1
|
Bonilla-Díaz A, Ordóñez-Morán P. Differentiated Epithelial Cells of the Gut. Methods Mol Biol 2023; 2650:3-16. [PMID: 37310619 DOI: 10.1007/978-1-0716-3076-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The intestine is a prime example of self-renewal where stem cells give rise to progenitor cells called transit-amplifying cells which differentiate into more specialized cells. There are two intestinal lineages: the absorptive (enterocytes and microfold cells) and the secretory (Paneth cells, enteroendocrine, goblet cells, and tuft cells). Each of these differentiated cell types has a role in creating an "ecosystem" to maintain intestinal homeostasis. Here, we summarize the main roles of each cell type.
Collapse
Affiliation(s)
- Andrea Bonilla-Díaz
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine , University of Barcelona, Barcelona, Spain
| | - Paloma Ordóñez-Morán
- Translational Medical Sciences Unit, School of Medicine, Centre for Cancer Sciences, Biodiscovery Institute-3, University Park, University of Nottingham, Nottingham, UK.
| |
Collapse
|
2
|
Narukawa M, Misaka T. Identification of mouse bitter taste receptors that respond to resveratrol, a bitter-tasting polyphenolic compound. Biosci Biotechnol Biochem 2022; 86:1431-1437. [PMID: 35881472 DOI: 10.1093/bbb/zbac127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022]
Abstract
The mouse bitter taste receptors (Tas2rs) that respond to resveratrol, a bitter-tasting polyphenolic compound, were identified. Among 35 members of the Tas2r family, Tas2r108, 109, 131, and 137 responded to resveratrol treatment. mRNA expression levels of Tas2r108 and Tas2r137 were higher than those of Tas2r109 and Tas2r131 in mouse circumvallate papillae, indicating that Tas2r108 and Tas2r137 may play important roles in detecting the bitterness of resveratrol in the oral cavity. The mRNA expression of Tas2r137 and Tas2r108 were also observed in several tissues, suggesting that Tas2r108 and Tas2r137 may also be involved in the physiological action of resveratrol.
Collapse
Affiliation(s)
- Masataka Narukawa
- Department of Food and Nutrition, Kyoto Women's University, Kyoto, Japan
| | - Takumi Misaka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Chen L, Yang Y, Sun S, Xie Y, Pan C, Li M, Li C, Liu Y, Xu Z, Liu W, Ji M. Indolepropionic acid reduces obesity‐induced metabolic dysfunction through colonic barrier restoration mediated via tuft cell‐derived IL‐25. FEBS J 2022; 289:5985-6004. [DOI: 10.1111/febs.16470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 04/06/2022] [Accepted: 05/03/2022] [Indexed: 12/19/2022]
Affiliation(s)
- Lu Chen
- Department of Pathogen Biology Nanjing Medical University China
- Jiangsu Province Engineering Research Center of Antibody Drug Nanjing China
| | - Yuxuan Yang
- Department of Pathogen Biology Nanjing Medical University China
| | - Siyu Sun
- Department of Pathogen Biology Nanjing Medical University China
| | - Yuan Xie
- Department of Endocrinology Sir Run Run Hospital Nanjing Medical University China
| | - Cailong Pan
- Department of Pathology School of Basic Medicine Nanjing Medical University China
| | - Maining Li
- Department of Pathogen Biology Nanjing Medical University China
| | - Chen Li
- Department of Pathogen Biology Nanjing Medical University China
| | - Yu Liu
- Department of Endocrinology Sir Run Run Hospital Nanjing Medical University China
| | - Zhipeng Xu
- Department of Pathogen Biology Nanjing Medical University China
| | - Wentao Liu
- Department of Pharmacology School of Basic Medicine Nanjing Medical University China
| | - Minjun Ji
- Department of Pathogen Biology Nanjing Medical University China
- Jiangsu Province Engineering Research Center of Antibody Drug Nanjing China
| |
Collapse
|
4
|
