1
|
Baptista FI, Ambrósio AF. Tracing the influence of prenatal risk factors on the offspring retina: Focus on development and putative long-term consequences. Eur J Clin Invest 2024; 54:e14266. [PMID: 38864773 DOI: 10.1111/eci.14266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/10/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND Pregnancy represents a window of vulnerability to fetal development. Disruptions in the prenatal environment during this crucial period can increase the risk of the offspring developing diseases over the course of their lifetime. The central nervous system (CNS) has been shown to be particularly susceptible to changes during crucial developmental windows. To date, research focused on disruptions in the development of the CNS has predominantly centred on the brain, revealing a correlation between exposure to prenatal risk factors and the onset of neuropsychiatric disorders. Nevertheless, some studies indicate that the retina, which is part of the CNS, is also vulnerable to in utero alterations during pregnancy. Such changes may affect neuronal, glial and vascular components of the retina, compromising retinal structure and function and possibly impairing visual function. METHODS A search in the PubMed database was performed, and any literature concerning prenatal risk factors (drugs, diabetes, unbalanced diet, infection, glucocorticoids) affecting the offspring retina were included. RESULTS This review collects evidence on the cellular, structural and functional changes occurring in the retina triggered by maternal risk factors during pregnancy. We highlight the adverse impact on retinal development and its long-lasting effects, providing a critical analysis of the current knowledge while underlining areas for future research. CONCLUSIONS Appropriate recognition of the prenatal risk factors that negatively impact the developing retina may provide critical clues for the design of preventive strategies and for early therapeutic intervention that could change retinal pathology in the progeny.
Collapse
Affiliation(s)
- Filipa I Baptista
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - António F Ambrósio
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
| |
Collapse
|
2
|
Shorey-Kendrick LE, Davis B, Gao L, Park B, Vu A, Morris CD, Breton CV, Fry R, Garcia E, Schmidt RJ, O’Shea TM, Tepper RS, McEvoy CT, Spindel ER. Development and Validation of a Novel Placental DNA Methylation Biomarker of Maternal Smoking during Pregnancy in the ECHO Program. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:67005. [PMID: 38885141 PMCID: PMC11218700 DOI: 10.1289/ehp13838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/27/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Maternal cigarette smoking during pregnancy (MSDP) is associated with numerous adverse health outcomes in infants and children with potential lifelong consequences. Negative effects of MSDP on placental DNA methylation (DNAm), placental structure, and function are well established. OBJECTIVE Our aim was to develop biomarkers of MSDP using DNAm measured in placentas (N = 96 ), collected as part of the Vitamin C to Decrease the Effects of Smoking in Pregnancy on Infant Lung Function double-blind, placebo-controlled randomized clinical trial conducted between 2012 and 2016. We also aimed to develop a digital polymerase chain reaction (PCR) assay for the top ranking cytosine-guanine dinucleotide (CpG) so that large numbers of samples can be screened for exposure at low cost. METHODS We compared the ability of four machine learning methods [logistic least absolute shrinkage and selection operator (LASSO) regression, logistic elastic net regression, random forest, and gradient boosting machine] to classify MSDP based on placental DNAm signatures. We developed separate models using the complete EPIC array dataset and on the subset of probes also found on the 450K array so that models exist for both platforms. For comparison, we developed a model using CpGs previously associated with MSDP in placenta. For each final model, we used model coefficients and normalized beta values to calculate placental smoking index (PSI) scores for each sample. Final models were validated in two external datasets: the Extremely Low Gestational Age Newborn observational study, N = 426 ; and the Rhode Island Children's Health Study, N = 237 . RESULTS Logistic LASSO regression demonstrated the highest performance in cross-validation testing with the lowest number of input CpGs. Accuracy was greatest in external datasets when using models developed for the same platform. PSI scores in smokers only (n = 72 ) were moderately correlated with maternal plasma cotinine levels. One CpG (cg27402634), with the largest coefficient in two models, was measured accurately by digital PCR compared with measurement by EPIC array (R 2 = 0.98 ). DISCUSSION To our knowledge, we have developed the first placental DNAm-based biomarkers of MSDP with broad utility to studies of prenatal disease origins. https://doi.org/10.1289/EHP13838.
