1
|
Warren JP, Coe RH, Culbert MP, Dixon AR, Miles DE, Mengoni M, Beales PA, Wilcox RK. Injectable peptide-glycosaminoglycan hydrogels for soft tissue repair: in vitro assessment for nucleus augmentation. MATERIALS ADVANCES 2024; 5:8665-8672. [PMID: 39421698 PMCID: PMC11474259 DOI: 10.1039/d4ma00613e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024]
Abstract
We report the development of peptide-glycosaminoglycan hydrogels as injectable biomaterials for load-bearing soft tissue repair. The hydrogels are injectable as a liquid for clinical delivery, rapidly form a gel in situ, and mimic the osmotic swelling behaviour of natural tissue. We used a new in vitro model to demonstrate their application as a nucleus augmentation material for the treatment of intervertebral disc degeneration. Our study compared a complex lab gel preparation method to a simple clinical benchtop process. We showed pH differences did not significantly affect gel formation, and temperature variations had no impact on gel performance. Rheological results demonstrated consistency after benchtop mixing or needle injection. In our in vitro disc degeneration model, we established that peptide augmentation could restore the native biomechanical properties. This suggests the feasibility of minimally invasive peptide-GAG gel delivery, maintaining consistent properties across temperature and needle sizes while restoring disc height and stiffness in vitro.
Collapse
Affiliation(s)
- James P Warren
- Institute of Medical and Biological Engineering, School of Mechanical Engineering UK
- School of Chemistry, University of Leeds Leeds LS2 9JT UK
| | - Ruth H Coe
- Institute of Medical and Biological Engineering, School of Mechanical Engineering UK
| | - Matthew P Culbert
- Institute of Medical and Biological Engineering, School of Mechanical Engineering UK
- School of Chemistry, University of Leeds Leeds LS2 9JT UK
| | - Andrew R Dixon
- Institute of Medical and Biological Engineering, School of Mechanical Engineering UK
| | - Danielle E Miles
- Institute of Medical and Biological Engineering, School of Mechanical Engineering UK
- School of Chemistry, University of Leeds Leeds LS2 9JT UK
| | - Marlène Mengoni
- Institute of Medical and Biological Engineering, School of Mechanical Engineering UK
| | - Paul A Beales
- School of Chemistry, University of Leeds Leeds LS2 9JT UK
| | - Ruth K Wilcox
- Institute of Medical and Biological Engineering, School of Mechanical Engineering UK
| |
Collapse
|
2
|
Ma Z, Liu X, Zhang X, Li S, An J, Luo Z. Research progress on long non‑coding RNAs in non‑infectious spinal diseases (Review). Mol Med Rep 2024; 30:164. [PMID: 38994759 PMCID: PMC11267249 DOI: 10.3892/mmr.2024.13288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/18/2024] [Indexed: 07/13/2024] Open
Abstract
Spinal diseases, including intervertebral disc degeneration (IDD), ankylosing spondylitis, spinal cord injury and other non‑infectious spinal diseases, severely affect the quality of life of patients. Current treatments for IDD and other spinal diseases can only relieve symptoms and do not completely cure the disease. Therefore, there is an urgent need to explore the causes of these diseases and develop new treatment approaches. Long non‑coding RNA (lncRNA), a form of non‑coding RNA, is abundant in diverse sources, has numerous functions, and plays an important role in the occurrence and development of spinal diseases such as IDD. However, the mechanism of action of lncRNAs has not been fully elucidated, and significant challenges remain in the use of lncRNAs as new therapeutic targets. The present article reviews the sources, classification and functions of lncRNAs, and introduces the role of lncRNAs in spinal diseases, such as IDD, and their therapeutic potential.
Collapse
Affiliation(s)
- Zhong Ma
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
- Orthopaedics Key Laboratory of Gansu Province, Orthopedics Institute of The Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Xin Liu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
- Orthopaedics Key Laboratory of Gansu Province, Orthopedics Institute of The Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Xianxu Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
- Orthopaedics Key Laboratory of Gansu Province, Orthopedics Institute of The Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Shicheng Li
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
- Orthopaedics Key Laboratory of Gansu Province, Orthopedics Institute of The Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Jiangdong An
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
- Orthopaedics Key Laboratory of Gansu Province, Orthopedics Institute of The Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Zhiqiang Luo
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
- Orthopaedics Key Laboratory of Gansu Province, Orthopedics Institute of The Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
3
|
Yoshizato H, Morimoto T, Nonaka T, Otani K, Kobayashi T, Nakashima T, Hirata H, Tsukamoto M, Mawatari M. Animal Model for Anterior Lumbar Interbody Fusion: A Literature Review. Spine Surg Relat Res 2024; 8:373-382. [PMID: 39131411 PMCID: PMC11310536 DOI: 10.22603/ssrr.2023-0262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/22/2023] [Indexed: 08/13/2024] Open
Abstract
Lumbar interbody fusion (LIF) is a surgical procedure for treating lumbar spinal stenosis and deformities. It removes a spinal disc and insert a cage or bone graft to promote solid fusion. Extensive research on LIF has been supported by numerous animal studies, which are being developed to enhance fusion rates and reduce the complications associated with the procedure. In particular, the anterior approach is significant in LIF research and regenerative medicine studies concerning intervertebral discs, as it utilizes the disc and the entire vertebral body. Several animal models have been used for anterior LIF (ALIF), each with distinct characteristics. However, a comprehensive review of ALIF models in different animals is currently lacking. Medium-sized and large animals, such as dogs and sheep, have been employed as ALIF models because of their suitable spine size for surgery. Conversely, small animals, such as rats, are rarely employed as ALIF models because of anatomical challenges. However, recent advancements in surgical implants and techniques have gradually allowed rats in ALIF models. Ambitious studies utilizing small animal ALIF models will soon be conducted. This review aims to review the advantages and disadvantages of various animal models, commonly used approaches, and bone fusion rate, to provide valuable insights to researchers studying the spine.
Collapse
Affiliation(s)
- Hiromu Yoshizato
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Tadatsugu Morimoto
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Toshihiro Nonaka
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Koji Otani
- Department of Orthopedic Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | | | - Takema Nakashima
- Department of Orthopaedic Surgery, JCHO Saga Central Hospital, Saga, Japan
| | - Hirohito Hirata
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Masatsugu Tsukamoto
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Masaaki Mawatari
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
4
|
Yamada K, Sudo H, Iwasaki N. Reverse Translational Approach Using Biomaterials and Stem Cells for Intervertebral Disc Degeneration. JMA J 2024; 7:423-425. [PMID: 39114621 PMCID: PMC11301003 DOI: 10.31662/jmaj.2024-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 08/10/2024] Open
Affiliation(s)
- Katsuhisa Yamada
- Department of Orthopedic Surgery, Hokkaido University Hospital, Sapporo, Japan
| | - Hideki Sudo
- Department of Orthopedic Surgery, Hokkaido University Hospital, Sapporo, Japan
| | - Norimasa Iwasaki
- Department of Orthopedic Surgery, Hokkaido University Hospital, Sapporo, Japan
| |
Collapse
|
5
|
Ukeba D, Ishikawa Y, Yamada K, Ohnishi T, Tachi H, Tha KK, Iwasaki N, Sudo H. Bone Marrow Aspirate Concentrate Combined with Ultra-Purified Alginate Bioresorbable Gel Enhances Intervertebral Disc Repair in a Canine Model: A Preclinical Proof-of-Concept Study. Cells 2024; 13:987. [PMID: 38891119 PMCID: PMC11172114 DOI: 10.3390/cells13110987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Although discectomy is commonly performed for lumbar intervertebral disc (IVD) herniation, the capacity for tissue repair after surgery is limited, resulting in residual lower back pain, recurrence of IVD herniation, and progression of IVD degeneration. Cell-based therapies, as one-step procedures, are desirable for enhancing IVD repair. This study aimed to investigate the therapeutic efficacy of a combination of newly developed ultra-purified alginate (UPAL) gel and bone marrow aspirate concentrate (BMAC) implantation for IVD repair after discectomy. Prior to an in vivo study, the cell concentration abilities of three commercially available preparation kits for creating the BMAC were compared by measuring the number of bone marrow mesenchymal stem cells harvested from the bone marrow of rabbits. Subsequently, canine-derived BMAC was tested in a canine model using a kit which had the highest concentration rate. At 24 weeks after implantation, we evaluated the changes in the magnetic resonance imaging (MRI) signals as well as histological degeneration grade and immunohistochemical analysis results for type II and type I collagen-positive cells in the treated IVDs. In all quantitative evaluations, such as MRI and histological and immunohistochemical analyses of IVD degeneration, BMAC-UPAL implantation significantly suppressed the progression of IVD degeneration compared to discectomy and UPAL alone. This preclinical proof-of-concept study demonstrated the potential efficacy of BMAC-UPAL gel as a therapeutic strategy for implementation after discectomy, which was superior to UPAL and discectomy alone in terms of tissue repair and regenerative potential.
Collapse
Affiliation(s)
- Daisuke Ukeba
- Department of Orthopedic Surgery, Hokkaido University Hospital, N14W5, Sapporo, Hokkaido 060-8638, Japan; (D.U.); (Y.I.); (K.Y.); (T.O.); (H.T.); (N.I.)
| | - Yoko Ishikawa
- Department of Orthopedic Surgery, Hokkaido University Hospital, N14W5, Sapporo, Hokkaido 060-8638, Japan; (D.U.); (Y.I.); (K.Y.); (T.O.); (H.T.); (N.I.)
| | - Katsuhisa Yamada
- Department of Orthopedic Surgery, Hokkaido University Hospital, N14W5, Sapporo, Hokkaido 060-8638, Japan; (D.U.); (Y.I.); (K.Y.); (T.O.); (H.T.); (N.I.)
| | - Takashi Ohnishi
- Department of Orthopedic Surgery, Hokkaido University Hospital, N14W5, Sapporo, Hokkaido 060-8638, Japan; (D.U.); (Y.I.); (K.Y.); (T.O.); (H.T.); (N.I.)
| | - Hiroyuki Tachi
- Department of Orthopedic Surgery, Hokkaido University Hospital, N14W5, Sapporo, Hokkaido 060-8638, Japan; (D.U.); (Y.I.); (K.Y.); (T.O.); (H.T.); (N.I.)
| | - Khin Khin Tha
- Laboratory for Biomarker Imaging Science, Graduate School of Biomedical Science and Engineering, Hokkaido University, N15 W7, Kita-ku, Sapporo 060-8638, Japan;
| | - Norimasa Iwasaki
- Department of Orthopedic Surgery, Hokkaido University Hospital, N14W5, Sapporo, Hokkaido 060-8638, Japan; (D.U.); (Y.I.); (K.Y.); (T.O.); (H.T.); (N.I.)
| | - Hideki Sudo
- Department of Orthopedic Surgery, Hokkaido University Hospital, N14W5, Sapporo, Hokkaido 060-8638, Japan; (D.U.); (Y.I.); (K.Y.); (T.O.); (H.T.); (N.I.)
| |
Collapse
|
6
|
Rahman T, Kibble MJ, Harbert G, Smith N, Brewer E, Schaer TP, Newell N. Comparison of four in vitro test methods to assess nucleus pulposus replacement device expulsion risk. JOR Spine 2024; 7:e1332. [PMID: 38655007 PMCID: PMC11037461 DOI: 10.1002/jsp2.1332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Background Nucleus replacement devices (NRDs) are not routinely used in clinic, predominantly due to the risk of device expulsion. Rigorous in vitro testing may enable failure mechanisms to be identified prior to clinical trials; however, current testing standards do not specify a particular expulsion test. Multiple methods have therefore been developed, complicating comparisons between NRD designs. Thus, this study assessed the effectiveness of four previously reported expulsion testing protocols; hula-hoop (Protocol 1), adapted hula-hoop (Protocol 2), eccentric cycling (Protocol 3), and ramp to failure (Protocol 4), applied to two NRDs, one preformed and one in situ curing. Methods Nucleus material was removed from 40 bovine tail intervertebral disks. A NRD was inserted posteriorly into each cavity and the disks were subjected to one of four expulsion protocols. Results NRD response was dependent on both the NRD design and the loading protocol. Protocol 1 resulted in higher migration and earlier failure rates compared to Protocol 2 in both NRDs. The preformed NRD was more likely to migrate when protocols incorporated rotation. The NRDs had equal migration (60%) and expulsion (60%) rates when using unilateral bending and ramp testing. Combining the results of multiple tests revealed complimentary information regarding the NRD response. Conclusions Adapted hula-hoop (Protocol 2) and ramp to failure (Protocol 4), combined with fluoroscopic analysis, revealed complimentary insights regarding migration and failure risk. Therefore, when adopting the surgical approach and animal model used in this study, it is recommended that NRD performance be assessed using both a cyclic and ramp loading protocol.