Lee YJ, Jang YN, Kim HM, Han YM, Seo HS, Eom Y, Song JS, Jeong JH, Jung TW. Stimulation of Alpha-1-Adrenergic Receptor Ameliorates Obesity-Induced Cataracts by Activating Glycolysis and Inhibiting Cataract-Inducing Factors. Endocrinol Metab (Seoul) 2022; 37:221-232. [PMID: 35316888 PMCID: PMC9081306 DOI: 10.3803/enm.2021.1237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/19/2021] [Accepted: 12/15/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Obesity, the prevalence of which is increasing due to the lack of exercise and increased consumption of Westernized diets, induces various complications, including ophthalmic diseases. For example, obesity is involved in the onset of cataracts. METHODS To clarify the effects and mechanisms of midodrine, an α1-adrenergic receptor agonist, in cataracts induced by obesity, we conducted various analytic experiments in Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a rat model of obesity. RESULTS Midodrine prevented cataract occurrence and improved lens clearance in OLETF rats. In the lenses of OLETF rats treated with midodrine, we observed lower levels of aldose reductase, tumor necrosis factor-α, and sorbitol, but higher levels of hexokinase, 5'-adenosine monophosphate-activated protein kinase-alpha, adenosine 5´-triphosphate, peroxisome proliferator-activated receptordelta, peroxisome proliferator-activated receptor gamma coactivator 1-alpha, superoxide dismutase, and catalase. CONCLUSION The ameliorating effects of midodrine on cataracts in the OLETF obesity rat model are exerted via the following three mechanisms: direct inhibition of the biosynthesis of sorbitol, which causes cataracts; reduction of reactive oxygen species and inflammation; and (3) stimulation of normal aerobic glycolysis.
Collapse
Affiliation(s)
- Yong-Jik Lee
- Cardiovascular Center, Korea University Guro Hospital, Seoul, Korea
- Cellvertics Co. Ltd., Seoul, Korea
- Department of Pharmacology, Chung-Ang University College of Medicine, Seoul, Korea
- Laboratory of Genomics and Translational Medicine, Department of Internal Medicine, Gachon University College of Medicine, Incheon, Korea
| | - Yoo-Na Jang
- Cardiovascular Center, Korea University Guro Hospital, Seoul, Korea
- Cellvertics Co. Ltd., Seoul, Korea
| | - Hyun-Min Kim
- Cardiovascular Center, Korea University Guro Hospital, Seoul, Korea
- Department of Medical Science, BK21 Plus KUMS Graduate Program, Korea University College of Medicine, Seoul, Korea
| | - Yoon-Mi Han
- Cardiovascular Center, Korea University Guro Hospital, Seoul, Korea
- Cellvertics Co. Ltd., Seoul, Korea
| | - Hong Seog Seo
- Cardiovascular Center, Korea University Guro Hospital, Seoul, Korea
- Cellvertics Co. Ltd., Seoul, Korea
- Department of Medical Science, BK21 Plus KUMS Graduate Program, Korea University College of Medicine, Seoul, Korea
| | - Youngsub Eom
- Department of Ophthalmology, Korea University Ansan Hospital, Ansan, Korea
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea
| | - Jong-suk Song
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea
- Department of Ophthalmology, Korea University Guro Hospital, Seoul, Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Tae Woo Jung
- Department of Pharmacology, Chung-Ang University College of Medicine, Seoul, Korea
| |
Collapse
|
5
|
Narukawa M. Evaluation of the Taste Features of Functional Food Components. J JPN SOC FOOD SCI 2022. [DOI: 10.3136/nskkk.69.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Yasuo T, Wood GC, Chu X, Benotti P, Still CD, Rolston DDK, Margolskee RF, Ninomiya Y, Jiang P. Expression of taste signaling elements in jejunal tissue in subjects with obesity. J Oral Biosci 2021; 64:155-158. [PMID: 34979250 DOI: 10.1016/j.job.2021.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 12/28/2022]
Abstract
Taste-signaling proteins, which are expressed in the oral cavity and the gastrointestinal tract, may be involved in regulating metabolism and immunity via oral-gut-brain circuit. This study aimed to determine if these genes are expressed and altered in the jejunum of patients with extreme obesity after bariatric surgery. Reverse transcription polymerase chain reaction revealed that phospholipase C beta 2 and transient receptor potential channel M5 expressions were downregulated whereas Gustducins expression level remained unchained in the jejunum of patients with a body mass index >50. Our data suggest that taste-signaling dysregulation might contribute to obesity.
