1
|
Yang R, Zhang J, Xing X, Zhong S, Li W, Wen L, Zhang Y, Zhou H, Chen S, Chen W, Xiao Y, Chen L. The involvement of nicotinate and nicotinamide metabolism pathway in attenuating benzene-induced mouse hematotoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117388. [PMID: 39603220 DOI: 10.1016/j.ecoenv.2024.117388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/02/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
Benzene exposure has been linked to various adverse health effects. However, the effective strategy for prevention or treatment of benzene-induced hematotoxicity remains unsolved. We previously administrated hepatocyte-specific deletion of Ppp2r1a gene (encoding PP2A Aα subunit) mice with benzene via inhalation for 28 days, and found homozygote (HO) mice exhibited alleviative hematotoxicity compared with wild type (WT) mice. Here, we integrate untargeted metabolomics and transcriptomics data to identify the key metabolic pathways and metabolites attenuating benzene-induced hematotoxicity. Metabolomics analysis revealed the perturbation of nicotinate and nicotinamide metabolism, as well as taurine and hypotaurine metabolism pathways, were implicated in regulating benzene-induced hematotoxicity. Meanwhile, transcriptome analysis showed that immune-, inflammation-, and metabolism-related pathways were obviously disturbed in WT mice groups upon benzene exposure, while sirtuin signaling pathway, associated with nicotinate and nicotinamide metabolism, was activated in HO mice groups. Notably, combined metabolomics and transcriptomics analysis further confirmed the involvement of nicotinate and nicotinamide metabolism, taurine and hypotaurine metabolism pathways in relieving benzene-induced hematotoxicity. Specific metabolites, including 1-methylnicotinamide (MNA), nicotinamide (NA), β-nicotinamide mononucleotides (NMN), and taurine were identified as the potential metabolites alleviating benzene-induced adverse effects. In vitro experiments demonstrated the protective effect of MNA and NA against 1,4-benzoquinone (1,4-BQ)-caused cytotoxicity in HL-60 cells. In vivo, MNA supplementation in drinking water could effectively restore the decline in white blood cell (WBC), lymphocyte (LYMPH), and reticulocyte (RET) counts, also mitigate oxidative damage and genotoxicity in response to benzene exposure. These observations highlight the potential of MNA supplementation as a strategy for preventing benzene-caused hematotoxicity.
Collapse
Affiliation(s)
- Rongfang Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiaxin Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiumei Xing
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shiyuan Zhong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenxue Li
- Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Lixian Wen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuwei Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Hongwei Zhou
- Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Shen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yongmei Xiao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Liping Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
2
|
Seyyedsalehi MS, Bonetti M, Shah D, DeStefano V, Boffetta P. Occupational benzene exposure and risk of kidney and bladder cancers: a systematic review and meta-analysis. Eur J Cancer Prev 2024:00008469-990000000-00165. [PMID: 39229942 DOI: 10.1097/cej.0000000000000911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
INTRODUCTION Benzene is recognized as leukemogenic. However, the association between it and solid cancers has been the subject of less investigation. We aim to conduct a systematic review and meta-analysis to evaluate the association between occupational exposure to benzene and the risk of urinary tract cancer, including kidney and bladder. METHODS We included 41 cohort and case-control studies listed in the most recent International Agency for Research on Cancer (IARC) Monograph on benzene exposure and the result of a literature review to identify more recent studies. Forest plots of relative risk (RR) were constructed for kidney, bladder, and urinary tract cancer overall. A random-effects model was used to address heterogeneity between studies. Stratified analyses were conducted to explore effect modification. RESULTS Our findings revealed an association between exposure to occupational benzene and kidney and unspecified urinary tract cancers (RR = 1.20, 95% confidence interval = 1.03-1.39), and an association of borderline statistical significance with bladder cancer (RR = 1.07, 95% confidence interval = 0.97-1.18). Publication bias was excluded for both kidney (P = 0.809) and bladder cancer (P = 0.748). Stratification analysis according to the selected study characteristics showed no difference except regarding the industry for kidney cancer (P < 0.000), with a stronger association in the chemical industry. An analysis by exposure level did not reveal any trend for kidney cancer, whereas there was a trend (P = 0.01) for bladder cancer. CONCLUSION Our study found an association between occupational benzene exposure and kidney cancer and a dose-effect association between benzene exposure and bladder cancer.