Collapse
Affiliation(s)
- Tamanna Rahman
- Department of BioengineeringImperial College LondonLondonUK
- Biomechanics Group, Department of Mechanical EngineeringImperial College LondonLondonUK
| | | | | | - Nigel Smith
- Division of Surgery and Interventional ScienceUniversity College LondonStanmoreUK
| | - Erik Brewer
- Department of Biomedical EngineeringRowan UniversityGlassboroNew JerseyUSA
| | - Thomas P. Schaer
- Department of Clinical Studies New Bolton CenterUniversity of Pennsylvania School of Veterinary MedicineKennett SquarePennsylvaniaUSA
| | - Nicolas Newell
- Department of BioengineeringImperial College LondonLondonUK
| |
Collapse
|
7
|
Liu Y, Li L, Li X, Cherif H, Jiang S, Ghezelbash F, Weber MH, Juncker D, Li-Jessen NYK, Haglund L, Li J. Viscoelastic hydrogels regulate adipose-derived mesenchymal stem cells for nucleus pulposus regeneration. Acta Biomater 2024; 180:244-261. [PMID: 38615812 DOI: 10.1016/j.actbio.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Low back pain is a leading cause of disability worldwide, often attributed to intervertebral disc (IVD) degeneration with loss of the functional nucleus pulposus (NP). Regenerative strategies utilizing biomaterials and stem cells are promising for NP repair. Human NP tissue is highly viscoelastic, relaxing stress rapidly under deformation. However, the impact of tissue-specific viscoelasticity on the activities of adipose-derived stem cells (ASC) remains largely unexplored. Here, we investigated the role of matrix viscoelasticity in regulating ASC differentiation for IVD regeneration. Viscoelastic alginate hydrogels with stress relaxation time scales ranging from 100 s to 1000s were developed and used to culture human ASCs for 21 days. Our results demonstrated that the fast-relaxing hydrogel significantly enhanced ASCs long-term cell survival and NP-like extracellular matrix secretion of aggrecan and type-II collagen. Moreover, gene expression analysis revealed a substantial upregulation of the mechanosensitive ion channel marker TRPV4 and NP-specific markers such as SOX9, HIF-1α, KRT18, CDH2 and CD24 in ASCs cultured within the fast-relaxing hydrogel, compared to slower-relaxing hydrogels. These findings highlight the critical role of matrix viscoelasticity in regulating ASC behavior and suggest that viscoelasticity is a key parameter for novel biomaterials design to improve the efficacy of stem cell therapy for IVD regeneration. STATEMENT OF SIGNIFICANCE: Systematically characterized the influence of tissue-mimetic viscoelasticity on ASC. NP-mimetic hydrogels with tunable viscoelasticity and tissue-matched stiffness. Long-term survival and metabolic activity of ASCs are substantially improved in the fast-relaxing hydrogel. The fast-relaxing hydrogel allows higher rate of cell protrusions formation and matrix remodeling. ASC differentiation towards an NP-like cell phenotype is promoted in the fast-relaxing hydrogel, with more CD24 positive expression indicating NP committed cell fate. The expression of TRPV4, a molecular sensor of matrix viscoelasticity, is significantly enhanced in the fast-relaxing hydrogel, indicating ASC sensing matrix viscoelasticity during cell development. The NP-specific ECM secretion of ASC is considerably influenced by matrix viscoelasticity, where the deposition of aggrecan and type-II collagen are significantly enhanced in the fast-relaxing hydrogel.
Collapse
Affiliation(s)
- Yin Liu
- Department of Biomedical Engineering, McGill University, 3775 Rue University, Montréal, QC H3A 2B4, Canada; Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montréal, QC H3A 0C3, Canada
| | - Li Li
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montréal, QC H3G 1A4, Canada
| | - Xuan Li
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montréal, QC H3A 0C3, Canada
| | - Hosni Cherif
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montréal, QC H3G 1A4, Canada
| | - Shuaibing Jiang
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montréal, QC H3A 0C3, Canada
| | - Farshid Ghezelbash
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montréal, QC H3A 0C3, Canada
| | - Michael H Weber
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montréal, QC H3G 1A4, Canada
| | - David Juncker
- Department of Biomedical Engineering, McGill University, 3775 Rue University, Montréal, QC H3A 2B4, Canada; McGill University & Genome Quebec Innovation Centre, 740 Avenue Dr. Penfield, Montréal, QC H4A 0G1, Canada
| | - Nicole Y K Li-Jessen
- Department of Biomedical Engineering, McGill University, 3775 Rue University, Montréal, QC H3A 2B4, Canada; School of Communication Sciences and Disorders, McGill University, 2001 McGill College Avenue, Montréal, QC H3A 1G1, Canada; Department of Otolaryngology - Head and Neck Surgery, McGill University Health Centre, 1001 Bd Décarie, Montréal, QC H4A 3J1, Canada; Research Institute of McGill University Health Center, McGill University, 1001 Bd Décarie, Montréal, QC H4A 3J1, Canada
| | - Lisbet Haglund
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montréal, QC H3G 1A4, Canada; Shriners Hospital for Children, 1003 Bd Décarie, Montréal, QC H4A 0A9, Canada.
| | - Jianyu Li
- Department of Biomedical Engineering, McGill University, 3775 Rue University, Montréal, QC H3A 2B4, Canada; Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montréal, QC H3A 0C3, Canada; Department of Surgery, McGill University, 1650 Cedar Avenue, Montréal, QC H3G 1A4, Canada.
| |
Collapse
|
8
|
Yu L, Wu H, Zeng S, Hu X, Wu Y, Zhou J, Yuan L, Zhang Q, Xiang C, Feng Z. Menstrual blood-derived mesenchymal stem cells combined with collagen I gel as a regenerative therapeutic strategy for degenerated disc after discectomy in rats. Stem Cell Res Ther 2024; 15:75. [PMID: 38475906 DOI: 10.1186/s13287-024-03680-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Annulus fibrosis (AF) defects have been identified as the primary cause of disc herniation relapse and subsequent disc degeneration following discectomy. Stem cell-based tissue engineering offers a promising approach for structural repair. Menstrual blood-derived mesenchymal stem cells (MenSCs), a type of adult stem cell, have gained attention as an appealing source for clinical applications due to their potential for structure regeneration, with ease of acquisition and regardless of ethical issues. METHODS The differential potential of MenSCs cocultured with AF cells was examined by the expression of collagen I, SCX, and CD146 using immunofluorescence. Western blot and ELISA were used to examine the expression of TGF-β and IGF-I in coculture system. An AF defect animal model was established in tail disc of Sprague-Dawley rats (males, 8 weeks old). An injectable gel containing MenSCs (about 1*106/ml) was fabricated and transplanted into the AF defects immediately after the animal model establishment, to evaluate its repairment properties. Disc degeneration was assessed via magnetic resonance (MR) imaging and histological staining. Immunohistochemical analysis was performed to assess the expression of aggrecan, MMP13, TGF-β and IGF-I in discs with different treatments. Apoptosis in the discs was evaluated using TUNEL, caspase3, and caspase 8 immunofluorescence staining. RESULTS Coculturing MenSCs with AF cells demonstrated ability to express collagen I and biomarkers of AF cells. Moreover, the coculture system presented upregulation of the growth factors TGF-β and IGF-I. After 12 weeks, discs treated with MenSCs gel exhibited significantly lower Pffirrmann scores (2.29 ± 0.18), compared to discs treated with MenSCs (3.43 ± 0.37, p < 0.05) or gel (3.71 ± 0.29, p < 0.01) alone. There is significant higher MR index in disc treated with MenSCs gel than that treated with MenSCs (0.51 ± 0.05 vs. 0.24 ± 0.04, p < 0.01) or gel (0.51 ± 0.05 vs. 0.26 ± 0.06, p < 0.01) alone. Additionally, MenSCs gel demonstrated preservation of the structure of degenerated discs, as indicated by histological scoring (5.43 ± 0.43 vs. 9.71 ± 1.04 in MenSCs group and 10.86 ± 0.63 in gel group, both p < 0.01), increased aggrecan expression, and decreased MMP13 expression in vivo. Furthermore, the percentage of TUNEL and caspase 3-positive cells in the disc treated with MenSCs Gel was significantly lower than those treated with gel alone and MenSCs alone. The expression of TGF-β and IGF-I was higher in discs treated with MenSCs gel or MenSCs alone than in those treated with gel alone. CONCLUSION MenSCs embedded in collagen I gel has the potential to preserve the disc structure and prevent disc degeneration after discectomy, which was probably attributed to the paracrine of growth factors of MenSCs.
Collapse
Affiliation(s)
- Li Yu
- Department of Operating room, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Honghao Wu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shumei Zeng
- Department of gynaecology, Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojian Hu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yuxu Wu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jinhong Zhou
- Department of gynaecology, Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Yuan
- Innovative Precision Medicine (IPM) Group, Hangzhou, Zhejiang, China
| | - Qingqing Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang, China.
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| | - Zhiyun Feng
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- , Building 8-2, 58#, Chengzhan Road, Hangzhou, 310003, China.
| |
Collapse
|
9
|
Wang J, Liu M, Yang C, Pan Y, Ji S, Han N, Sun G. Biomaterials for bone defect repair: Types, mechanisms and effects. Int J Artif Organs 2024; 47:75-84. [PMID: 38166512 DOI: 10.1177/03913988231218884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Bone defects or bone discontinuities caused by trauma, infection, tumours and other diseases have led to an increasing demand for bone grafts and biomaterials. Autologous bone grafts, bone grafts with vascular tips, anastomosed vascular bone grafts and autologous bone marrow components are all commonly used in clinical practice, while oversized bone defects require the use of bone tissue engineering-related biomaterials to repair bone defects and promote bone regeneration. Currently, inorganic components such as polysaccharides and bioceramics, as well as a variety of bioactive proteins, metal ions and stem cells can be loaded into hydrogels or 3D printed scaffold materials to achieve better therapeutic results. In this review, we provide an overview of the types of materials, applications, potential mechanisms and current developments in the repair of bone defects.
Collapse
Affiliation(s)
- Jiaming Wang
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Mingchong Liu
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chensong Yang
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yutao Pan
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shengchao Ji
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ning Han
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guixin Sun
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
10
|
Desai SU, Srinivasan SS, Kumbar SG, Moss IL. Hydrogel-Based Strategies for Intervertebral Disc Regeneration: Advances, Challenges and Clinical Prospects. Gels 2024; 10:62. [PMID: 38247785 PMCID: PMC10815657 DOI: 10.3390/gels10010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Millions of people worldwide suffer from low back pain and disability associated with intervertebral disc (IVD) degeneration. IVD degeneration is highly correlated with aging, as the nucleus pulposus (NP) dehydrates and the annulus fibrosus (AF) fissures form, which often results in intervertebral disc herniation or disc space collapse and related clinical symptoms. Currently available options for treating intervertebral disc degeneration are symptoms control with therapy modalities, and/or medication, and/or surgical resection of the IVD with or without spinal fusion. As such, there is an urgent clinical demand for more effective disease-modifying treatments for this ubiquitous disorder, rather than the current paradigms focused only on symptom control. Hydrogels are unique biomaterials that have a variety of distinctive qualities, including (but not limited to) biocompatibility, highly adjustable mechanical characteristics, and most importantly, the capacity to absorb and retain water in a manner like that of native human nucleus pulposus tissue. In recent years, various hydrogels have been investigated in vitro and in vivo for the repair of intervertebral discs, some of which are ready for clinical testing. In this review, we summarize the latest findings and developments in the application of hydrogel technology for the repair and regeneration of intervertebral discs.
Collapse
Affiliation(s)
- Shivam U. Desai
- Department of Orthopedic Surgery, Central Michigan University, College of Medicine, Saginaw, MI 48602, USA
| | | | | | - Isaac L. Moss
- Department of Orthopedic Surgery, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
11
|
Han H, Zhao X, Ma H, Zhang Y, Lei B. Multifunctional injectable hydrogels with controlled delivery of bioactive factors for efficient repair of intervertebral disc degeneration. Heliyon 2023; 9:e21867. [PMID: 38027562 PMCID: PMC10665751 DOI: 10.1016/j.heliyon.2023.e21867] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/07/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Millions of people worldwide suffer from intervertebral disc degeneration (IVDD), which imposes a significant socioeconomic burden on society. There is an urgent clinical demand for more effective treatments for IVDD because conventional treatments can only alleviate the symptoms rather than preventing the progression of IVDD. Hydrogels, a class of elastic biomaterials with good biocompatibility, are promising candidates for intervertebral disc repair and regeneration. In recent years, various hydrogels have been investigated in vitro and in vivo for the repair of intervertebral discs, some of which are ready for clinical testing. This review summarizes the latest findings and developments in using bioactive factors-released bioactive injectable hydrogels for the repair and regeneration of intervertebral discs. It focuses on the analysis and summary of the use of multifunctional injectable hydrogels to delivery bioactive factors (cells, exosomes, growth factors, genes, drugs) for disc regeneration, providing guidance for future study. Finally, we discussed and analyzed the optimal timing for the application of controlled-release hydrogels in the treatment of IVDD to meet the high standards required for intervertebral disc regeneration and precision medicine.
Collapse
Affiliation(s)
- Hao Han
- Department of Orthopaedics of the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaoming Zhao
- Department of Orthopaedics of the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hongyun Ma
- Department of Orthopaedics of the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yingang Zhang
- Department of Orthopaedics of the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Bo Lei
- Department of Orthopaedics of the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710000, China
- Fronter Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| |
Collapse
|
12
|
Ying Y, Cai K, Cai X, Zhang K, Qiu R, Jiang G, Luo K. Recent advances in the repair of degenerative intervertebral disc for preclinical applications. Front Bioeng Biotechnol 2023; 11:1259731. [PMID: 37811372 PMCID: PMC10557490 DOI: 10.3389/fbioe.2023.1259731] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023] Open
Abstract
The intervertebral disc (IVD) is a load-bearing, avascular tissue that cushions pressure and increases flexibility in the spine. Under the influence of obesity, injury, and reduced nutrient supply, it develops pathological changes such as fibular annulus (AF) injury, disc herniation, and inflammation, eventually leading to intervertebral disc degeneration (IDD). Lower back pain (LBP) caused by IDD is a severe chronic disorder that severely affects patients' quality of life and has a substantial socioeconomic impact. Patients may consider surgical treatment after conservative treatment has failed. However, the broken AF cannot be repaired after surgery, and the incidence of re-protrusion and reoccurring pain is high, possibly leading to a degeneration of the adjacent vertebrae. Therefore, effective treatment strategies must be explored to repair and prevent IDD. This paper systematically reviews recent advances in repairing IVD, describes its advantages and shortcomings, and explores the future direction of repair technology.