Collapse
Affiliation(s)
- Toshiaki Yasuo
- Monelli Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA; Department of Oral Physiology, Asahi University School of Dentistry, 1851-1 Uozumi, Mizuho, Gifu 501-0296, Japan.
| | - G Craig Wood
- Obesity Institute, Geisinger Medical Center, 100 North Academy Ave, Danville, PA 17822, USA
| | - Xin Chu
- Obesity Institute, Geisinger Medical Center, 100 North Academy Ave, Danville, PA 17822, USA
| | - Peter Benotti
- Obesity Institute, Geisinger Medical Center, 100 North Academy Ave, Danville, PA 17822, USA
| | - Christopher D Still
- Obesity Institute, Geisinger Medical Center, 100 North Academy Ave, Danville, PA 17822, USA
| | - David D K Rolston
- Obesity Institute, Geisinger Medical Center, 100 North Academy Ave, Danville, PA 17822, USA
| | - Robert F Margolskee
- Monelli Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| | - Yuzo Ninomiya
- Monelli Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA; Graduate School of Dental Sciences, Kyushu University, 3-1-1 Maidish, Higashi-ku, Fukuoka 812-8582 Japan; Oral Health Science Center, Tokyo Dental College, 2-9-18 Misakia-cho, Chiyoda-ku, Tokyo 101-0061 Japan; Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikamai-cho, Kita-ku, Okayama, 700-8558 Japan
| | - Peihua Jiang
- Monelli Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Schneider C. Tuft cell integration of luminal states and interaction modules in tissues. Pflugers Arch 2021; 473:1713-1722. [PMID: 34635955 PMCID: PMC8528756 DOI: 10.1007/s00424-021-02630-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/07/2023]
Abstract
Chemosensory processes are integral to the physiology of most organisms. This function is typically performed by specialized cells that are able to detect input signals and to convert them to an output dedicated to a particular group of target cells. Tuft cells are cholinergic chemosensory epithelial cells capable of producing immunologically relevant effector molecules. They are scattered throughout endoderm-derived hollow organs and function as sensors of luminal stimuli, which has been best studied in mucosal barrier epithelia. Given their epithelial origin and broad distribution, and based on their interplay with immune pathways, tuft cells can be considered a prototypical example of how complex multicellular organisms engage innate immune mechanisms to modulate and optimize organ physiology. In this review, I provide a concise overview of tuft cells and discuss how these cells influence organ adaptation to dynamic luminal conditions.
Collapse
Affiliation(s)
- Christoph Schneider
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland.
| |
Collapse
|
8
|
Ren R, Lu D, Liu T. Development of a sandwich-type rat small intestine tissue sensor for detecting resveratrol and its receptors. Biomed Microdevices 2021; 23:13. [PMID: 33666776 DOI: 10.1007/s10544-021-00554-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2021] [Indexed: 10/22/2022]
Abstract
Resveratrol has a variety of biological functions, however, a limited number of studies have assessed its interaction with cell surface receptors. In this study, a sandwich-type rat small intestine tissue sensor (RSIT-sensor) was fabricated to detect the response current from receptor stimulation by different resveratrol concentrations via electrochemical workstation. The results showed that with detection limit of 1 × 10-13 mol/L, the maximum rate of change of the response current was found at the concentration of 8.5 × 10-12 mol/L, indicating that the resveratrol-related receptor was saturated. With comparing the response values of prepared biosensor and bare electrode with resveratrol, it can be concluded that the response value of small intestinal cells to resveratrol has obviously been amplified by the intracellular signal transmission system, and its magnification was about 100 times. In the current research, for the first time, kinetics of the interaction between resveratrol and its receptors and the transmission of signals to the body could be quantitatively measured by a biosensor. Our findings may provide new ideas for resveratrol-related receptor analysis, separation and purification, signal transmission, and evaluation of biological function.
