wang
- Center for Chronic Disease Control, Nanshan, Shenzhen, People’s Republic of China
| | - Changyi Wang
- Center for Chronic Disease Control, Nanshan, Shenzhen, People’s Republic of China
| | - Jianping Ma
- Center for Chronic Disease Control, Nanshan, Shenzhen, People’s Republic of China
| | - Xiaolin Peng
- Center for Chronic Disease Control, Nanshan, Shenzhen, People’s Republic of China
| | - Jianying Chen
- Internal Medicine Department, BaiYun Hospital, GuangZhou, GuangDong Province, People’s Republic of China
| |
Collapse
|