Collapse
Affiliation(s)
- Yijian Ying
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Kaiwen Cai
- Department of Orthopaedics, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xiongxiong Cai
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Kai Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Rongzhang Qiu
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Guoqiang Jiang
- Department of Orthopaedics, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Kefeng Luo
- Department of Orthopaedics, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
13
|
Ohnishi T, Homan K, Fukushima A, Ukeba D, Iwasaki N, Sudo H. A Review: Methodologies to Promote the Differentiation of Mesenchymal Stem Cells for the Regeneration of Intervertebral Disc Cells Following Intervertebral Disc Degeneration. Cells 2023; 12:2161. [PMID: 37681893 PMCID: PMC10486900 DOI: 10.3390/cells12172161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023] Open
Abstract
Intervertebral disc (IVD) degeneration (IDD), a highly prevalent pathological condition worldwide, is widely associated with back pain. Treatments available compensate for the impaired function of the degenerated IVD but typically have incomplete resolutions because of their adverse complications. Therefore, fundamental regenerative treatments need exploration. Mesenchymal stem cell (MSC) therapy has been recognized as a mainstream research objective by the World Health Organization and was consequently studied by various research groups. Implanted MSCs exert anti-inflammatory, anti-apoptotic, and anti-pyroptotic effects and promote extracellular component production, as well as differentiation into IVD cells themselves. Hence, the ultimate goal of MSC therapy is to recover IVD cells and consequently regenerate the extracellular matrix of degenerated IVDs. Notably, in addition to MSC implantation, healthy nucleus pulposus (NP) cells (NPCs) have been implanted to regenerate NP, which is currently undergoing clinical trials. NPC-derived exosomes have been investigated for their ability to differentiate MSCs from NPC-like phenotypes. A stable and economical source of IVD cells may include allogeneic MSCs from the cell bank for differentiation into IVD cells. Therefore, multiple alternative therapeutic options should be considered if a refined protocol for the differentiation of MSCs into IVD cells is established. In this study, we comprehensively reviewed the molecules, scaffolds, and environmental factors that facilitate the differentiation of MSCs into IVD cells for regenerative therapies for IDD.
Collapse
Affiliation(s)
- Takashi Ohnishi
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (T.O.); (K.H.); (A.F.); (N.I.)
| | - Kentaro Homan
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (T.O.); (K.H.); (A.F.); (N.I.)
| | - Akira Fukushima
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (T.O.); (K.H.); (A.F.); (N.I.)
| | - Daisuke Ukeba
- Department of Orthopedic Surgery, Hokkaido University Hospital, Sapporo 060-8648, Japan;
| | - Norimasa Iwasaki
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (T.O.); (K.H.); (A.F.); (N.I.)
| | - Hideki Sudo
- Department of Advanced Medicine for Spine and Spinal Cord Disorders, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| |
Collapse
|
14
|
Wang L, Jin K, Li N, Xu P, Yuan H, Ramaraju H, Hollister SJ, Fan Y. Innovative design of minimal invasive biodegradable poly(glycerol-dodecanoate) nucleus pulposus scaffold with function regeneration. Nat Commun 2023; 14:3865. [PMID: 37391454 PMCID: PMC10313828 DOI: 10.1038/s41467-023-39604-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/21/2023] [Indexed: 07/02/2023] Open
Abstract
Minimally invasive biodegradable implants with regeneration have been a frontier trend in clinic. Degeneration of nucleus pulposus (NP) is irreversible in most of spine diseases, and traditional spinal fusion or discectomy usually injure adjacent segments. Here, an innovative minimally invasive biodegradable NP scaffold with function regeneration inspired by cucumber tendril is developed using shape memory polymer poly(glycerol-dodecanoate) (PGD), whose mechanical property is controlled to the similar with human NP by adjusting synthetic parameters. The chemokine stromal cell-derived factor-1α (SDF-1α) is immobilized to the scaffold recruiting autologous stem cells from peripheral tissue, which has better ability of maintaining disc height, recruiting autologous stem cells, and inducing regeneration of NP in vivo compared to PGD without chemokine group and hydrogel groups significantly. It provides an innovative way to design minimally invasive implants with biodegradation and functional recovery, especially for irreversible tissue injury, including NP, cartilage and so on.
Collapse
Affiliation(s)
- Lizhen Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Kaixiang Jin
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Nan Li
- Department of Spine Surgery, Beijing Jishuitan Hospital, The Fourth Clinical Medical College of Peking University, Beijing, 100035, China
| | - Peng Xu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Hao Yuan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Harsha Ramaraju
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA
| | - Scott J Hollister
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083, China.
| |
Collapse
|
15
|
Lazaro-Pacheco D, Mohseni M, Rudd S, Cooper-White J, Holsgrove TP. The role of biomechanical factors in models of intervertebral disc degeneration across multiple length scales. APL Bioeng 2023; 7:021501. [PMID: 37180733 PMCID: PMC10168717 DOI: 10.1063/5.0137698] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/24/2023] [Indexed: 05/16/2023] Open
Abstract
Low back pain is the leading cause of disability, producing a substantial socio-economic burden on healthcare systems worldwide. Intervertebral disc (IVD) degeneration is a primary cause of lower back pain, and while regenerative therapies aimed at full functional recovery of the disc have been developed in recent years, no commercially available, approved devices or therapies for the regeneration of the IVD currently exist. In the development of these new approaches, numerous models for mechanical stimulation and preclinical assessment, including in vitro cell studies using microfluidics, ex vivo organ studies coupled with bioreactors and mechanical testing rigs, and in vivo testing in a variety of large and small animals, have emerged. These approaches have provided different capabilities, certainly improving the preclinical evaluation of these regenerative therapies, but challenges within the research environment, and compromises relating to non-representative mechanical stimulation and unrealistic test conditions, remain to be resolved. In this review, insights into the ideal characteristics of a disc model for the testing of IVD regenerative approaches are first assessed. Key learnings from in vivo, ex vivo, and in vitro IVD models under mechanical loading stimulation to date are presented alongside the merits and limitations of each model based on the physiological resemblance to the human IVD environment (biological and mechanical) as well as the possible feedback and output measurements for each approach. When moving from simplified in vitro models to ex vivo and in vivo approaches, the complexity increases resulting in less controllable models but providing a better representation of the physiological environment. Although cost, time, and ethical constraints are dependent on each approach, they escalate with the model complexity. These constraints are discussed and weighted as part of the characteristics of each model.
Collapse
Affiliation(s)
- Daniela Lazaro-Pacheco
- Department of Engineering, University of Exeter, Harrison Building, Streatham Campus, North Park Road, Exeter EX4 4QF, United Kingdom
| | - Mina Mohseni
- School of Chemical Engineering, The University of Queensland, St. Lucia QLD 4072, Australia
| | - Samuel Rudd
- School of Chemical Engineering, The University of Queensland, St. Lucia QLD 4072, Australia
| | | | - Timothy Patrick Holsgrove
- Department of Engineering, University of Exeter, Harrison Building, Streatham Campus, North Park Road, Exeter EX4 4QF, United Kingdom
| |
Collapse
|
16
|
Jarrah RM, Potes MDA, Vitija X, Durrani S, Ghaith AK, Mualem W, Zamanian C, Bhandarkar AR, Bydon M. Alginate hydrogels: A potential tissue engineering intervention for intervertebral disc degeneration. J Clin Neurosci 2023; 113:32-37. [PMID: 37159956 DOI: 10.1016/j.jocn.2023.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/20/2023] [Accepted: 05/01/2023] [Indexed: 05/11/2023]
Abstract
Intervertebral disc (IVD) degeneration is a major cause of low back pain and disability, affecting millions of people worldwide. Current treatments for IVD degeneration are limited to invasive surgery or pain management. Recently, there has been increasing interest in the use of biomaterials, such as alginate hydrogels, for the treatment of IVD degeneration. Alginate hydrogels are an example of such a biomaterial that is biocompatible and can be tailored to mimic the native extracellular matrix of the IVD. Derived from alginate, a naturally derived polysaccharide from brown seaweed that can be transformed into a gelatinous solution, alginate hydrogels are emerging in the field of tissue engineering. They can be used to deliver therapeutic agents, such as growth factors or cells, to the site of injury, providing a localized and sustained release that may enhance treatment outcomes. This paper provides an overview on the use of alginate hydrogels for the treatment of IVD degeneration. We discuss the properties of alginate hydrogels and their potential applications for IVD regeneration, including the mechanism against IVD degeneration. We also highlight the research outcomes to date along with the challenges and limitations of using alginate hydrogels for IVD regeneration, including their mechanical properties, biocompatibility, and surgical compatibility. Overall, this review paper aims to provide a comprehensive overview of the current research on alginate hydrogels for IVD degeneration and to identify future directions for research in this area.
Collapse
Affiliation(s)
- Ryan M Jarrah
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA; Neuro-Informatics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Maria D Astudillo Potes
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA; Neuro-Informatics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Xheneta Vitija
- Neuro-Informatics Laboratory, Mayo Clinic, Rochester, MN, USA; College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Sulaman Durrani
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA; Neuro-Informatics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Abdul Karim Ghaith
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA; Neuro-Informatics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - William Mualem
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA; Neuro-Informatics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Cameron Zamanian
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA; Neuro-Informatics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Archis R Bhandarkar
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA; Neuro-Informatics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Mohamad Bydon
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA; Neuro-Informatics Laboratory, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
17
|
She Y, Tang S, Zhu Z, Sun Y, Deng W, Wang S, Jiang N. Comparison of temporomandibular joint disc, meniscus, and intervertebral disc in fundamental characteristics and tissue engineering. J Biomed Mater Res B Appl Biomater 2023; 111:717-729. [PMID: 36221912 DOI: 10.1002/jbm.b.35178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 01/21/2023]
Abstract
The temporomandibular joint (TMJ) disc, meniscus and intervertebral disc (IVD) are three fibrocartilage discs, which play critical roles in our daily life. Their degeneration contributes to diseases such as TMJ disorders, osteoarthritis and degenerative disc disease, affecting patients' quality of life and causing substantial morbidity and mortality. Interestingly, similar in some aspects of fundamental characteristics, they exhibit differences in other aspects such as biomechanical properties. Highlighting these similarities and differences can not only benefit a comprehensive understanding of them and their pathology but also assist in future research of tissue engineering. Likewise, comparing their tissue engineering in cell sources, scaffold and stimuli can guide imitation and improvement of their engineered discs. However, the anatomical structure, function, and biomechanical characteristics of the IVD, TMJ, and Meniscus have not been compared in any meaningful depth needed to advance current tissue engineering research on these joints, resulting in incomplete understanding of them and their pathology and ultimately limiting future research of tissue engineering. This review, for the first time, comprehensively compares three fibrocartilage discs in those aspects to cast light on their similarities and differences.
Collapse
Affiliation(s)
- Yilin She
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Disease and West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shiyi Tang
- West China Medical School, Sichuan University, Chengdu, China
| | - Zilin Zhu
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Yixin Sun
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Disease and West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wanyu Deng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Disease and West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sicheng Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Disease and West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Nan Jiang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Disease and West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Suzuki H, Ura K, Ukeba D, Suyama T, Iwasaki N, Watanabe M, Matsuzaki Y, Yamada K, Sudo H. Injection of Ultra-Purified Stem Cells with Sodium Alginate Reduces Discogenic Pain in a Rat Model. Cells 2023; 12:cells12030505. [PMID: 36766847 PMCID: PMC9914726 DOI: 10.3390/cells12030505] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/21/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Intervertebral disc (IVD) degeneration is a major cause of low back pain. However, treatments directly approaching the etiology of IVD degeneration and discogenic pain are not yet established. We previously demonstrated that intradiscal implantation of cell-free bioresorbable ultra-purified alginate (UPAL) gel promotes tissue repair and reduces discogenic pain, and a combination of ultra-purified, Good Manufacturing Practice (GMP)-compliant, human bone marrow mesenchymal stem cells (rapidly expanding clones; RECs), and the UPAL gel increasingly enhanced IVD regeneration in animal models. This study investigated the therapeutic efficacy of injecting a mixture of REC and UPAL non-gelling solution for discogenic pain and IVD regeneration in a rat caudal nucleus pulposus punch model. REC and UPAL mixture and UPAL alone suppressed not only the expression of TNF-α, IL-6, and TrkA (p < 0.01, respectively), but also IVD degeneration and nociceptive behavior compared to punching alone (p < 0.01, respectively). Furthermore, REC and UPAL mixture suppressed these expression levels and nociceptive behavior compared to UPAL alone (p < 0.01, respectively). These results suggest that this minimally invasive treatment strategy with a single injection may be applied to treat discogenic pain and as a regenerative therapy.