Collapse
Affiliation(s)
| | - Mattia Bonetti
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Darshi Shah
- Department of Family, Population and Preventive Medicine, Renaissance School of Medicine
| | - Vincent DeStefano
- Department of Family, Population and Preventive Medicine, Renaissance School of Medicine
| | - Paolo Boffetta
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Department of Family, Population and Preventive Medicine, Renaissance School of Medicine
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
3
|
Wang J, Han L, Liu Z, Zhang W, Zhang L, Jing J, Gao A. Targeting IGF2BP1 alleviated benzene hematotoxicity by reprogramming BCAA metabolism and fatty acid oxidation. Chem Biol Interact 2024; 398:111107. [PMID: 38866309 DOI: 10.1016/j.cbi.2024.111107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/30/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
Benzene is the main environmental pollutant and risk factor of childhood leukemia and chronic benzene poisoning. Benzene exposure leads to hematopoietic stem and progenitor cell (HSPC) dysfunction and abnormal blood cell counts. However, the key regulatory targets and mechanisms of benzene hematotoxicity are unclear. In this study, we constructed a benzene-induced hematopoietic damage mouse model to explore the underlying mechanisms. We identified that Insulin like growth factor 2 mRNA binding protein 1 (IGF2BP1) was significantly reduced in benzene-exposed mice. Moreover, targeting IGF2BP1 effectively mitigated damages to hematopoietic function and hematopoietic molecule expression caused by benzene in mice. On the mechanics, by metabolomics and transcriptomics, we discovered that branched-chain amino acid (BCAA) metabolism and fatty acid oxidation were key metabolic pathways, and Branched-chain amino acid transaminase 1 (BCAT1) and Carnitine palmitoyltransferase 1a (CPT1A) were critical metabolic enzymes involved in IGF2BP1-mediated hematopoietic injury process. The expression of the above molecules in the benzene exposure population was also examined and consistent with animal experiments. In conclusion, targeting IGF2BP1 alleviated hematopoietic injury caused by benzene exposure, possibly due to the reprogramming of BCAA metabolism and fatty acid oxidation via BCAT1 and CPT1A metabolic enzymes. IGF2BP1 is a potential regulatory and therapeutic target for benzene hematotoxicity.
Collapse
Affiliation(s)
- Jingyu Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Lin Han
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Ziyan Liu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Wei Zhang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Lei Zhang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Jiaru Jing
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Ai Gao
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| |
Collapse
|
4
|
Cox LA, Thompson WJ, Mundt KA. Interventional probability of causation (IPoC) with epidemiological and partial mechanistic evidence: benzene vs. formaldehyde and acute myeloid leukemia (AML). Crit Rev Toxicol 2024; 54:252-289. [PMID: 38753561 DOI: 10.1080/10408444.2024.2337435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/25/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION Causal epidemiology for regulatory risk analysis seeks to evaluate how removing or reducing exposures would change disease occurrence rates. We define interventional probability of causation (IPoC) as the change in probability of a disease (or other harm) occurring over a lifetime or other specified time interval that would be caused by a specified change in exposure, as predicted by a fully specified causal model. We define the closely related concept of causal assigned share (CAS) as the predicted fraction of disease risk that would be removed or prevented by a specified reduction in exposure, holding other variables fixed. Traditional approaches used to evaluate the preventable risk implications of epidemiological associations, including population attributable fraction (PAF) and the Bradford Hill considerations, cannot reveal whether removing a risk factor would reduce disease incidence. We argue that modern formal causal models coupled with causal artificial intelligence (CAI) and realistically