Collapse
Affiliation(s)
- Ruijuan Ren
- College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin, 300314, China
| | - Dingqiang Lu
- College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin, 300314, China. .,Tianjin Key Laboratory of Food Biotechnology, Tianjin, 300314, China.
| | - Tingting Liu
- College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin, 300314, China
| |
Collapse
|
9
|
Xiong X, Cheng Z, Wu F, Hu M, Liu Z, Dong R, Chen G. Berberine in the treatment of ulcerative colitis: A possible pathway through Tuft cells. Biomed Pharmacother 2020; 134:111129. [PMID: 33348308 DOI: 10.1016/j.biopha.2020.111129] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 01/04/2023] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease with complex pathogenesis, which is affected by genetic factors, intestinal immune status and intestinal microbial homeostasis. Intestinal epithelial barrier defect is crucial to the development of UC. Berberine, extracted from Chinese medicine, can identify bitter taste receptor on intestinal Tuft cells and activate IL-25-ILC2-IL-13 immune pathway to impair damaged intestinal tract by promoting differentiation of intestinal stem cells, which might be a potential approach for the treatment of UC.
Collapse
Affiliation(s)
- Xinyu Xiong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhe Cheng
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fan Wu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meilin Hu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhimin Liu
- Department of Coloproctology, The Sixth Affiliated Hospital of Sun Yat-sen University (Gastrointestinal & Anal Hospital of Sun Yat-sen University), Guangzhou 510655, China
| | - Ruolan Dong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guang Chen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
10
|
Abe K, Okada S, Ishijima T. The activities of the ILSI Japan endowed chair, at the University of Tokyo, regarding functional food genomics. Nutr Rev 2020; 78:35-39. [PMID: 33259622 DOI: 10.1093/nutrit/nuaa090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Keiko Abe
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shinji Okada
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomoko Ishijima
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Al Khazal F, Kang S, Nelson Holte M, Choi DS, Singh R, Ortega-Sáenz P, López-Barneo J, Maher LJ. Unexpected obesity, rather than tumorigenesis, in a conditional mouse model of mitochondrial complex II deficiency. FASEB J 2020; 35:e21227. [PMID: 33247500 PMCID: PMC7861419 DOI: 10.1096/fj.202002100r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/29/2020] [Accepted: 11/11/2020] [Indexed: 12/28/2022]
Abstract
Mutations in any of the genes encoding the four subunits of succinate dehydrogenase (SDH), a mitochondrial membrane‐bound enzyme complex that is involved in both the tricarboxylic acid cycle and the electron transport chain, can lead to a variety of disorders. Recognized conditions with such mutations include Leigh syndrome and hereditary tumors such as pheochromocytoma and paraganglioma (PPGL), renal cell carcinoma, and gastrointestinal stromal tumor. Tumors appear in SDH mutation carriers with dominant inheritance due to loss of heterozygosity in susceptible cells. Here, we describe a mouse model intended to reproduce hereditary PPGL through Cre‐mediated loss of SDHC in cells that express tyrosine hydroxylase (TH), a compartment where PPGL is known to originate. We report that while there is modest expansion of TH+ glomus cells in the carotid body upon SDHC loss, PPGL is not observed in such mice, even in the presence of a conditional dominant negative p53 protein and chronic hypoxia. Instead, we report an unexpected phenotype of nondiabetic obesity beginning at about 20 weeks of age. We hypothesize that this obesity is caused by TH+ cell loss or altered phenotype in key compartments of the central nervous system responsible for regulating feeding behavior, coupled with metabolic changes due to loss of peripheral catecholamine production.