Collapse
Affiliation(s)
- Hisataka Suzuki
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7, Sapporo 060-8638, Japan
| | - Katsuro Ura
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7, Sapporo 060-8638, Japan
| | - Daisuke Ukeba
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7, Sapporo 060-8638, Japan
| | - Takashi Suyama
- PuREC/Bio-Venture, Shimane University, Izumo 693-8501, Japan
| | - Norimasa Iwasaki
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7, Sapporo 060-8638, Japan
| | - Masatoki Watanabe
- Japan Tissue Engineering Co., Ltd. (J-TEC), Gamagori 443-0022, Japan
| | - Yumi Matsuzaki
- PuREC/Bio-Venture, Shimane University, Izumo 693-8501, Japan
| | - Katsuhisa Yamada
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7, Sapporo 060-8638, Japan
- Correspondence: (K.Y.); (H.S.)
| | - Hideki Sudo
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7, Sapporo 060-8638, Japan
- Department of Advanced Medicine for Spine and Spinal Cord Disorders, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7, Sapporo 060-8638, Japan
- Correspondence: (K.Y.); (H.S.)
| |
Collapse
|
19
|
Sudo H, Miyakoshi T, Watanabe Y, Ito YM, Kahata K, Tha KK, Yokota N, Kato H, Terada T, Iwasaki N, Arato T, Sato N, Isoe T. Protocol for treating lumbar spinal canal stenosis with a combination of ultrapurified, allogenic bone marrow-derived mesenchymal stem cells and in situ-forming gel: a multicentre, prospective, double-blind randomised controlled trial. BMJ Open 2023; 13:e065476. [PMID: 36731929 PMCID: PMC9896178 DOI: 10.1136/bmjopen-2022-065476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION In patients with combined lumbar spinal canal stenosis (LSCS), a herniated intervertebral disc (IVD) that compresses the dura mater and nerve roots is surgically treated with discectomy after laminoplasty. However, defects in the IVD after discectomy may lead to inadequate tissue healing and predispose patients to the development of IVD degeneration. Ultrapurified stem cells (rapidly expanding clones (RECs)), combined with an in situ-forming bioresorbable gel (dMD-001), have been developed to fill IVD defects and prevent IVD degeneration after discectomy. We aim to investigate the safety and efficacy of a new treatment method in which a combination of REC and dMD-001 is implanted into the IVD of patients with combined LSCS. METHODS AND ANALYSIS This is a multicentre, prospective, double-blind randomised controlled trial. Forty-five participants aged 20-75 years diagnosed with combined LSCS will be assessed for eligibility. After performing laminoplasty and discectomy, participants will be randomised 1:1:1 into the combination of REC and dMD-001 (REC-dMD-001) group, the dMD-001 group or the laminoplasty and discectomy alone (control) group. The primary outcomes of the trial will be the safety and effectiveness of the procedure. The effectiveness will be assessed using visual analogue scale scores of back pain and leg pain as well as MRI-based estimations of morphological and compositional quality of the IVD tissue. Secondary outcomes will include self-assessed clinical scores and other MRI-based estimations of compositional quality of the IVD tissue. All evaluations will be performed at baseline and at 1, 4, 12, 24 and 48 weeks after surgery. ETHICS AND DISSEMINATION This study was approved by the ethics committees of the institutions involved. We plan to conduct dissemination of the outcome data by presenting our data at national and international conferences, as well as through formal publication in a peer-reviewed journal. TRIAL REGISTRATION NUMBER jRCT2013210076.
Collapse
Affiliation(s)
- Hideki Sudo
- Department of Orthopaedic Surgery, Hokkaido University Hospital, Sapporo, Japan
| | - Takashi Miyakoshi
- Clinical Research and Medical Innovation Center, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, Japan
| | - Yudai Watanabe
- Clinical Research and Medical Innovation Center, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, Japan
| | - Yoichi M Ito
- Data Science Center, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, Japan
| | - Kaoru Kahata
- Clinical Research and Medical Innovation Center, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, Japan
| | - Khin Khin Tha
- Global Center for Biomedical Science and Engineering, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Nozomi Yokota
- Clinical Research and Medical Innovation Center, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, Japan
| | - Hiroe Kato
- Clinical Research and Medical Innovation Center, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, Japan
| | - Tomoko Terada
- Clinical Research and Medical Innovation Center, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Hokkaido University Hospital, Sapporo, Japan
| | - Teruyo Arato
- Clinical Research and Medical Innovation Center, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, Japan
| | - Norihiro Sato
- Clinical Research and Medical Innovation Center, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, Japan
| | - Toshiyuki Isoe
- Clinical Research and Medical Innovation Center, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, Japan
| |
Collapse
|
20
|
Wei Q, Liu D, Chu G, Yu Q, Liu Z, Li J, Meng Q, Wang W, Han F, Li B. TGF-β1-supplemented decellularized annulus fibrosus matrix hydrogels promote annulus fibrosus repair. Bioact Mater 2023; 19:581-593. [PMID: 35600980 PMCID: PMC9108517 DOI: 10.1016/j.bioactmat.2022.04.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/06/2022] [Accepted: 04/23/2022] [Indexed: 12/19/2022] Open
Abstract
Annulus fibrosus (AF) repair remains a challenge because of its limited self-healing ability. Endogenous repair strategies combining scaffolds and growth factors show great promise in AF repair. Although the unique and beneficial characteristics of decellularized extracellular matrix (ECM) in tissue repair have been demonstrated, the poor mechanical property of ECM hydrogels largely hinders their applications in tissue regeneration. In the present study, we combined polyethylene glycol diacrylate (PEGDA) and decellularized annulus fibrosus matrix (DAFM) to develop an injectable, photocurable hydrogel for AF repair. We found that the addition of PEGDA markedly improved the mechanical strength of DAFM hydrogels while maintaining their porous structure. Transforming growth factor-β1 (TGF-β1) was further incorporated into PEGDA/DAFM hydrogels, and it could be continuously released from the hydrogel. The in vitro experiments showed that TGF-β1 facilitated the migration of AF cells. Furthermore, PEGDA/DAFM/TGF-β1 hydrogels supported the adhesion, proliferation, and increased ECM production of AF cells. In vivo repair performance of the hydrogels was assessed using a rat AF defect model. The results showed that the implantation of PEGDA/DAFM/TGF-β1 hydrogels effectively sealed the AF defect, prevented nucleus pulposus atrophy, retained disc height, and partially restored the biomechanical properties of disc. In addition, the implanted hydrogel was infiltrated by cells resembling AF cells and well integrated with adjacent AF tissue. In summary, findings from this study indicate that TGF-β1-supplemented DAFM hydrogels hold promise for AF repair.
Collapse
Affiliation(s)
- Qiang Wei
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Dachuan Liu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Genglei Chu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Qifan Yu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Zhao Liu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Jiaying Li
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Qingchen Meng
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Weishan Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Fengxuan Han
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Bin Li
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
21
|
Lertwimol T, Sonthithai P, Hankamolsiri W, Kaewkong P, Uppanan P. Development of chondrocyte-laden alginate hydrogels with modulated microstructure and properties for cartilage regeneration. Biotechnol Prog 2022; 39:e3322. [PMID: 36564904 DOI: 10.1002/btpr.3322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/06/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
Alginate hydrogel is an attractive biomaterial for cell microencapsulation. The microarchitecture of hydrogels can regulate cellular functions. This study aims to investigate the applicability of sodium citrate buffer (SCB) as a culture medium supplement for modulating the microstructure of alginate microbeads to provide a favorable microenvironment for chondrogenic induction. The chondrocyte-laden microbeads, with and without TGF-β3 incorporation, were produced through an encapsulator. The obtained small-sized microbeads (~300 μm) were exposed to a treatment medium containing SCB, composed of varied concentrations of sodium citrate (1.10-1.57 mM), sodium chloride (3.00-4.29 mM), and ethylenediaminetetraacetic acid (0.60-0.86 mM) to partially degrade their crosslinked structure for 3 days, followed by culture in a normal medium until day 21. Scanning electron microscope micrographs demonstrated a loose hydrogel network with an enhanced pore size in the SCB-treated microbeads. Increasing the concentration of SCB in the treatment medium reduced the calcium content of the microbeads via a Na+ /Ca2+ exchange process and improved the water absorption of the microbeads, resulting in a higher swelling ratio. All the tested SCB concentrations were non-cytotoxic. Increases in aggrecan and type II collagen gene expression and their corresponding extracellular matrix accumulation, glycosaminoglycans, and type II collagen were vividly detected in the TGF-β3-containing microbeads with increasing SCB concentrations in the treatment medium. Our findings highlighted that the combination of SCB treatment and TGF-β3 incorporation in the chondrocyte-laden microbeads is a promising strategy for enhancing cartilage regeneration, which may contribute to a versatile application in cell delivery and tissue engineering.
Collapse
Affiliation(s)
- Tareerat Lertwimol
- Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center, Pathum Thani, Thailand
| | - Pacharapan Sonthithai
- Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center, Pathum Thani, Thailand
| | - Weerawan Hankamolsiri
- Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center, Pathum Thani, Thailand
| | - Pakkanun Kaewkong
- Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center, Pathum Thani, Thailand
| | - Paweena Uppanan
- Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center, Pathum Thani, Thailand
| |
Collapse
|
22
|
Bahar ME, Hwang JS, Ahmed M, Lai TH, Pham TM, Elashkar O, Akter KM, Kim DH, Yang J, Kim DR. Targeting Autophagy for Developing New Therapeutic Strategy in Intervertebral Disc Degeneration. Antioxidants (Basel) 2022; 11:antiox11081571. [PMID: 36009290 PMCID: PMC9405341 DOI: 10.3390/antiox11081571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 12/25/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is a prevalent cause of low back pain. IVDD is characterized by abnormal expression of extracellular matrix components such as collagen and aggrecan. In addition, it results in dysfunctional growth, senescence, and death of intervertebral cells. The biological pathways involved in the development and progression of IVDD are not fully understood. Therefore, a better understanding of the molecular mechanisms underlying IVDD could aid in the development of strategies for prevention and treatment. Autophagy is a cellular process that removes damaged proteins and dysfunctional organelles, and its dysfunction is linked to a variety of diseases, including IVDD and osteoarthritis. In this review, we describe recent research findings on the role of autophagy in IVDD pathogenesis and highlight autophagy-targeting molecules which can be exploited to treat IVDD. Many studies exhibit that autophagy protects against and postpones disc degeneration. Further research is needed to determine whether autophagy is required for cell integrity in intervertebral discs and to establish autophagy as a viable therapeutic target for IVDD.
Collapse
Affiliation(s)
- Md Entaz Bahar
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Jin Seok Hwang
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Mahmoud Ahmed
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Trang Huyen Lai
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Trang Minh Pham
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Omar Elashkar
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Kazi-Marjahan Akter
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, GyeongNam, Korea
| | - Dong-Hee Kim
- Department of Orthopaedic Surgery, Institute of Health Sciences, Gyeongsang National University Hospital and Gyeongsang National University College of Medicine, Jinju 52727, GyeongNam, Korea
| | - Jinsung Yang
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
- Correspondence: ; Tel.: +82-55-772-8054
| |
Collapse
|
23
|
Alginate based hydrogel inks for 3D bioprinting of engineered orthopedic tissues. Carbohydr Polym 2022; 296:119964. [DOI: 10.1016/j.carbpol.2022.119964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/17/2022] [Accepted: 08/04/2022] [Indexed: 12/27/2022]
|
24
|
Tang L, Xu C, Xuan A, Zhu Z, Ruan D. Functionalized self-assembling peptide RADKPS hydrogels promote regenerative repair of degenerated intervertebral discs. Biomater Sci 2022; 10:5134-5145. [PMID: 35820128 DOI: 10.1039/d2bm00634k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Objective: the aim of this study was to investigate whether the functionalized self-assembling peptide hydrogel RADKPS is safe and effective for regenerative repair of degenerative intervertebral discs. Methods: an in vitro degenerative model of human nucleus pulposus cells was constructed by serum starvation culture, and their proliferation, apoptosis and viability were examined after three-dimensional culture with the RADKPS hydrogel. An in vivo degenerative model of the rabbit intervertebral disc was constructed by annulus fibrosus puncture, and the degeneration of the intervertebral disc was evaluated by imaging, histology, immunohistochemistry, and biomechanics after RADKPS hydrogel intervention. Results: through in vitro cell experiments it is shown that human degenerated nucleus pulposus cells after three-dimensional culture with the RADKPS hydrogel still exhibited better proliferation, viability, and low apoptosis rate. Through in vivo animal experiments we found that rabbit degenerated intervertebral discs intervened with the RADKPS hydrogel had higher water content, better histological morphology, more extracellular matrix synthesis, and better biomechanical properties. It is demonstrated that the RADKPS hydrogel may initiate the endogenous repair process through the sustained recruitment and enrichment of nucleus pulposus progenitor cells. Conclusion: it is verified from both in vitro cellular experiments and in vivo animal experiments that the regenerative repair effect of RADKPS, a functionalized self-assembling peptide hydrogel, on degenerated intervertebral discs is safe and effective. It is shown that it would be a new therapeutic approach for the regenerative repair action of intervertebral discs.