partial and imperfect knowledge of underlying disease mechanisms, show great promise for determining and quantifying IPoC and CAS for exposures and diseases of practical interest. METHODS We briefly review key CAI concepts and terms and then apply them to define IPoC and CAS. We present steps to quantify IPoC using a fully specified causal Bayesian network (BN) model. Useful bounds for quantitative IPoC and CAS calculations are derived for a two-stage clonal expansion (TSCE) model for carcinogenesis and illustrated by applying them to benzene and formaldehyde based on available epidemiological and partial mechanistic evidence. RESULTS Causal BN models for benzene and risk of acute myeloid leukemia (AML) incorporating mechanistic, toxicological and epidemiological findings show that prolonged high-intensity exposure to benzene can increase risk of AML (IPoC of up to 7e-5, CAS of up to 54%). By contrast, no causal pathway leading from formaldehyde exposure to increased risk of AML was identified, consistent with much previous mechanistic, toxicological and epidemiological evidence; therefore, the IPoC and CAS for formaldehyde-induced AML are likely to be zero. CONCLUSION We conclude that the IPoC approach can differentiate between likely and unlikely causal factors and can provide useful upper bounds for IPoC and CAS for some exposures and diseases of practical importance. For causal factors, IPoC can help to estimate the quantitative impacts on health risks of reducing exposures, even in situations where mechanistic evidence is realistically incomplete and individual-level exposure-response parameters are uncertain. This illustrates the strength that can be gained for causal inference by using causal models to generate testable hypotheses and then obtaining toxicological data to test the hypotheses implied by the models-and, where necessary, refine the models. This virtuous cycle provides additional insight into causal determinations that may not be available from weight-of-evidence considerations alone.
Collapse
Affiliation(s)
- Louis A Cox
- Cox Associates and University of Colorado, Denver, CO, USA
| | | | - Kenneth A Mundt
- Independent Consultants in Epidemiology, Amherst, MA, USA
- Adjunct Professor of Epidemiology, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
5
|
Wang J, Guo X, Chen Y, Zhang W, Ren J, Gao A. The m6A reader IGF2BP1 attenuates the stability of RPL36 and cell proliferation to mediate benzene hematotoxicity by recognizing m6A modification. Toxicology 2024; 503:153758. [PMID: 38367942 DOI: 10.1016/j.tox.2024.153758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 02/19/2024]
Abstract
Benzene exposure leads to hematotoxicity, and epigenetic modification is considered to be a potential mechanism of benzene pathogenesis. As a newly discovered post-transcriptional modification, the roles of N6-methyladenosine (m6A) in benzene hematotoxicity are still unclear. m6A can only exert its gene regulatory function after being recognized by m6A reading proteins. In this study, we found that the expression of m6A reader IGF2BP1 decreased in benzene poisoning workers and in 20 μM benzene metabolite 1,4-BQ-treated AHH-1 cells. Further overexpression of IGF2BP1 in mice alleviated 50 ppm benzene-induced hematopoietic damage, suggesting that IGF2BP1 plays a critical role in benzene hematotoxicity. Next, we examined transcriptome-wide m6A methylation in vitro to search for target genes of IGF2BP1. We found that benzene metabolite 1,4-BQ treatment altered the m6A methylation levels of various genes. The comprehensive analysis of mRNA expression and m6A methylation uncovered that the hypomethylated Ribosomal Protein L36 (RPL36) and its consequent reduced expression impaired cell proliferation. Mechanically, m6A modification reduced RNA stability to down-regulate RPL36 expression. Moreover, overexpression of IGF2BP1 relieved RPL36 reduction and cell proliferation inhibition caused by benzene in vitro and in vivo by directly binding with RPL36 mRNA. In conclusion, the m6A reader IGF2BP1 attenuates the stability of RPL36 and cell proliferation to mediate benzene hematotoxicity by recognizing m6A modification. IGF2BP1 and RPL36 may be key molecules and potential therapeutic targets for benzene hematotoxicity.