Collapse
Affiliation(s)
- Fatimah Al Khazal
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Seungwoo Kang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Molly Nelson Holte
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Ravinder Singh
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Patricia Ortega-Sáenz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - L James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| |
Collapse
|
12
|
FUJIWARA T, FUNATSU T, TSUNODA M. Improved Extraction Method for Catecholamines Using Monolithic Silica Disk-Packed Spin Column. CHROMATOGRAPHY 2020. [DOI: 10.15583/jpchrom.2020.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Takuya FUJIWARA
- Graduate School of Pharmaceutical Sciences, University of Tokyo
| | - Takashi FUNATSU
- Graduate School of Pharmaceutical Sciences, University of Tokyo
| | - Makoto TSUNODA
- Graduate School of Pharmaceutical Sciences, University of Tokyo
| |
Collapse
|
13
|
Thallium Toxicity in Caenorhabditis elegans: Involvement of the SKN-1 Pathway and Protection by S-Allylcysteine. Neurotox Res 2020; 38:287-298. [PMID: 32468422 DOI: 10.1007/s12640-020-00220-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 12/21/2022]
Abstract
Monovalent thallium (Tl+) is a cation that can exert complex neurotoxic patterns in the brain by mechanisms that have yet to be completely characterized. To learn more about Tl+ toxicity, it is necessary to investigate its major effects in vivo and its ability to trigger specific signaling pathways (such as the antioxidant SKN-1 pathway) in different biological models. Caenorhabditis elegans (C. elegans) is a nematode constituting a simple in vivo biological model with a well-characterized nervous system, and high genetic homology to mammalian systems. In this study, both wild-type (N2) and skn-1 knockout (KO) mutant C. elegans strains subjected to acute and chronic exposures to Tl+ [2.5-35 μM] were evaluated for physiological stress (survival, longevity, and worm size), motor alterations (body bends), and biochemical changes (glutathione S-transferase regulation in a gst-4 fluorescence strain). While survival was affected by Tl+ in N2 and skn-1 KO (worms lacking the orthologue of mammalian Nrf2) strains in a similar manner, the longevity was more prominently decreased in the skn-1 KO strain compared with the wild-type strain. Moreover, chronic exposure led to a greater compromise in the longevity in both strains compared with acute exposure. Tl+ also induced motor alterations in both skn-1 KO and wild-type strains, as well as changes in worm size in wild-type worms. In addition, preconditioning nematodes with the well-known antioxidant S-allylcysteine (SAC) reversed the Tl+-induced decrease in survival in the N2 strain. GST fluorescent expression was also decreased by the metal in the nematode, and recovered by SAC. Our results describe and validate, for the first time, features of the toxic pattern induced by Tl+ in an in vivo biological model established with C. elegans, supporting an altered redox component in Tl+ toxicity, as previously described in mammal models. We demonstrate that the presence of the orthologous SKN-1 pathway is required for worms in evoking an efficient antioxidant defense. Therefore, the nematode represents an optimal model to reproduce mammalian Tl+ toxicity, where toxic mechanisms and novel therapeutic approaches of clinical value may be successfully pursued.
Collapse
|
14
|
Narukawa M, Kamiyoshihara A, Izu H, Fujii T, Matsubara K, Misaka T. Efficacy of Long-Term Feeding of α-Glycerophosphocholine for Aging-Related Phenomena in Old Mice. Gerontology 2020; 66:275-285. [PMID: 31968334 DOI: 10.1159/000504962] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/22/2019] [Indexed: 11/19/2022] Open
Abstract
α-Glycerophosphocholine (GPC) is a natural source of choline. It reportedly prevents aging-related decline in cognitive function, but the underlying mechanism remains unclear. Although it is understood that aging influences taste sensitivity and energy regulation, whether GPC exerts antiaging effects on such phenomena requires further elucidation. Here, we used old C57BL/6J mice that were fed a GPC-containing diet, to investigate the molecular mechanisms underlying the prevention of a decline in cognitive function associated with aging and examine the beneficial effects of GPC intake on aging-related phenomena, such as taste sensitivity and energy regulation. We confirmed that GPC intake reduces the aging-related decline in the expression levels of genes related to long-term potentiation. Although we did not observe an improvement in aging-related decline in taste sensitivity, there was a notable improvement in the expression levels of β-oxidation-associated genes in old mice. Our results suggest that the prevention of aging-related decline in cognitive function by GPC intake may be associated with the improvement of gene expression levels of long-term potentiation. Furthermore, GPC intake may positively influence lipid metabolism.