Collapse
Affiliation(s)
- Liang Tang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.,Department of Orthopedic Surgery, the Sixth Medical Center of PLA General Hospital, Beijing 100048, China. .,Department of Orthopedic Surgery, Hengyang Central Hospital, Hunan, 421001, China
| | - Cheng Xu
- Department of Orthopedic Surgery, the Sixth Medical Center of PLA General Hospital, Beijing 100048, China.
| | - Anwu Xuan
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zhenbiao Zhu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Dike Ruan
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.,Department of Orthopedic Surgery, the Sixth Medical Center of PLA General Hospital, Beijing 100048, China.
| |
Collapse
|
25
|
Constant C, Hom WW, Nehrbass D, Carmel E, Albers CE, Deml MC, Gehweiler D, Lee Y, Hecht A, Grad S, Iatridis JC, Zeiter S. Comparison and optimization of sheep in vivo intervertebral disc injury model. JOR Spine 2022; 5:e1198. [PMID: 35783908 PMCID: PMC9238284 DOI: 10.1002/jsp2.1198] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 11/09/2022] Open
Abstract
Background The current standard of care for intervertebral disc (IVD) herniation, surgical discectomy, does not repair annulus fibrosus (AF) defects, which is partly due to the lack of effective methods to do so and is why new repair strategies are widely investigated and tested preclinically. There is a need to develop a standardized IVD injury model in large animals to enable comparison and interpretation across preclinical study results. The purpose of this study was to compare in vivo IVD injury models in sheep to determine which annulus fibrosus (AF) defect type combined with partial nucleus pulposus (NP) removal would better mimic degenerative human spinal pathologies. Methods Six skeletally mature sheep were randomly assigned to one of the two observation periods (1 and 3 months) and underwent creation of 3 different AF defect types (slit, cruciate, and box-cut AF defects) in conjunction with 0.1 g NP removal in three lumbar levels using a lateral retroperitoneal surgical approach. The spine was monitored by clinical CT scans pre- and postoperatively, at 2 weeks and euthanasia, and by magnetic resonance imaging (MRI) and histology after euthanasia to determine the severity of degeneration (disc height loss, Pfirrmann grading, semiquantitative histopathology grading). Results All AF defects led to significant degenerative changes detectable on CT and MR images, produced bulging of disc tissue without disc herniation and led to degenerative and inflammatory histopathological changes. However, AF defects were not equal in terms of disc height loss at 3 months postoperatively; the cruciate and box-cut AF defects showed significantly decreased disc height compared to their preoperative height, with the box-cut defect creating the greatest disc height loss, while the slit AF defect showed restoration of normal preoperative disc height. Conclusions The tested IVD injury models do not all generate comparable disc degeneration but can be considered suitable IVD injury models to investigate new treatments. Results of the current study clearly indicate that slit AF defect should be avoided if disc height is used as one of the main outcomes; additional confirmatory studies may be warranted to generalize this finding.
Collapse
Affiliation(s)
| | - Warren W. Hom
- Department of OrthopaedicsIcahn School of Medicine, Mount Sinai Health SystemNew YorkNew YorkUSA
| | | | - Eric‐Norman Carmel
- Département de sciences cliniques, Faculté de médecine vétérinaireUniversité de MontréalSaint‐HyacintheCanada
| | - Christoph E. Albers
- Department of Orthopaedic Surgery & TraumatologyInselspital, University Hospital BernBernSwitzerland
| | - Moritz C. Deml
- Department of Orthopaedic Surgery & TraumatologyInselspital, University Hospital BernBernSwitzerland
| | | | - Yunsoo Lee
- Department of OrthopaedicsIcahn School of Medicine, Mount Sinai Health SystemNew YorkNew YorkUSA
| | - Andrew Hecht
- Department of OrthopaedicsIcahn School of Medicine, Mount Sinai Health SystemNew YorkNew YorkUSA
| | | | - James C. Iatridis
- Department of OrthopaedicsIcahn School of Medicine, Mount Sinai Health SystemNew YorkNew YorkUSA
| | | |
Collapse
|
26
|
Zoetebier B, Schmitz T, Ito K, Karperien M, Tryfonidou MA, Paez J. Injectable hydrogels for articular cartilage and nucleus pulposus repair: Status quo and prospects. Tissue Eng Part A 2022; 28:478-499. [PMID: 35232245 DOI: 10.1089/ten.tea.2021.0226] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA) and chronic low back pain due to degenerative (intervertebral) disc disease (DDD) are two of the major causes of disabilities worldwide, affecting hundreds of millions of people and leading to a high socioeconomic burden. Although OA occurs in synovial joints and DDD occurs in cartilaginous joints, the similarities are striking, with both joints showing commonalities in the nature of the tissues and in the degenerative processes during disease. Consequently, repair strategies for articular cartilage (AC) and nucleus pulposus (NP), the core of the intervertebral disc, in the context of OA and DDD share common aspects. One of such tissue engineering approaches is the use of injectable hydrogels for AC and NP repair. In this review, the state-of-the-art and recent developments in injectable hydrogels for repairing, restoring, and regenerating AC tissue suffering from OA and NP tissue in DDD are summarized focusing on cell-free approaches. The various biomaterial strategies exploited for repair of both tissues are compared, and the synergies that could be gained by translating experiences from one tissue to the other are identified.
Collapse
Affiliation(s)
- Bram Zoetebier
- University of Twente Faculty of Science and Technology, 207105, Developmental BioEngineering , Drienerlolaan 5, Enschede, Netherlands, 7500 AE;
| | - Tara Schmitz
- Eindhoven University of Technology, 3169, Department of Biomedical Engineering, Eindhoven, Noord-Brabant, Netherlands;
| | - Keita Ito
- Eindhoven University of Technology, Department of Biomedical Engineering, P.O. Box 513, GEMZ 4.115, Eindhoven, Netherlands, 5600 MB;
| | | | - Marianna A Tryfonidou
- Utrecht University, Faculty of Veterinary Medicine, Clinical Sciences of Companion Animals, Yalelaan 108, Utrecht, Netherlands, 3584 CM;
| | - Julieta Paez
- University of Twente Faculty of Science and Technology, 207105, Developmental Bioengineering, University of Twente P.O. Box 217, Enschede The Netherlands, Enschede, Netherlands, 7500 AE;
| |
Collapse
|
27
|
Yamada K, Iwasaki N, Sudo H. Biomaterials and Cell-Based Regenerative Therapies for Intervertebral Disc Degeneration with a Focus on Biological and Biomechanical Functional Repair: Targeting Treatments for Disc Herniation. Cells 2022; 11:602. [PMID: 35203253 PMCID: PMC8870062 DOI: 10.3390/cells11040602] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/22/2022] [Accepted: 02/07/2022] [Indexed: 12/11/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is a common cause of low back pain and most spinal disorders. As IVD degeneration is a major obstacle to the healthy life of so many individuals, it is a major issue that needs to be overcome. Currently, there is no clinical treatment for the regeneration of degenerated IVDs. However, recent advances in regenerative medicine and tissue engineering suggest the potential of cell-based and/or biomaterial-based IVD regeneration therapies. These treatments may be indicated for patients with IVDs in the intermediate degenerative stage, a point where the number of viable cells decreases, and the structural integrity of the disc begins to collapse. However, there are many biological, biomechanical, and clinical challenges that must be overcome before the clinical application of these IVD regeneration therapies can be realized. This review summarizes the basic research and clinical trials literature on cell-based and biomaterial-based IVD regenerative therapies and outlines the important role of these strategies in regenerative treatment for IVD degenerative diseases, especially disc herniation.
Collapse
Affiliation(s)
- Katsuhisa Yamada
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (K.Y.); (N.I.)
- Department of Advanced Medicine for Spine and Spinal Cord Disorders, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (K.Y.); (N.I.)
| | - Hideki Sudo
- Department of Advanced Medicine for Spine and Spinal Cord Disorders, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| |
Collapse
|
28
|
Combination of ultra-purified stem cells with an in situ-forming bioresorbable gel enhances intervertebral disc regeneration. EBioMedicine 2022; 76:103845. [PMID: 35085848 PMCID: PMC8801983 DOI: 10.1016/j.ebiom.2022.103845] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/18/2021] [Accepted: 01/13/2022] [Indexed: 12/14/2022] Open
Abstract
Background Lumbar intervertebral disc (IVD) herniations are associated with significant disability. Discectomy is the conventional treatment option for IVD herniations but causes a defect in the IVD, which has low self-repair ability, thereby representing a risk of further IVD degeneration. An acellular, bioresorbable, and good manufacturing practice (GMP)-compliant in situ-forming gel, which corrects discectomy-associated IVD defects and prevents further IVD degeneration had been developed. However, this acellular matrix-based strategy has certain limitations, particularly in elderly patients, whose tissues have low self-repair ability. The aim of this study was to investigate the therapeutic efficacy of using a combination of newly-developed, ultra-purified, GMP-compliant, human bone marrow mesenchymal stem cells (rapidly expanding clones; RECs) and the gel for IVD regeneration after discectomy in a sheep model of severe IVD degeneration. Methods RECs and nucleus pulposus cells (NPCs) were co-cultured in the gel. In addition, RECs combined with the gel were implanted into IVDs following discectomy in sheep with degenerated IVDs. Findings Gene expression of NPC markers, growth factors, and extracellular matrix increased significantly in the co-culture compared to that in each mono-culture. The REC and gel combination enhanced IVD regeneration after discectomy (up to 24 weeks) in the severe IVD degeneration sheep model. Interpretation These findings demonstrate the translational potential of the combination of RECs with an in situ-forming gel for the treatment of herniations in degenerative human IVDs. Funding Ministry of Education, Culture, Sports, Science, and Technology of Japan, Japan Agency for Medical Research and Development, and the Mochida Pharmaceutical Co., Ltd.
Collapse
|
29
|
Ohnishi T, Iwasaki N, Sudo H. Causes of and Molecular Targets for the Treatment of Intervertebral Disc Degeneration: A Review. Cells 2022; 11:cells11030394. [PMID: 35159202 PMCID: PMC8834258 DOI: 10.3390/cells11030394] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/12/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Intervertebral disc degeneration (IVDD) is a pathological condition that can lead to intractable back pain or secondary neurological deficits. There is no fundamental cure for this condition, and current treatments focus on alleviating symptoms indirectly. Numerous studies have been performed to date, and the major strategy for all treatments of IVDD is to prevent cell loss due to programmed or regulated cell death. Accumulating evidence suggests that several types of cell death other than apoptosis, including necroptosis, pyroptosis, and ferroptosis, are also involved in IVDD. In this study, we discuss the molecular pathway of each type of cell death and review the literature that has identified their role in IVDD. We also summarize the recent advances in targeted therapy at the RNA level, including RNA modulations through RNA interference and regulation of non-coding RNAs, for preventing cell death and subsequent IVDD. Therefore, we review the causes and possible therapeutic targets for RNA intervention and discuss the future direction of this research field.
Collapse
Affiliation(s)
- Takashi Ohnishi
- Department of Orthopedic Surgery, Hokkaido University Hospital, Sapporo 060-8648, Japan;
| | - Norimasa Iwasaki
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan;
| | - Hideki Sudo
- Department of Advanced Medicine for Spine and Spinal Cord Disorders, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
- Correspondence:
| |
Collapse
|
30
|
Malli SE, Kumbhkarn P, Dewle A, Srivastava A. Evaluation of Tissue Engineering Approaches for Intervertebral Disc Regeneration in Relevant Animal Models. ACS APPLIED BIO MATERIALS 2021; 4:7721-7737. [PMID: 35006757 DOI: 10.1021/acsabm.1c00500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Translation of tissue engineering strategies for the regeneration of intervertebral disc (IVD) requires a strong understanding of pathophysiology through the relevant animal model. There is no relevant animal model due to differences in disc anatomy, cellular composition, extracellular matrix components, disc physiology, and mechanical strength from humans. However, available animal models if used correctly could provide clinically relevant information for the translation into humans. In this review, we have investigated different types of strategies for the development of clinically relevant animal models to study biomaterials, cells, biomolecular or their combination in developing tissue engineering-based treatment strategies. Tissue engineering strategies that utilize various animal models for IVD regeneration are summarized and outcomes have been discussed. The understanding of animal models for the validation of regenerative approaches is employed to understand and treat the pathophysiology of degenerative disc disease (DDD) before proceeding for human trials. These animal models play an important role in building a therapeutic regime for IVD tissue regeneration, which can serve as a platform for clinical applications.
Collapse
Affiliation(s)
- Sweety Evangeli Malli
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-Ahmedabad), Gandhinagar, Gujarat 382355, India
| | - Pranav Kumbhkarn
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-Ahmedabad), Gandhinagar, Gujarat 382355, India
| | - Ankush Dewle
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-Ahmedabad), Gandhinagar, Gujarat 382355, India
| | - Akshay Srivastava
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-Ahmedabad), Gandhinagar, Gujarat 382355, India
| |
Collapse
|
31
|
Zhang XB, Chen XY, Qi J, Zhou HY, Zhao XB, Hu YC, Zhang RH, Yu DC, Gao XD, Wang KP, Ma L. New hope for intervertebral disc degeneration: bone marrow mesenchymal stem cells and exosomes derived from bone marrow mesenchymal stem cell transplantation. Curr Gene Ther 2021; 22:291-302. [PMID: 34636308 DOI: 10.2174/1566523221666211012092855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/30/2021] [Accepted: 09/08/2021] [Indexed: 11/22/2022]
Abstract
Bone marrow mesenchymal stem cells (BMSCs), multidirectional cells with self-renewal capacity, can differentiate into many cell types and play essential roles in tissue healing and regenerative medicine. Cell experiments and in vivo research in animal models have shown that BMSCs can repair degenerative discs by promoting cell proliferation and expressing extracellular matrix (ECM) components, such as type II collagen and protein-polysaccharides. Delaying or reversing the intervertebral disc (IVD) degeneration (IDD) process at an etiological level may be an effective strategy. However, despite increasingly in-depth research, some deficiencies in cell transplantation timing and strategy remain, preventing the clinical application of cell transplantation. Exosomes exhibit the characteristics of the mother cells from which they were secreted and can inhibit nucleus pulposus (NP) cell (NPC) apoptosis and delay IDD through intercellular communication. Furthermore, the use of exosomes effectively avoids problems associated with cell transplantation, such as immune rejection. This manuscript introduces almost all of the BMSCs and exosomes derived from BMSCs (BMSCs-Exos) described in the IDD literature. Many challenges regarding the use of cell transplantation and therapeutic exosome intervention for IDD remain to be overcome.