Collapse
Affiliation(s)
- Lyndsey E. Shorey-Kendrick
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Brett Davis
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Lina Gao
- Biostatistics Shared Resources, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Byung Park
- Biostatistics Shared Resources, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, USA
- Oregon Health & Science University–Portland State University School of Public Health, Portland, Oregon, USA
| | - Annette Vu
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon, USA
| | - Cynthia D. Morris
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon, USA
- Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Carrie V. Breton
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, USA
| | - Rebecca Fry
- Department of Environmental Sciences and Engineering, UNC Gillings School of Public Health, Chapel Hill, North Carolina, USA
| | - Erika Garcia
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, USA
| | - Rebecca J. Schmidt
- Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, California, USA
- MIND Institute, School of Medicine, University of California Davis, Davis, California, USA
| | - T. Michael O’Shea
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Robert S. Tepper
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Cindy T. McEvoy
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, USA
| | - Eliot R. Spindel
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | | |
Collapse
|
3
|
Shorey-Kendrick LE, McEvoy CT, O'Sullivan SM, Milner K, Vuylsteke B, Tepper RS, Haas DM, Park B, Gao L, Vu A, Morris CD, Spindel ER. Impact of vitamin C supplementation on placental DNA methylation changes related to maternal smoking: association with gene expression and respiratory outcomes. Clin Epigenetics 2021; 13:177. [PMID: 34538263 PMCID: PMC8451157 DOI: 10.1186/s13148-021-01161-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/28/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Maternal smoking during pregnancy (MSDP) affects development of multiple organ systems including the placenta, lung, brain, and vasculature. In particular, children exposed to MSDP show lifelong deficits in pulmonary function and increased risk of asthma and wheeze. Our laboratory has previously shown that vitamin C supplementation during pregnancy prevents some of the adverse effects of MSDP on offspring respiratory outcomes. Epigenetic modifications, including DNA methylation (DNAm), are a likely link between in utero exposures and adverse health outcomes, and MSDP has previously been associated with DNAm changes in blood, placenta, and buccal epithelium. Analysis of placental DNAm may reveal critical targets of MSDP and vitamin C relevant to respiratory health outcomes. RESULTS DNAm was measured in placentas obtained from 72 smokers enrolled in the VCSIP RCT: NCT03203603 (37 supplemented with vitamin C, 35 with placebo) and 24 never-smokers for reference. Methylation at one CpG, cg20790161, reached Bonferroni significance and was hypomethylated in vitamin C supplemented smokers versus placebo. Analysis of spatially related CpGs identified 93 candidate differentially methylated regions (DMRs) between treatment groups, including loci known to be associated with lung function, oxidative stress, fetal development and growth, and angiogenesis. Overlap of nominally significant differentially methylated CpGs (DMCs) in never-smokers versus placebo with nominally significant DMCs in vitamin C versus placebo identified 9059 candidate "restored CpGs" for association with placental transcript expression and respiratory outcomes. Methylation at 274 restored candidate CpG sites was associated with expression of 259 genes (FDR < 0.05). We further identified candidate CpGs associated with infant lung function (34 CpGs) and composite wheeze (1 CpG) at 12 months of age (FDR < 0.05). Increased methylation in the DIP2C, APOH/PRKCA, and additional candidate gene regions was associated with improved lung function and decreased wheeze in offspring of vitamin C-treated smokers. CONCLUSIONS Vitamin C supplementation to pregnant smokers ameliorates changes associated with maternal smoking in placental DNA methylation and gene expression in pathways potentially linked to improved placental function and offspring respiratory health. Further work is necessary to validate candidate loci and elucidate the causal pathway between placental methylation changes and outcomes of offspring exposed to MSDP. Clinical trial registration ClinicalTrials.gov, NCT01723696. Registered November 6, 2012. https://clinicaltrials.gov/ct2/show/record/NCT01723696 .