Collapse
Affiliation(s)
- Masataka Narukawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Aya Kamiyoshihara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hanae Izu
- Quality and Evaluation Research Division, National Research Institute of Brewing, Higashi-Hiroshima, Japan
| | - Tsutomu Fujii
- Quality and Evaluation Research Division, National Research Institute of Brewing, Higashi-Hiroshima, Japan.,Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, Japan
| | - Kiminori Matsubara
- Department of Human Life Science Education, Graduate School of Education, Hiroshima University, Higashi-Hiroshima, Japan
| | - Takumi Misaka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan,
| |
Collapse
|
15
|
Abstract
The functions of food have three categories: nutrition, palatability, and bioregulation. As the onset of lifestyle-related diseases has increased, many people have shown interest in functional foods that are beneficial to bioregulation. We believe that functional foods should be highly palatable for increased acceptance from consumers. In order to design functional foods with a high palatability, we have investigated about the palatability, especially in relation to the taste of food. In this review, we discuss (1) the identification of taste receptors that respond to functional food components; (2) an analysis of the peripheral taste transduction system; and (3) the investigation of the relationship between physiological functions and taste signals.
Collapse
Affiliation(s)
- Masataka Narukawa
- a Graduate School of Agricultural and Life Sciences , The University of Tokyo , Tokyo , Japan
| |
Collapse
|
16
|
Abe K, Misaka T. Food functionality research as a new national project in special reference to improvement of cognitive and locomotive abilities. Biosci Biotechnol Biochem 2018; 82:573-583. [PMID: 29316856 DOI: 10.1080/09168451.2017.1412249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In Japan, where a super-aging society is realized, we are most concerned about healthy longevity, which would ascertain the wellness of people by improving their quality of life (QOL). In 2014, the Cabinet Office proposed a strategic innovation promotion programme, launching a national project for the development of the agricultural-forestry-fisheries food products with new functionalities for the next generation. In addition to focusing on a conventional prevention of lifestyle-associated metabolic syndromes, the project targets the scientific evidence of the activation of brain cognitive ability and the improvement of bodily locomotive function. The project also involves the analysis of the foods-sports interrelation of chronic importance, and the development of devices for the verification of QOL-associated maintenance of homeostasis. In this review, we provide an overview of these studies, with special reference to cognition as a case of the gut-brain axis which the author is particularly interested in.