Collapse
Affiliation(s)
- Xiao-Bo Zhang
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Shanxi 710000. China
| | - Xiang-Yi Chen
- Department of Orthopedics, Lanzhou University Second Hospital, Gansu 730000. China
| | - Jin Qi
- Department of Orthopedics, Lanzhou University Second Hospital, Gansu 730000. China
| | - Hai-Yu Zhou
- Department of Orthopedics, Lanzhou University Second Hospital, Gansu 730000. China
| | - Xiao-Bing Zhao
- Department of Orthopedics, Lanzhou University Second Hospital, Gansu 730000. China
| | - Yi-Cun Hu
- Department of Orthopedics, Lanzhou University Second Hospital, Gansu 730000. China
| | - Rui-Hao Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Gansu 730000. China
| | - De-Chen Yu
- Department of Orthopedics, Lanzhou University Second Hospital, Gansu 730000. China
| | - Xi-Dan Gao
- Department of Orthopedics, Lanzhou University Second Hospital, Gansu 730000. China
| | - Ke-Ping Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Gansu 730000. China
| | - Lin Ma
- Department of Orthopedics, Lanzhou University Second Hospital, Gansu 730000. China
| |
Collapse
|
32
|
Barcellona MN, Speer JE, Jing L, Patil DS, Gupta MC, Buchowski JM, Setton LA. Bioactive in situ crosslinkable polymer-peptide hydrogel for cell delivery to the intervertebral disc in a rat model. Acta Biomater 2021; 131:117-127. [PMID: 34229105 PMCID: PMC9157564 DOI: 10.1016/j.actbio.2021.06.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022]
Abstract
Degeneration of the intervertebral disc (IVD) is associated with
significant biochemical and morphological changes that include a loss of disc
height, decreased water content and decreased cellularity. Cell delivery has
been widely explored as a strategy to supplement the nucleus pulposus (NP)
region of the degenerated IVD in both pre-clinical and clinical trials, using
progenitor or primary cell sources. We previously demonstrated an ability for a
polymer-peptide hydrogel, serving as a culture substrate, to promote adult NP
cells to undergo a shift from a degenerative fibroblast-like state to a
juvenile-like NP phenotype. In the current study, we evaluate the ability for
this peptide-functionalized hydrogel to serve as a bioactive system for cell
delivery, retention and preservation of a biosynthetic phenotype for primary IVD
cells delivered to the rat caudal disc in an anular puncture degeneration model.
Our data suggest that encapsulation of adult degenerative human NP cells in a
stiff formulation of the hydrogel functionalized with laminin-mimetic peptides
IKVAV and AG73 can promote cell viability and increased biosynthetic activity
for this population in 3D culture in vitro. Delivery of the
peptide-functionalized biomaterial with primary rat cells to the degenerated IVD
supported NP cell retention and NP-specific protein expression in
vivo, and promoted improved disc height index (DHI) values and
endplate organization compared to untreated degenerated controls. The results of
this study suggest the physical cues of this peptide-functionalized hydrogel can
serve as a supportive carrier for cell delivery to the IVD.
Collapse
Affiliation(s)
- Marcos N Barcellona
- Department of Biomedical Engineering, Washington University in St. Louis, United States
| | - Julie E Speer
- Department of Biomedical Engineering, Washington University in St. Louis, United States
| | - Liufang Jing
- Department of Biomedical Engineering, Washington University in St. Louis, United States
| | - Deepanjali S Patil
- Department of Biomedical Engineering, Washington University in St. Louis, United States
| | - Munish C Gupta
- Department of Orthopedic Surgery, Washington University School of Medicine, United States
| | - Jacob M Buchowski
- Department of Orthopedic Surgery, Washington University School of Medicine, United States
| | - Lori A Setton
- Department of Biomedical Engineering, Washington University in St. Louis, United States; Department of Orthopedic Surgery, Washington University School of Medicine, United States.
| |
Collapse
|
33
|
Applications of Functionalized Hydrogels in the Regeneration of the Intervertebral Disc. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2818624. [PMID: 34458364 PMCID: PMC8397561 DOI: 10.1155/2021/2818624] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/26/2021] [Indexed: 02/08/2023]
Abstract
Intervertebral disc degeneration (IDD) is caused by genetics, aging, and environmental factors and is one of the leading causes of low back pain. The treatment of IDD presents many challenges. Hydrogels are biomaterials that possess properties similar to those of the natural extracellular matrix and have significant potential in the field of regenerative medicine. Hydrogels with various functional qualities have recently been used to repair and regenerate diseased intervertebral discs. Here, we review the mechanisms of intervertebral disc homeostasis and degeneration and then discuss the applications of hydrogel-mediated repair and intervertebral disc regeneration. The classification of artificial hydrogels and natural hydrogels is then briefly introduced, followed by an update on the development of functional hydrogels, which include noncellular therapeutic hydrogels, cellular therapeutic hydrogel scaffolds, responsive hydrogels, and multifunctional hydrogels. The challenges faced and future developments of the hydrogels used in IDD are discussed as they further promote their clinical translation.
Collapse
|
34
|
Peredo AP, Gullbrand SE, Smith HE, Mauck RL. Putting the Pieces in Place: Mobilizing Cellular Players to Improve Annulus Fibrosus Repair. TISSUE ENGINEERING. PART B, REVIEWS 2021; 27:295-312. [PMID: 32907498 PMCID: PMC10799291 DOI: 10.1089/ten.teb.2020.0196] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The intervertebral disc (IVD) is an integral load-bearing tissue that derives its function from its composite structure and extracellular matrix composition. IVD herniations involve the failure of the annulus fibrosus (AF) and the extrusion of the nucleus pulposus beyond the disc boundary. Disc herniations can impinge the neural elements and cause debilitating pain and loss of function, posing a significant burden on individual patients and society as a whole. Patients with persistent symptoms may require surgery; however, surgical intervention fails to repair the ruptured AF and is associated with the risk for reherniation and further disc degeneration. Given the limitations of AF endogenous repair, many attempts have been made toward the development of effective repair approaches that reestablish IVD function. These methods, however, fail to recapitulate the composition and organization of the native AF, ultimately resulting in inferior tissue mechanics and function over time and high rates of reherniation. Harnessing the cellular function of cells (endogenous or exogenous) at the repair site through the provision of cell-instructive cues could enhance AF tissue regeneration and, ultimately, improve healing outcomes. In this study, we review the diverse approaches that have been developed for AF repair and emphasize the potential for mobilizing the appropriate cellular players at the site of injury to improve AF healing. Impact statement Conventional treatments for intervertebral disc herniation fail to repair the annulus fibrosus (AF), increasing the risk for recurrent herniation. The lack of repair devices in the market has spurred the development of regenerative approaches, yet most of these rely on a scarce endogenous cell population to repair large injuries, resulting in inadequate regeneration. This review identifies current and developing strategies for AF repair and highlights the potential for harnessing cellular function to improve AF regeneration. Ideal cell sources, differentiation strategies, and delivery methods are discussed to guide the design of repair systems that leverage specialized cells to achieve superior outcomes.
Collapse
Affiliation(s)
- Ana P. Peredo
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Sarah E. Gullbrand
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Harvey E. Smith
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Robert L. Mauck
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
35
|
Dixon AR, Warren JP, Culbert MP, Mengoni M, Wilcox RK. Review of in vitro mechanical testing for intervertebral disc injectable biomaterials. J Mech Behav Biomed Mater 2021; 123:104703. [PMID: 34365096 DOI: 10.1016/j.jmbbm.2021.104703] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/22/2021] [Accepted: 07/03/2021] [Indexed: 01/17/2023]
Abstract
Many early stage interventions for intervertebral disc degeneration are under development involving injection of a biomaterial into the affected tissue. Due to the complex mechanical behaviour of the intervertebral disc, there are challenges in comprehensively evaluating the performance of these injectable biomaterials in vitro. The aim of this review was to examine the different methods that have been developed to mechanically test injectable intervertebral disc biomaterials in an in vitro disc model. Testing methods were examined with emphasis on overall protocol, artificial degeneration method, mechanical testing regimes and injection delivery. Specifically, the effects of these factors on the evaluation of different aspects of device performance was assessed. Broad testing protocols varied between studies and enabled evaluation of different aspects of an injectable treatment. Studies employed artificial degeneration methodologies which were either on a macro scale through mechanical means or on a microscale with biochemical means. Mechanical loading regimes differed greatly across studies, with load being either held constant, ramped to failure, or applied cyclically, with large variability on all loading parameters. Evaluation of the risk of herniation was possible by utilising ramped loading, whereas cyclic loading enabled the examination of the restoration of mechanical behaviour for initial screening of biomaterials and surgical technique optimisation studies. However, there are large variations in the duration or tests, and further work is needed to define an appropriate number of cycles to standardise this type of testing. Biomaterial delivery was controlled by set volume or haptic feedback, and future investigations should generate evidence applying physiological loading during injection and normalisation of injection parameters based on disc size. Based on the reviewed articles and considering clinical risks, a series of recommendations have been made for future intervertebral disc mechanical testing.
Collapse
Affiliation(s)
- A R Dixon
- University of Leeds, Institute of Medical and Biological Engineering, Leeds, LS2 9JT, United Kingdom.
| | - J P Warren
- University of Leeds, Institute of Medical and Biological Engineering, Leeds, LS2 9JT, United Kingdom
| | - M P Culbert
- University of Leeds, Institute of Medical and Biological Engineering, Leeds, LS2 9JT, United Kingdom
| | - M Mengoni
- University of Leeds, Institute of Medical and Biological Engineering, Leeds, LS2 9JT, United Kingdom
| | - R K Wilcox
- University of Leeds, Institute of Medical and Biological Engineering, Leeds, LS2 9JT, United Kingdom.
| |
Collapse
|
36
|
Yamada K, Kenichiro M, Ito YM, Inage F, Isoe T, Yokota N, Sugita O, Sato N, Tha KK, Iwasaki N, Arato T, Sudo H. Exploratory clinical trial on the safety and capability of dMD-001 in lumbar disc herniation: Study protocol for a first-in-human pilot study. Contemp Clin Trials Commun 2021; 23:100805. [PMID: 34278043 PMCID: PMC8261539 DOI: 10.1016/j.conctc.2021.100805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/08/2021] [Accepted: 06/12/2021] [Indexed: 01/08/2023] Open
Abstract
Herniated nucleus pulposus (NP), one of the most common diseases of the spine, is surgically treated by removing the sequestered NP. However, intervertebral disc (IVD) defects may remain after discectomy, leading to inadequate tissue healing and predisposing patients to IVD degeneration. An acellular, bioresorbable, ultra-purified alginate (UPAL) gel (dMD-001) implantation system can be used to fill any IVD defects in order to prevent IVD degeneration after discectomy. This first-in-human pilot study aims to determine the feasibility, safety, and perceived patient response to a combined treatment involving discectomy and UPAL gel implantation for herniated NP. We designed a one-arm, double-centre, open-label, pilot trial. The study started in November 2018 and will run until a sample of 40 suitable participants is established. Patients aged 20-49 years, diagnosed with isolated lumbar IVD herniation and scheduled for discectomy represent suitable candidates. All eligible participants who provide informed consent undergo standard discectomy followed by UPAL gel implantation. The primary outcomes of the trial will be the feasibility and safety of the procedure. Secondary outcomes will include self-assessed clinical scores and magnetic resonance imaging-based measures of morphological and compositional quality of the IVD tissue. Initial outcomes will be published at 24 weeks. Analysis of feasibility and safety will be performed using descriptive statistics. Both intention-to-treat and per-protocol analyses of treatment trends of effectiveness will be conducted.