Collapse
Affiliation(s)
- Lyndsey E Shorey-Kendrick
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, 505 NW 185th Ave, Beaverton, OR, 97006, USA.
| | - Cindy T McEvoy
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Shannon M O'Sullivan
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, 505 NW 185th Ave, Beaverton, OR, 97006, USA
| | - Kristin Milner
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Brittany Vuylsteke
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Robert S Tepper
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David M Haas
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Byung Park
- Biostatistics Shared Resources, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
- Bioinformatics and Biostatistics Core, Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR, USA
- School of Public Health, Oregon Health and Science University-Portland State University, Portland, OR, USA
| | - Lina Gao
- Biostatistics Shared Resources, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
- Bioinformatics and Biostatistics Core, Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR, USA
| | - Annette Vu
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR, USA
| | - Cynthia D Morris
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR, USA
- Oregon Clinical and Translational Research Institute, Oregon Health and Science, Portland, OR, USA
| | - Eliot R Spindel
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, 505 NW 185th Ave, Beaverton, OR, 97006, USA
| |
Collapse
|
4
|
Girardi A, Raschi E, Galletti S, Allegaert K, Poluzzi E, De Ponti F. Drug-induced renal injury in neonates: challenges in clinical practice and perspectives in drug development. Expert Opin Drug Metab Toxicol 2017; 13:555-565. [PMID: 28141945 DOI: 10.1080/17425255.2017.1290081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Acute kidney injury (AKI) is frequently diagnosed in the neonatal population, especially in those admitted to intensive care units, and poses several challenges for clinicians mainly because of difficulties in timely identification of renal impairment and the need to administer drugs with potential nephrotoxicity. In this context, research on biomarkers is growing for their implication in the early detection of renal damage and their higher sensitivity in monitoring renal activity, but also as an important tool for drug development. Areas covered: We described the tools currently used to detect renal damage in neonatal settings, their limits and applicability, as well as the role of drugs on renal toxicity occurrence. Subsequently, we discuss current knowledge on new biomarkers for the detection of kidney injury and drug-induced kidney injury in neonates, and the qualification programs developed by regulatory agencies for biomarkers intended as tools in drug development. Expert opinion: Some molecules are emerging as potential biomarkers for early detection of AKI: promising data has demonstrated higher sensitivity and accuracy compared with tools currently used in the clinical setting. In addition, novel techniques (e.g. high power magnetic resonance imaging) to assess long-term consequences of AKI in neonates are in early steps of development.
Collapse
Affiliation(s)
- Anna Girardi
- a Department of Medical and Surgical Sciences , University of Bologna , Bologna , Italy
| | - Emanuel Raschi
- a Department of Medical and Surgical Sciences , University of Bologna , Bologna , Italy
| | - Silvia Galletti
- a Department of Medical and Surgical Sciences , University of Bologna , Bologna , Italy
| | - Karel Allegaert
- b Intensive Care and Department of Surgery , Erasmus MC Sophia Children's Hospital , Rotterdam , The Netherlands.,c Department of Development and Regeneration , KU Leuven , Leuven , Belgium
| | - Elisabetta Poluzzi
- a Department of Medical and Surgical Sciences , University of Bologna , Bologna , Italy
| | - Fabrizio De Ponti
- a Department of Medical and Surgical Sciences , University of Bologna , Bologna , Italy
| |
Collapse
|
5
|
Newman AR, Andrew NH, Casson RJ. Review of paediatric retinal microvascular changes as a predictor of cardiovascular disease. Clin Exp Ophthalmol 2016; 45:33-44. [DOI: 10.1111/ceo.12773] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/25/2016] [Accepted: 05/02/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Alexander R Newman
- South Australian Institute of Ophthalmology, Royal Adelaide Hospital; Adelaide South Australia Australia
| | - Nicholas H Andrew
- South Australian Institute of Ophthalmology, Royal Adelaide Hospital; Adelaide South Australia Australia
| | - Robert J Casson
- South Australian Institute of Ophthalmology, Royal Adelaide Hospital; Adelaide South Australia Australia
| |
Collapse
|