Collapse
Affiliation(s)
- Jingyu Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Xiaoli Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China; Department of Cancer Epidemiology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, PR China
| | - Yujiao Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Wei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Jing Ren
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
6
|
Amir-Ata JS, Mohammad-Reza V, Malekinejad H. The Benzene-induced Hepatic Cytochrome P450 2E1 Expression and Activity are Reduced by Quercetin Administration in Mice. Curr Pharm Des 2024; 30:676-682. [PMID: 38424425 DOI: 10.2174/0113816128285832240216120053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/20/2024] [Accepted: 01/26/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Benzene as an environmental and industrial agent induces adverse effects that are mainly metabolism-dependent. OBJECTIVES Effects of Quercetin (QCN) on Benzene (BNZ)-induced changes in the hepatic Cytochrome P450 2E1 expression and activity were investigated. METHODS Thirty-six adult male mice were divided into 6 groups (n = 6) and nominated as control, BNZ (exposed to BNZ: 30 ppm), QCN (received QCN: 50 mg/kg, orally), and the fourth, fifth and sixth groups were exposed to 30 ppm BNZ and received 10, 50 and 100 mg/kg QCN respectively, for 28 days. The microsomal subcellular fraction was isolated from the liver samples and the activity of CYP 2E1 was measured based on the hydroxylation rate of 4-nitrophenol. The hepatic activity of myeloperoxidase also was assessed. Total antioxidant capacity and nitric oxide contents of the liver were determined. Expression changes of CYP 2E1 at the mRNA level were examined by qPCR technique. RESULTS QCN lowered significantly (p < 0.05) the BNZ-increased hepatic nitric oxide levels and restored the BNZ-reduced antioxidant capacity. The BNZ-elevated activity of myeloperoxidase was declined in QCN-received mice. QCN downregulated the expression and activity of hepatic CYP 2E1 in BNZ-exposed animals. CONCLUSION Our results suggest that QCN could be a novel hepatoprotective compound for BNZ-induced hepatotoxicities, which is attributed to its capability in the down-regulation of CYP 2E1 expression and activity.
Collapse
Affiliation(s)
- Jambour-Shabestary Amir-Ata
- Department of Pharmacology & Toxicology, Experimental and Applied Pharmaceutical Sciences Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Vardast Mohammad-Reza
- Department of Medicinal Chemistry, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Hassan Malekinejad
- Department of Pharmacology & Toxicology, Experimental and Applied Pharmaceutical Sciences Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Pharmacology & Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
7
|
Guo X, Cheng C, Chen L, Cao C, Li D, Fan R, Wei X. Metabolomic characteristics in human CD34 + hematopoietic stem/progenitor cells exposed to polystyrene nanoplastics. Food Chem Toxicol 2023; 177:113817. [PMID: 37164248 DOI: 10.1016/j.fct.2023.113817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/28/2023] [Accepted: 05/07/2023] [Indexed: 05/12/2023]
Abstract
Nanoplastics is a major environmental concern and may cause potential harm to organisms. Previous studies have found that exposure to nanoplastics inhibited hematopoietic function, however, the effect of polystyrene nanoplastics (PSNPs) on the human CD34+ hematopoietic stem/progenitor cells (HSPCs) and its underlying mechanism remains unknown. In this study, the toxic effects were evaluated and the metabolites changes were systematically analyzed using the metabolomics study in combination with multivariate statistical analysis in HSPCs with PSNPs treatment. The results show that PSNPs could be uptake by cells, significantly decrease cell viability and cause cell membrane damage manifested as increased LDH release in cellular supernatant. Besides, the colony formation assay shows that PSNPs exposure can inhibit the proliferation and differentiation of HSPCs. Meanwhile, we found that PSNPs disturbed the metabolic activity, including amino acids, SCFAs, organic acids, fatty acids and carbohydrates, and mainly affect citrate cycle (TCA cycle) metabolism pathway. Those findings are helpful in evaluating the toxicity mechanisms and providing guidance in the selection of potential metabolism-related biomarkers of hematopoietic damage caused by nanoplastics exposure.