Collapse
Affiliation(s)
- Katsuhisa Yamada
- Department of Orthopaedic Surgery, Hokkaido University Hospital, N14W5, Sapporo, Japan.,Department of Orthopaedic Surgery, Faculty of Medicine, and Graduate School of Medicine, Hokkaido University, N15W7, Sapporo, Hokkaido, 060-8638, Japan
| | - Maeda Kenichiro
- Clinical Research and Medical Innovation Center, Hokkaido University Hospital, N14W5, Sapporo, Japan
| | - Yoichi M Ito
- Department of Biostatistics, Hokkaido University Graduate School of Medicine, N14W5, Sapporo, Hokkaido, Japan
| | - Fujio Inage
- Clinical Research and Medical Innovation Center, Hokkaido University Hospital, N14W5, Sapporo, Japan
| | - Toshiyuki Isoe
- Clinical Research and Medical Innovation Center, Hokkaido University Hospital, N14W5, Sapporo, Japan
| | - Nozomi Yokota
- Clinical Research and Medical Innovation Center, Hokkaido University Hospital, N14W5, Sapporo, Japan
| | - Osamu Sugita
- Clinical Research and Medical Innovation Center, Hokkaido University Hospital, N14W5, Sapporo, Japan
| | - Norihiro Sato
- Clinical Research and Medical Innovation Center, Hokkaido University Hospital, N14W5, Sapporo, Japan
| | - Khin Khin Tha
- Department of Diagnostic Imaging, Hokkaido University Hospital, N14W5, Sapporo, Hokkaido, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Hokkaido University Hospital, N14W5, Sapporo, Japan.,Department of Orthopaedic Surgery, Faculty of Medicine, and Graduate School of Medicine, Hokkaido University, N15W7, Sapporo, Hokkaido, 060-8638, Japan
| | - Teruyo Arato
- Clinical Research and Medical Innovation Center, Hokkaido University Hospital, N14W5, Sapporo, Japan
| | - Hideki Sudo
- Department of Orthopaedic Surgery, Hokkaido University Hospital, N14W5, Sapporo, Japan.,Department of Advanced Medicine for Spine and Spinal Cord Disorders, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan
| |
Collapse
|
37
|
Peng Y, Qing X, Shu H, Tian S, Yang W, Chen S, Lin H, Lv X, Zhao L, Chen X, Pu F, Huang D, Cao X, Shao Z, Yp, Zs, Xc, Yp, Yp, Xq, Hs, St, Wy, Yp, Xq, Hs, St, Hl, Xl, Lz, Xc, Fp, Sc, Yp, Xq, Hs, St, Yp, Xq, Wy, Hl, Xl, Lz, Xc, Fp, Sc, Hdh, Wy, Hl, Xl, Lz, Xc, Fp, Sc, Hdh, Zs, Xc. Proper animal experimental designs for preclinical research of biomaterials for intervertebral disc regeneration. BIOMATERIALS TRANSLATIONAL 2021; 2:91-142. [PMID: 35836965 PMCID: PMC9255780 DOI: 10.12336/biomatertransl.2021.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/09/2021] [Indexed: 01/17/2023]
Abstract
Low back pain is a vital musculoskeletal disease that impairs life quality, leads to disability and imposes heavy economic burden on the society, while it is greatly attributed to intervertebral disc degeneration (IDD). However, the existing treatments, such as medicines, chiropractic adjustments and surgery, cannot achieve ideal disc regeneration. Therefore, advanced bioactive therapies are implemented, including stem cells delivery, bioreagents administration, and implantation of biomaterials etc. Among these researches, few reported unsatisfying regenerative outcomes. However, these advanced therapies have barely achieved successful clinical translation. The main reason for the inconsistency between satisfying preclinical results and poor clinical translation may largely rely on the animal models that cannot actually simulate the human disc degeneration. The inappropriate animal model also leads to difficulties in comparing the efficacies among biomaterials in different reaches. Therefore, animal models that better simulate the clinical charateristics of human IDD should be acknowledged. In addition, in vivo regenerative outcomes should be carefully evaluated to obtain robust results. Nevertheless, many researches neglect certain critical characteristics, such as adhesive properties for biomaterials blocking annulus fibrosus defects and hyperalgesia that is closely related to the clinical manifestations, e.g., low back pain. Herein, in this review, we summarized the animal models established for IDD, and highlighted the proper models and parameters that may result in acknowledged IDD models. Then, we discussed the existing biomaterials for disc regeneration and the characteristics that should be considered for regenerating different parts of discs. Finally, well-established assays and parameters for in vivo disc regeneration are explored.
Collapse
Affiliation(s)
- Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hongyang Shu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shuo Tian
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wenbo Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Songfeng Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Hui Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lei Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xi Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Feifei Pu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Donghua Huang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xu Cao
- Department of Orthopaedic Surgery, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD, USA,Corresponding authors: Zengwu Shao, ; Xu Cao,
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China,Corresponding authors: Zengwu Shao, ; Xu Cao,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ukeba D, Yamada K, Tsujimoto T, Ura K, Nonoyama T, Iwasaki N, Sudo H. Bone Marrow Aspirate Concentrate Combined with in Situ Forming Bioresorbable Gel Enhances Intervertebral Disc Regeneration in Rabbits. J Bone Joint Surg Am 2021; 103:e31. [PMID: 33481466 DOI: 10.2106/jbjs.20.00606] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND The current surgical procedure of choice for intervertebral disc (IVD) herniation is discectomy, which induces postoperative IVD degeneration. Thus, cell-based therapies, as a 1-step simple procedure, are desired because of the poor capacity of IVDs for self-repair. The aim of this study was to investigate the repair efficacy of ultra-purified alginate (UPAL) gels containing bone marrow aspirate concentrate (BMAC) for the treatment of discectomy-associated IVD degeneration in rabbits. METHODS The mechanical properties of 3 types of gels-UPAL, UPAL containing bone marrow-derived mesenchymal stem cells (BMSCs), and UPAL containing BMAC-were evaluated. Forty rabbits were assigned to 5 groups: intact control, discectomy (to make the cavity), UPAL (implantation of the UPAL gel after discectomy), BMSCs-UPAL (implantation of a combination of autogenic BMSCs and UPAL gel after discectomy), and BMAC-UPAL (implantation of a combination of BMAC and UPAL gel after discectomy). The gels were implanted at 4 weeks after induction of IVD degeneration. At 4 and 12 weeks, magnetic resonance imaging (MRI) as well as histological and immunohistochemical analyses were performed to analyze IVD degeneration qualitatively and the viability of the implanted cells. RESULTS There was no significant difference among the 3 types of gels in terms of the results of unconfined compression tests. The implanted cells survived for 12 weeks. The histological grades of the BMSCs-UPAL (mean and standard deviation, 2.50 ± 0.53; p < 0.001) and BMAC-UPAL (2.75 ± 0.64, p = 0.001) showed them to be more effective in preventing degeneration than UPAL gel alone (3.63 ± 0.52). The effectiveness of BMAC-UPAL was not significantly different from that of BMSCs-UPAL, except with respect to type-II collagen synthesis. CONCLUSIONS BMAC-UPAL significantly enhanced the repair of IVD defects created by discectomy. This approach could be an effective therapeutic strategy owing to its simplicity and cost-effectiveness compared with cell therapy using culture-expanded BMSCs. CLINICAL RELEVANCE Local administration of the BMAC combined with UPAL gel could be an effective therapeutic strategy to enhance IVD repair after discectomy.
Collapse
Affiliation(s)
- Daisuke Ukeba
- Departments of Orthopedic Surgery (D.U., K.Y., T.T., K.U., N.I., and H.S.) and Advanced Medicine for Spine and Spinal Cord Disorders (H.S.), Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Katsuhisa Yamada
- Departments of Orthopedic Surgery (D.U., K.Y., T.T., K.U., N.I., and H.S.) and Advanced Medicine for Spine and Spinal Cord Disorders (H.S.), Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takeru Tsujimoto
- Departments of Orthopedic Surgery (D.U., K.Y., T.T., K.U., N.I., and H.S.) and Advanced Medicine for Spine and Spinal Cord Disorders (H.S.), Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Katsuro Ura
- Departments of Orthopedic Surgery (D.U., K.Y., T.T., K.U., N.I., and H.S.) and Advanced Medicine for Spine and Spinal Cord Disorders (H.S.), Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takayuki Nonoyama
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Norimasa Iwasaki
- Departments of Orthopedic Surgery (D.U., K.Y., T.T., K.U., N.I., and H.S.) and Advanced Medicine for Spine and Spinal Cord Disorders (H.S.), Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hideki Sudo
- Departments of Orthopedic Surgery (D.U., K.Y., T.T., K.U., N.I., and H.S.) and Advanced Medicine for Spine and Spinal Cord Disorders (H.S.), Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
39
|
Ura K, Yamada K, Tsujimoto T, Ukeba D, Iwasaki N, Sudo H. Ultra-purified alginate gel implantation decreases inflammatory cytokine levels, prevents intervertebral disc degeneration, and reduces acute pain after discectomy. Sci Rep 2021; 11:638. [PMID: 33436742 PMCID: PMC7804289 DOI: 10.1038/s41598-020-79958-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
Lumbar intervertebral disc (IVD) herniation causes severe low back pain (LBP), which results in substantial financial and emotional strains. Despite the effectiveness of discectomy, there is no existing treatment for post-operative LBP induced by progressive IVD degeneration. Two key factors of LBP are intradiscal inflammation, indicated by tumour necrosis factor alpha (TNF-α) and interleukin-6 (IL-6), and sensory nerve ingrowth into the inner layer of the annulus fibrosus, triggered by nerve growth factor/high-affinity tyrosine kinase A (TrkA) signalling. In an animal models of discectomy, the bioresorbable ultra-purified alginate (UPAL) gel with an extremely low-toxicity has been effective in acellular tissue repair. We aimed to investigate whether UPAL gel can alleviate LBP using a rat nucleus pulposus (NP) punch model and a rabbit NP aspirate model. In both models, we assessed TNF-α and IL-6 production and TrkA expression within the IVD by immunohistochemistry. Further, histological analysis and behavioural nociception assay were conducted in the rat model. UPAL gel implantation suppressed TNF-α and IL-6 production, downregulated TrkA expression, inhibited IVD degeneration, and reduced nociceptive behaviour. Our results suggest the potential of UPAL gel implantation as an innovative treatment for IVD herniation by reducing LBP and preventing IVD degeneration after discectomy.
Collapse
Affiliation(s)
- Katsuro Ura
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate of Medicine, Hokkaido University, N15W7, Sapporo, Hokkaido, 060-8638, Japan
| | - Katsuhisa Yamada
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate of Medicine, Hokkaido University, N15W7, Sapporo, Hokkaido, 060-8638, Japan.
| | - Takeru Tsujimoto
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate of Medicine, Hokkaido University, N15W7, Sapporo, Hokkaido, 060-8638, Japan
| | - Daisuke Ukeba
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate of Medicine, Hokkaido University, N15W7, Sapporo, Hokkaido, 060-8638, Japan
| | - Norimasa Iwasaki
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate of Medicine, Hokkaido University, N15W7, Sapporo, Hokkaido, 060-8638, Japan
| | - Hideki Sudo
- Department of Advanced Medicine for Spine and Spinal Cord Disorders, Faculty of Medicine and Graduate of Medicine, Hokkaido University, N15W7, Sapporo, Hokkaido, 060-8638, Japan.
| |
Collapse
|
40
|
Abstract
AbstractAlginate is a polysaccharide of natural origin, which shows outstanding properties of biocompatibility, gel forming ability, non-toxicity, biodegradability and easy to process. Due to these excellent properties of alginate, sodium alginate, a hydrogel form of alginate, oxidized alginate and other alginate based materials are used in various biomedical fields, especially in drug delivery, wound healing and tissue engineering. Alginate can be easily processed as the 3D scaffolding materials which includes hydrogels, microcapsules, microspheres, foams, sponges, and fibers and these alginate based bio-polymeric materials have particularly used in tissue healing, healing of bone injuries, scars, wound, cartilage repair and treatment, new bone regeneration, scaffolds for the cell growth. Alginate can be easily modified and blended by adopting some physical and chemical processes and the new alginate derivative materials obtained have new different structures, functions, and properties having improved mechanical strength, cell affinity and property of gelation. This can be attained due to combination with other different biomaterials, chemical and physical crosslinking, and immobilization of definite ligands (sugar and peptide molecules). Hence alginate, its modified forms, derivative and composite materials are found to be more attractive towards tissue engineering. This article provides a comprehensive outline of properties, structural aspects, and application in tissue engineering.
Collapse
|
41
|
DiStefano TJ, Shmukler JO, Danias G, Iatridis JC. The Functional Role of Interface Tissue Engineering in Annulus Fibrosus Repair: Bridging Mechanisms of Hydrogel Integration with Regenerative Outcomes. ACS Biomater Sci Eng 2020; 6:6556-6586. [PMID: 33320618 PMCID: PMC7809646 DOI: 10.1021/acsbiomaterials.0c01320] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hydrogels are extraordinarily versatile by design and can enhance repair in diseased and injured musculoskeletal tissues. Biological fixation of these constructs is a significant determinant factor that is critical to the clinical success and functionality of regenerative technologies for musculoskeletal repair. In the context of an intervertebral disc (IVD) herniation, nucleus pulposus tissue protrudes through the ruptured annulus fibrosus (AF), consequentially impinging on spinal nerve roots and causing debilitating pain. Discectomy is the surgical standard of care to treat symptomatic herniation; however these procedures do not repair AF defects, and these lesions are a significant risk factor for recurrent herniation. Advances in tissue engineering utilize adhesive hydrogels as AF sealants; however these repair strategies have yet to progress beyond preclinical animal models because these biomaterials are often plagued by poor integration with AF tissue and lead to large variability in repair outcomes. These critical barriers to translation motivate this article to review the material composition of hydrogels that have been evaluated in situ for AF repair, proposed mechanisms of how these biomaterials interface with AF tissue, and their functional outcomes after treatment in order to inform the development of new hydrogels for AF repair. In this systematic review, we identify 18 hydrogel formulations evaluated for AF repair, all of which demonstrate large heterogeneity in their interfacing mechanisms and reported outcome measures to assess the effectiveness of repair. Hydrogels that covalently bond to AF tissue were found to be the most successful in improving IVD biomechanical properties from the injured state, but none were able to restore properties to the intact state suggesting that new repair strategies with innovative surface chemistries are an important future direction. We additionally review biomechanical evaluation methods and recommend standardization in the field of AF tissue engineering to establish mechanical benchmarks for translation and ensure clinical feasibility.