Collapse
Affiliation(s)
- Keiko Abe
- a Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences , The University of Tokyo , Tokyo , Japan.,b Group for Food Functionality Assessment , Kanagawa Institute of Industrial Science and Technology (KISTEC) , Kawasaki , Japan
| | - Takumi Misaka
- a Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences , The University of Tokyo , Tokyo , Japan
| |
Collapse
|
17
|
Yamashita J, Ohmoto M, Yamaguchi T, Matsumoto I, Hirota J. Skn-1a/Pou2f3 functions as a master regulator to generate Trpm5-expressing chemosensory cells in mice. PLoS One 2017; 12:e0189340. [PMID: 29216297 PMCID: PMC5720759 DOI: 10.1371/journal.pone.0189340] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/22/2017] [Indexed: 01/22/2023] Open
Abstract
Transient receptor potential channel M5 (Trpm5)-expressing cells, such as sweet, umami, and bitter taste cells in the oropharyngeal epithelium, solitary chemosensory cells in the nasal respiratory epithelium, and tuft cells in the small intestine, that express taste-related genes function as chemosensory cells. Previous studies demonstrated that Skn-1a/Pou2f3, a POU homeodomain transcription factor is expressed in these Trpm5-expressing chemosensory cells, and is necessary for their generation. Trpm5-expressing cells have recently been found in trachea, auditory tube, urethra, thymus, pancreatic duct, stomach, and large intestine. They are considered to be involved in protective responses to potential hazardous compounds as Skn-1a-dependent bitter taste cells, respiratory solitary chemosensory cells, and intestinal tuft cells are. In this study, we examined the expression and function of Skn-1a/Pou2f3 in Trpm5-expressing cells in trachea, auditory tube, urethra, thymus, pancreatic duct, stomach, and large intestine. Skn-1a/Pou2f3 is expressed in a majority of Trpm5-expressing cells in all tissues examined. In Skn-1a/Pou2f3-deficient mice, the expression of Trpm5 as well as marker genes for Trpm5-expressing cells were absent in all tested tissues. Immunohistochemical analyses demonstrated that two types of microvillous cells exist in trachea, urethra, and thymus, Trpm5-positive and Trpm5-negative cells. In Skn-1a/Pou2f3-deficient mice, a considerable proportion of Trpm5-negative and villin-positive microvillous cells remained present in these tissues. Thus, we propose that Skn-1a/Pou2f3 is the master regulator for the generation of the Trpm5-expressing microvillous cells in multiple tissues.
Collapse
Affiliation(s)
- Junpei Yamashita
- Department of Life Science and Technology, Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Makoto Ohmoto
- Monell Chemical Senses Center, Philadelphia, United States of America
| | - Tatsuya Yamaguchi
- Department of Life Science and Technology, Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Ichiro Matsumoto
- Monell Chemical Senses Center, Philadelphia, United States of America
| | - Junji Hirota
- Department of Life Science and Technology, Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, Japan
- * E-mail:
| |
Collapse
|
18
|
Lack of TRPM5-Expressing Microvillous Cells in Mouse Main Olfactory Epithelium Leads to Impaired Odor-Evoked Responses and Olfactory-Guided Behavior in a Challenging Chemical Environment. eNeuro 2017. [PMID: 28612045 DOI: 10.1523/eneuro.0135‐17.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The mammalian main olfactory epithelium (MOE) modifies its activities in response to changes in the chemical environment. This process is essential for maintaining the functions of the olfactory system and the upper airway. However, mechanisms involved in this functional maintenance, especially those occurring via paracrine regulatory pathways within the multicellular MOE, are poorly understood. Previously, a population of non-neuronal, transient receptor potential M5-expressing microvillous cells (TRPM5-MCs) was identified in the MOE, and the initial characterization of these cells showed that they are cholinergic and responsive to various xenobiotics including odorants at high concentrations. Here, we investigated the role of TRPM5-MCs in maintaining olfactory function using transcription factor Skn-1a knockout (Skn-1a-/-) mice, which lack TRPM5-MCs in the MOE. Under our standard housing conditions, Skn-1a-/- mice do not differ significantly from control mice in odor-evoked electro-olfactogram (EOG) responses and olfactory-guided behaviors, including finding buried food and preference reactions to socially and sexually relevant odors. However, after a 2-wk exposure to high-concentration odor chemicals and chitin powder, Skn-1a-/- mice exhibited a significant reduction in their odor and pheromone-evoked EOG responses. Consequently, their olfactory-guided behaviors were impaired compared with vehicle-exposed Skn-1a-/- mice. Conversely, the chemical exposure did not induce significant changes in the EOG responses and olfactory behaviors of control mice. Therefore, our physiological and behavioral results indicate that TRPM5-MCs play a protective role in maintaining the olfactory function of the MOE.