Collapse
Affiliation(s)
- Xiaoli Guo
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Cheng Cheng
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Lin Chen
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Changsong Cao
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Dongbei Li
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Ruihua Fan
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Xudong Wei
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| |
Collapse
|
8
|
Qiu Y, Shi YN, Zhu N, Zhang S, Zhang CJ, Gu J, He P, Dai AG, Qin L. A Lipid Perspective on Regulated Pyroptosis. Int J Biol Sci 2023; 19:2333-2348. [PMID: 37215994 PMCID: PMC10197892 DOI: 10.7150/ijbs.81017] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 04/03/2023] [Indexed: 05/24/2023] Open
Abstract
Pyroptosis is a novel pro-inflammatory cell programmed death dependent on Gasdermin (GSMD) family-mediated membrane pore formation and subsequent cell lysis, accompanied by the release of inflammatory factors and expanding inflammation in multiple tissues. All of these processes have impacts on a variety of metabolic disorders. Dysregulation of lipid metabolism is one of the most prominent metabolic alterations in many diseases, including the liver, cardiovascular system, and autoimmune diseases. Lipid metabolism produces many bioactive lipid molecules, which are important triggers and endogenous regulators of pyroptosis. Bioactive lipid molecules promote pyroptosis through intrinsic pathways involving reactive oxygen species (ROS) production, endoplasmic reticulum (ER) stress, mitochondrial dysfunction, lysosomal disruption, and the expression of related molecules. Pyroptosis can also be regulated during the processes of lipid metabolism, including lipid uptake and transport, de novo synthesis, lipid storage, and lipid peroxidation. Taken together, understanding the correlation between lipid molecules such as cholesterol and fatty acids and pyroptosis during metabolic processes can help to gain insight into the pathogenesis of many diseases and develop effective strategies from the perspective of pyroptosis.
Collapse
Affiliation(s)
- Yun Qiu
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ya-Ning Shi
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- Science and Technology Innovation Center, Hunan University of Chinese Medicine, 410208, Changsha, Hunan, China
| | - Neng Zhu
- Department of Urology, The First Hospital of Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Shuo Zhang
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Chan-Juan Zhang
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jia Gu
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Peng He
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ai-Guo Dai
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha 410208, Hunan, China
- Department of Respiratory Medicine, First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha 410021, Hunan, China
| | - Li Qin
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha 410208, Hunan, China
| |
Collapse
|
9
|
Yang X, Dong S, Li C, Li M, Xing C, He J, Peng C, Shao H, Jia Q. Hydroquinone triggers pyroptosis and endoplasmic reticulum stress via AhR-regulated oxidative stress in human lymphocytes. Toxicol Lett 2023; 376:39-50. [PMID: 36646296 DOI: 10.1016/j.toxlet.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Benzene is a frequent component of environmental pollution and is abundant in petrochemicals, decorative materials, motor vehicle exhaust and cigarette smoke. Benzene is a well-known carcinogen in humans and animals, but the molecular mechanism has not yet been elucidated. Our earlier research indicated that hydroquinone (HQ), one of the main reactive metabolites of benzene, could activate aryl hydrocarbon receptor (AhR), which is essential for HQ-induced toxicity, including apoptosis and DNA damage. Since AhR is an important regulator of the immune system that integrates the environmental stimulus and immune response, we examined whether and how HQ-induced AhR activity could lead to NLRP3 inflammasome-dependent pyroptosis in JHP cells. Our results showed that HQ could cause inflammation process and resultant pyroptosis. In JHP cells, HQ also induced endoplasmic reticulum stress (ERS) by releasing excessive reactive oxygen species (ROS). The activation of pyroptosis induced by HQ treatment was reversed by an antioxidant (NAC) and an ERS inhibitor (4-PBA). Interestingly, the treatment of CH223191, an AhR inhibitor, reversed HQ-induced oxidative stress, ERS and pyroptosis. These data suggested that AhR-mediated HQ-induced ERS, ROS and inflammasome activation may play vital roles in the toxic effects of benzene. This work provides insights and prospective strategies into potential mechanisms for reducing benzene-induced hematotoxicity.