Collapse
Affiliation(s)
- Tyler J DiStefano
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Jennifer O Shmukler
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - George Danias
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - James C Iatridis
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
42
|
Gheorghita Puscaselu R, Lobiuc A, Dimian M, Covasa M. Alginate: From Food Industry to Biomedical Applications and Management of Metabolic Disorders. Polymers (Basel) 2020; 12:E2417. [PMID: 33092194 PMCID: PMC7589871 DOI: 10.3390/polym12102417] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/14/2022] Open
Abstract
Initially used extensively as an additive and ingredient in the food industry, alginate has become an important compound for a wide range of industries and applications, such as the medical, pharmaceutical and cosmetics sectors. In the food industry, alginate has been used to coat fruits and vegetables, as a microbial and viral protection product, and as a gelling, thickening, stabilizing or emulsifying agent. Its biocompatibility, biodegradability, nontoxicity and the possibility of it being used in quantum satis doses prompted scientists to explore new properties for alginate usage. Thus, the use of alginate has been expanded so as to be directed towards the pharmaceutical and biomedical industries, where studies have shown that it can be used successfully as biomaterial for wound, hydrogel, and aerogel dressings, among others. Furthermore, the ability to encapsulate natural substances has led to the possibility of using alginate as a drug coating and drug delivery agent, including the encapsulation of probiotics. This is important considering the fact that, until recently, encapsulation and coating agents used in the pharmaceutical industry were limited to the use of lactose, a potentially allergenic agent or gelatin. Obtained at a relatively low cost from marine brown algae, this hydrocolloid can also be used as a potential tool in the management of diabetes, not only as an insulin delivery agent but also due to its ability to improve insulin resistance, attenuate chronic inflammation and decrease oxidative stress. In addition, alginate has been recognized as a potential weight loss treatment, as alginate supplementation has been used as an adjunct treatment to energy restriction, to enhance satiety and improve weight loss in obese individuals. Thus, alginate holds the promise of an effective product used in the food industry as well as in the management of metabolic disorders such as diabetes and obesity. This review highlights recent research advances on the characteristics of alginate and brings to the forefront the beneficial aspects of using alginate, from the food industry to the biomedical field.
Collapse
Affiliation(s)
- Roxana Gheorghita Puscaselu
- Department of Health and Human Development, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.G.P.); (A.L.)
| | - Andrei Lobiuc
- Department of Health and Human Development, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.G.P.); (A.L.)
| | - Mihai Dimian
- Department of Computers, Electronics and Automation, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
- Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for Fabrication and Control, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Mihai Covasa
- Department of Health and Human Development, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.G.P.); (A.L.)
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
43
|
Qiu R, Murata S, Oshiro K, Hatada Y, Taniguchi H. Transplantation of fetal liver tissue coated by ultra-purified alginate gel over liver improves hepatic function in the cirrhosis rat model. Sci Rep 2020; 10:8231. [PMID: 32427847 PMCID: PMC7237464 DOI: 10.1038/s41598-020-65069-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023] Open
Abstract
In this study, we used a new coating agent, that is, ultra-purified alginate gel (UPAL), for fetal liver tissue transplantation. This study aims to compare the effect of UPAL with the effect of other coating agents on improving the effect of fetal liver tissue transplantation in a liver cirrhosis rat model. Prior to the transplantation of wild-type ED14 fetal liver tissues, various coating agents were separately applied on the liver surface of rats with cirrhosis. Then, we compared the engraftment area, engraftment rate and liver function level of these rats. As a result, coating the liver surface of a cirrhosis rat with UPAL obtained the best effect in terms of engraftment area and engraftment rate of the transplanted liver tissue and in the recovery of liver function compared with control group. Therefore, UPAL coating may serve as a novel strategy for liver organoid transplantation.
Collapse
Affiliation(s)
- Rong Qiu
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, 3-9, Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Soichiro Murata
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, 3-9, Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan.
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, the Institute of Medical Science, the University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| | - Katsutomo Oshiro
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, 3-9, Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Yumi Hatada
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, 3-9, Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Hideki Taniguchi
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, 3-9, Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan.
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, the Institute of Medical Science, the University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
44
|
Tuan RS. Gel and cells: A promising reparative strategy for degenerated intervertebral discs. EBioMedicine 2020; 55:102756. [PMID: 32335373 PMCID: PMC7184151 DOI: 10.1016/j.ebiom.2020.102756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 10/31/2022] Open
Affiliation(s)
- Rocky S Tuan
- Institute for Tissue Engineering and Regenerative Medicine, University Administration Building, The Chinese University of Hong Kong, Shatin Hong Kong SAR China.
| |
Collapse
|
45
|
Ukeba D, Sudo H, Tsujimoto T, Ura K, Yamada K, Iwasaki N. Bone marrow mesenchymal stem cells combined with ultra-purified alginate gel as a regenerative therapeutic strategy after discectomy for degenerated intervertebral discs. EBioMedicine 2020; 53:102698. [PMID: 32143180 PMCID: PMC7057222 DOI: 10.1016/j.ebiom.2020.102698] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/07/2020] [Accepted: 02/18/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Because the regenerative ability of intervertebral discs (IVDs) is restricted, defects caused by discectomy may induce insufficient tissue repair leading to further IVD degeneration. An acellular bioresorbable biomaterial based on ultra-purified alginate (UPAL) gel was developed to fill the IVD cavity and prevent IVD degeneration. However, an acellular matrix-based strategy may have limitations, particularly in the elderly population, who exhibit low self-repair capability. Therefore, further translational studies involving product combinations, such as UPAL gel plus bone marrow-derived mesenchymal stem cells (BMSCs), are required to evaluate the regenerative effects of BMSCs embedded in UPAL gel on degenerated IVDs. METHODS Rabbit BMSCs and nucleus pulposus cells (NPCs) were co-cultured in a three-dimensional (3D) system in UPAL gel. In addition, rabbit or human BMSCs combined with UPAL gel were implanted into IVDs following partial discectomy in rabbits with degenerated IVDs. FINDINGS Gene expression of NPC markers, growth factors, and extracellular matrix was significantly increased in the NPC and BMSC 3D co-culture compared to that in each 3D mono-culture. In vivo, whereas UPAL gel alone suppressed IVD degeneration as compared to discectomy, the combination of BMSCs and UPAL gel exerted a more potent effect to induce IVD regeneration. Similar IVD regeneration was observed using human BMSCs. INTERPRETATION These findings demonstrate the therapeutic potential of BMSCs combined with UPAL gel as a regenerative strategy following discectomy for degenerated IVDs. FUNDING Ministry of Education, Culture, Sports, Science, and Technology of Japan, Japan Agency for Medical Research and Development, and the Mochida Pharmaceutical Co., Ltd.
Collapse
Affiliation(s)
- Daisuke Ukeba
- Faculty of Medicine and Graduate of Medicine, Department of Orthopedic Surgery, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hideki Sudo
- Faculty of Medicine and Graduate of Medicine, Department of Orthopedic Surgery, Hokkaido University, Sapporo, Hokkaido, Japan; Faculty of Medicine and Graduate of Medicine, Department of Advanced Medicine for Spine and Spinal Cord Disorders, Hokkaido University, Sapporo, Hokkaido, Japan.
| | - Takeru Tsujimoto
- Faculty of Medicine and Graduate of Medicine, Department of Orthopedic Surgery, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Katsuro Ura
- Faculty of Medicine and Graduate of Medicine, Department of Orthopedic Surgery, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Katsuhisa Yamada
- Faculty of Medicine and Graduate of Medicine, Department of Orthopedic Surgery, Hokkaido University, Sapporo, Hokkaido, Japan; Faculty of Medicine and Graduate of Medicine, Department of Advanced Medicine for Spine and Spinal Cord Disorders, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Norimasa Iwasaki
- Faculty of Medicine and Graduate of Medicine, Department of Orthopedic Surgery, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
46
|
Takeoka Y, Yurube T, Morimoto K, Kunii S, Kanda Y, Tsujimoto R, Kawakami Y, Fukase N, Takemori T, Omae K, Kakiuchi Y, Miyazaki S, Kakutani K, Takada T, Nishida K, Fukushima M, Kuroda R. Reduced nucleotomy-induced intervertebral disc disruption through spontaneous spheroid formation by the Low Adhesive Scaffold Collagen (LASCol). Biomaterials 2020; 235:119781. [PMID: 31981764 DOI: 10.1016/j.biomaterials.2020.119781] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/24/2022]
Abstract
Back pain is a global health problem with a high morbidity and socioeconomic burden. Intervertebral disc herniation and degeneration are its primary cause, further associated with neurological radiculopathy, myelopathy, and paralysis. The current surgical treatment is principally discectomy, resulting in the loss of spinal movement and shock absorption. Therefore, the development of disc regenerative therapies is essential. Here we show reduced disc damage by a new collagen type I-based scaffold through actinidain hydrolysis-Low Adhesive Scaffold Collagen (LASCol)-with a high 3D spheroid-forming capability, water-solubility, and biodegradability and low antigenicity. In human disc nucleus pulposus and annulus fibrosus cells surgically obtained, time-dependent spheroid formation with increased expression of phenotypic markers and matrix components was observed on LASCol but not atelocollagen (AC). In a rat tail nucleotomy model, LASCol-injected and AC-injected discs presented relatively similar radiographic and MRI damage control; however, LASCol, distinct from AC, decelerated histological disc disruption, showing collagen type I-comprising LASCol degradation, aggrecan-positive and collagen type II-positive endogenous cell migration, and M1-polarized and also M2-polarized macrophage infiltration. Reduced nucleotomy-induced disc disruption through spontaneous spheroid formation by LASCol warrants further investigations of whether it may be an effective treatment without stem cells and/or growth factors for intervertebral disc disease.
Collapse
Affiliation(s)
- Yoshiki Takeoka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Takashi Yurube
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Koichi Morimoto
- Department of Genetic Engineering, Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa, Wakayama, 649-6493, Japan.
| | - Saori Kunii
- Department of Genetic Engineering, Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa, Wakayama, 649-6493, Japan.
| | - Yutaro Kanda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Ryu Tsujimoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Yohei Kawakami
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Naomasa Fukase
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Toshiyuki Takemori
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Kaoru Omae
- Translational Research Center for Medical Innovation (TRI), Foundation for Biomedical Research and Innovation at Kobe, 1-5-4 Minatojima-Minamimachi, Kobe, 650-0047, Japan.
| | - Yuji Kakiuchi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Shingo Miyazaki
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Kenichiro Kakutani
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Toru Takada
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Kotaro Nishida
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Masanori Fukushima
- Translational Research Center for Medical Innovation (TRI), Foundation for Biomedical Research and Innovation at Kobe, 1-5-4 Minatojima-Minamimachi, Kobe, 650-0047, Japan.
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| |
Collapse
|
47
|
Caspase-3 knockout inhibits intervertebral disc degeneration related to injury but accelerates degeneration related to aging. Sci Rep 2019; 9:19324. [PMID: 31852919 PMCID: PMC6920379 DOI: 10.1038/s41598-019-55709-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022] Open
Abstract
Approximately 40% of people under 30 and over 90% of people 55 or older suffer from moderate-to-severe levels of degenerative intervertebral disc (IVD) disease in their lumbar spines. Surgical treatments are sometimes effective; however, the treatment of back pain related to IVD degeneration is still a challenge; therefore, new treatments are necessary. Apoptosis may be important in IVD degeneration because suppressing cell apoptosis inside the IVD inhibits degeneration. Caspase-3, the primary effector of apoptosis, may be a key treatment target. We analyzed caspase-3’s role in two different types of IVD degeneration using caspase-3 knockout (Casp-3 KO) mice. Casp-3 KO delayed IVD degeneration in the injury-induced model but accelerated it in the age-induced model. Our results suggest that this is due to different pathological mechanisms of these two types of IVD degeneration. Apoptosis was suppressed in the IVD cells of Casp-3 KO mice, but cellular senescence was enhanced. This would explain why the Casp-3 KO was effective against injury-induced, but not age-related, IVD degeneration. Our results suggest that short-term caspase-3 inhibition could be used to treat injury-induced IVD degeneration.
Collapse
|
48
|
Ura K, Sudo H, Iwasaki K, Tsujimoto T, Ukeba D, Iwasaki N. Effects of Intradiscal Injection of Local Anesthetics on Intervertebral Disc Degeneration in Rabbit Degenerated Intervertebral Disc. J Orthop Res 2019; 37:1963-1971. [PMID: 31106893 DOI: 10.1002/jor.24347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/14/2019] [Indexed: 02/04/2023]
Abstract
Analgesic discoblock is widely used for the diagnosis or treatment of discogenic low back pain by injecting local anesthetics. The purpose of this study was to investigate the deleterious effects of local anesthetics on degenerated rabbit intervertebral disks (IVDs) using an organotypic culture model and in vivo long-term follow-up model. To induce IVD degeneration, a rabbit annular puncture model was used. For the organotypic culture model, degenerated IVDs were harvested 1 month after the initial annular puncture and cultured for 3 or 7 days after intradiscal injection of local anesthetics (1% lidocaine and 0.5% bupivacaine). To perform in vivo analysis, local anesthetics were injected into degenerated IVDs, and IVDs were prepared for histological analysis after 6 or 12 months. In the organotypic model, terminal deoxynucleotidyl transferase dUTP nick end labeling-positive nucleus pulposus (NP) cells were significantly increased in the bupivacaine group compared with the other groups. In the in vivo study, the number of NP cells was significantly decreased in the saline and local anesthetics groups compared with the untreated control and puncture-only groups. However, there was no significant difference among the saline, lidocaine, and bupivacaine groups. In addition, histological analysis showed no significant difference of IVD degeneration among the puncture-only, saline, lidocaine, and bupivacaine groups. Although bupivacaine induced apoptotic NP cell death in the organotypic culture model, in vivo observations did not show any definitive proof to suggest that local anesthetics were capable of promoting degeneration in the degenerated IVD, except for pressurized injection-induced damage. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1963-1971, 2019.
Collapse
Affiliation(s)
- Katsuro Ura
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hideki Sudo
- Department of Advanced Medicine for Spine and Spinal Cord Disorders, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, North-15, West-7, Sapporo, 060-8638, Japan
| | - Koji Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takeru Tsujimoto
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Daisuke Ukeba
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
49
|
|