Collapse
|
19
|
Lack of TRPM5-Expressing Microvillous Cells in Mouse Main Olfactory Epithelium Leads to Impaired Odor-Evoked Responses and Olfactory-Guided Behavior in a Challenging Chemical Environment. eNeuro 2017; 4:eN-NWR-0135-17. [PMID: 28612045 PMCID: PMC5467397 DOI: 10.1523/eneuro.0135-17.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/18/2017] [Accepted: 05/29/2017] [Indexed: 11/21/2022] Open
Abstract
The mammalian main olfactory epithelium (MOE) modifies its activities in response to changes in the chemical environment. This process is essential for maintaining the functions of the olfactory system and the upper airway. However, mechanisms involved in this functional maintenance, especially those occurring via paracrine regulatory pathways within the multicellular MOE, are poorly understood. Previously, a population of non-neuronal, transient receptor potential M5-expressing microvillous cells (TRPM5-MCs) was identified in the MOE, and the initial characterization of these cells showed that they are cholinergic and responsive to various xenobiotics including odorants at high concentrations. Here, we investigated the role of TRPM5-MCs in maintaining olfactory function using transcription factor Skn-1a knockout (Skn-1a-/-) mice, which lack TRPM5-MCs in the MOE. Under our standard housing conditions, Skn-1a-/- mice do not differ significantly from control mice in odor-evoked electro-olfactogram (EOG) responses and olfactory-guided behaviors, including finding buried food and preference reactions to socially and sexually relevant odors. However, after a 2-wk exposure to high-concentration odor chemicals and chitin powder, Skn-1a-/- mice exhibited a significant reduction in their odor and pheromone-evoked EOG responses. Consequently, their olfactory-guided behaviors were impaired compared with vehicle-exposed Skn-1a-/- mice. Conversely, the chemical exposure did not induce significant changes in the EOG responses and olfactory behaviors of control mice. Therefore, our physiological and behavioral results indicate that TRPM5-MCs play a protective role in maintaining the olfactory function of the MOE.
Collapse
|
20
|
Ishimaru Y, Kozuka C, Nakajima K, Sasaki T. Expanding frontiers in weight-control research explored by young investigators. J Physiol Sci 2017; 67:83-95. [PMID: 27730500 PMCID: PMC5138253 DOI: 10.1007/s12576-016-0495-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 09/30/2016] [Indexed: 01/30/2023]
Abstract
At the 93rd annual meeting of the Physiological Society of Japan, a symposium entitled "Expanding frontiers in weight-control research explored by young investigators" was organized. The latest research on weight control was presented by young up-and-coming investigators. The symposium consisted of the following presentations: Gastrointestinal brush cells, immunity, and energy homeostasis; Impact of a brown rice-derived bioactive product on feeding regulation and fuel metabolism; A novel G protein-coupled receptor-regulated neuronal signaling pathway triggers sustained orexigenic effects; and NMDA receptor co-agonist D-serine regulates food preference. These four talks presented at the symposium were summarized as a series of short reviews in this review.
Collapse
Affiliation(s)
- Yoshiro Ishimaru
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Chisayo Kozuka
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan.
| | - Kenichiro Nakajima
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Tsutomu Sasaki
- Laboratory for Metabolic Signaling. Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan.
| |
Collapse
|
21
|
Steele SP, Melchor SJ, Petri WA. Tuft Cells: New Players in Colitis. Trends Mol Med 2016; 22:921-924. [PMID: 27717671 DOI: 10.1016/j.molmed.2016.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 12/13/2022]
Abstract
A recent surge of interest in tuft cells, which are chemosensory intestinal epithelial cells, has uncovered new functional roles for these cells in colorectal cancer, metabolic signaling, and type 2 immunity. Here, we explore emerging evidence suggesting that tuft cells are critical for protection during enteric infections and inflammatory responses.
Collapse
Affiliation(s)
- Shaun P Steele
- Department of Medicine, Division of Infectious Disease, University of Virginia, Charlottesville, VA 22908, USA
| | - Stephanie J Melchor
- Department of Medicine, Division of Infectious Disease, University of Virginia, Charlottesville, VA 22908, USA
| | - William A Petri
- Department of Medicine, Division of Infectious Disease, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|