Collapse
Affiliation(s)
- Xiaohan Yang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Ji'nan 250062, China
| | - Shuangyan Dong
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Ji'nan 250062, China
| | - Chao Li
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Ji'nan 250062, China
| | - Ming Li
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Ji'nan 250062, China
| | - Caihong Xing
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention (CDC), Beijing 100050, China
| | - Jin He
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Ji'nan 250062, China
| | - Cheng Peng
- Eusyn Institute of Health Science, Brisbane, QLD 4108, Australia
| | - Hua Shao
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Ji'nan 250062, China.
| | - Qiang Jia
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Ji'nan 250062, China.
| |
Collapse
|
10
|
Liu J, Dai Y, Lu Y, Liu X, Deng J, Lu W, Liu Q. Identification and validation of a new pyroptosis-associated lncRNA signature to predict survival outcomes, immunological responses and drug sensitivity in patients with gastric cancer. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:1856-1881. [PMID: 36899512 DOI: 10.3934/mbe.2023085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
BACKGROUND Gastric cancer (GC) ranks fifth in prevalence among carcinomas worldwide. Both pyroptosis and long noncoding RNAs (lncRNAs) play crucial roles in the occurrence and development of gastric cancer. Therefore, we aimed to construct a pyroptosis-associated lncRNA model to predict the outcomes of patients with gastric cancer. METHODS Pyroptosis-associated lncRNAs were identified through co-expression analysis. Univariate and multivariate Cox regression analyses were performed using the least absolute shrinkage and selection operator (LASSO). Prognostic values were tested through principal component analysis, a predictive nomogram, functional analysis and Kaplan‒Meier analysis. Finally, immunotherapy and drug susceptibility predictions and hub lncRNA validation were performed. RESULTS Using the risk model, GC individuals were classified into two groups: low-risk and high-risk groups. The prognostic signature could distinguish the different risk groups based on principal component analysis. The area under the curve and the conformance index suggested that this risk model was capable of correctly predicting GC patient outcomes. The predicted incidences of the one-, three-, and five-year overall survivals exhibited perfect conformance. Distinct changes in immunological markers were noted between the two risk groups. Finally, greater levels of appropriate chemotherapies were required in the high-risk group. AC005332.1, AC009812.4 and AP000695.1 levels were significantly increased in gastric tumor tissue compared with normal tissue. CONCLUSIONS We created a predictive model based on 10 pyroptosis-associated lncRNAs that could accurately predict the outcomes of GC patients and provide a promising treatment option in the future.
Collapse
Affiliation(s)
- Jinsong Liu
- Department of Oncology, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Changzhou 213017, China
| | - Yuyang Dai
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Changzhou 213017, China
- Department of Radiology, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China
| | - Yueyao Lu
- Department of Oncology, The Changzhou Clinical School of Nanjing Medical University, Changzhou 213017, China
- Department of Oncology, The Wujin Clinical College of Xuzhou Medical University, Changzhou 213017, China
| | - Xiuling Liu
- Department of Oncology, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Changzhou 213017, China
| | - Jianzhong Deng
- Department of Oncology, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Changzhou 213017, China
| | - Wenbin Lu
- Department of Oncology, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Changzhou 213017, China
- Department of Oncology, The Changzhou Clinical School of Nanjing Medical University, Changzhou 213017, China
- Department of Oncology, The Wujin Clinical College of Xuzhou Medical University, Changzhou 213017, China
| | - Qian Liu
- Department of Oncology, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Changzhou 213017, China
- Department of Oncology, The Wujin Clinical College of Xuzhou Medical University, Changzhou 213017, China
| |
Collapse
|
11
|
Ren J, Wang J, Guo X, Zhang W, Chen Y, Gao A. Lnc-TC/miR-142-5p/CUL4B signaling axis promoted cell ferroptosis to participate in benzene hematotoxicity. Life Sci 2022; 310:121111. [DOI: 10.1016/j.lfs.2022.121111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/09/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
|
12
|
Zhang W, Wang J, Liu Z, Zhang L, Jing J, Han L, Gao A. Iron-dependent ferroptosis participated in benzene-induced anemia of inflammation through IRP1-DHODH-ALOX12 axis. Free Radic Biol Med 2022; 193:122-133. [PMID: 36244588 DOI: 10.1016/j.freeradbiomed.2022.10.273] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 10/31/2022]
Abstract
Benzene, a widely existing environmental pollutant, gives huge harm to the hematopoietic system. Iron is one of the raw materials for the creation of blood cells, but the role of iron in the blood toxicity of benzene is still unknown. Here, we examined the role of iron homeostasis in benzene-induced toxicity both in vivo and in vitro. In this study, mice exposed to benzene at 50 ppm for 8 weeks demonstrated the anemia of inflammation, mainly manifested as the decreased serum Fe2+, increased serum ferritin and inflammation factors (TNF-α, IL6, IL1β) in the plasma of mice. Furthermore, we found that iron maldistribution in the spleen and bone marrow is accompanied by inflammation reaction and ferroptosis. In the vitro study, benzene metabolite 1,4-BQ stimulated the obvious ROS production and ferroptosis activation in the normal B lymphocytes cells. Meanwhile, from the molecular perspective, the combined proteomics and transcriptome enriched the ferroptosis pathway, and we further confirmed the increased expression of iron regulator IRP1, ferroptosis-regulator DHODH, and fatty acids metabolism enzyme ALOX12 were the crucial participators in regulating benzene-mediated iron metabolism imbalance and ferroptosis. Particularly, the targeted and un-targeted metabolomics in the vivo and vitro study further emphasized the importance of DHODH in benzene-induced ferroptosis. In conclusion, this study revealed that iron-dependent ferroptosis participated in benzene-induced anemia of inflammation and provided a constructive perspective on targeting ferroptosis for the prevention and control of benzene toxicity.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Jingyu Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - ZiYan Liu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Lei Zhang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Jiaru Jing
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Lin Han
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Ai Gao
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| |
Collapse
|
13
|
Qin Y, Pan L, Qin T, Ruan H, Zhang Y, Zhang Y, Li J, Yang J, Li W. Pan-cancer analysis of AIM2 inflammasomes with potential implications for immunotherapy in human cancer: A bulk omics research and single cell sequencing validation. Front Immunol 2022; 13:998266. [PMID: 36248785 PMCID: PMC9559585 DOI: 10.3389/fimmu.2022.998266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe absent in melanoma 2 (AIM2) inflammasome is a multi-protein platform that recognizes aberrant cytoplasmic double-stranded DNA(dsDNA) and induces cytokine maturation, release, and pyroptosis. Some studies found that the AIM2 inflammasome was a double-edged sword in many cancers. However, there have been fewer studies on AIM2 inflammasomes in pan-cancer.MethodsGene expression was analyzed using The Cancer Genome Atlas (TCGA) database and The Genotype-Tissue Expression (GTEx) database. Immunohistochemistry (IHC) was used to validate the expression of the AIM2. We used the survival curve to explore the prognostic significance of the AIM2 inflammasomes in pan-cancer. Mutations and methylation of AIM2 inflammasome-related genes (AIM2i-RGs) were also comprehensively analyzed. Single sample gene set enrichment analysis was used to calculate the AIM2 inflammasomes score and explore the correlation of the AIM2 inflammasomes score with immune-related genes and immune infiltrations. The function of AIM2 inflammasomes in pan-cancer was analyzed at the single-cell level. Single-cell transcriptome sequencing (scRNA-seq) data was used to assess the activation state of the AIM2 inflammasomes in the tumor microenvironment.ResultsWe found that AIM2i-RGs were aberrantly expressed in tumors and were strongly associated with prognosis. In pan-cancer, the expression of AIM2i-RGs was positively associated with copy number variation and negatively associated with methylation. In AIM2i-RGs, missense mutations were the predominant type of single nucleotide polymorphism. Moreover, we found that the drugs dimethyloxallyl glycine (DMOG) and Z-LNle-CHO may be sensitive to the AIM2 inflammasomes. The AIM2 inflammasomes score was significantly and positively correlated with the tumor immunity score and the stroma score. In most tumors, the AIM2 inflammasomes score was significantly and positively correlated with CD8+ T cell abundance in the tumor microenvironment. Additionally, the AIM2 inflammasomes score was significantly correlated with immune checkpoint genes in pan-cancer as well as immune checkpoint therapy-related markers including tumor mutational burden (TMB), microsatellite instability(MSI), and tumor immune dysfunction and exclusion(TIDE). scRNA-seq analysis suggested that AIM2 inflammasomes differ significantly among different cells in the tumor microenvironment. IHC confirmed low expression of AIM2 in colorectal cancer.DiscussionAIM2 inflammasomes may be a new target for future tumor therapy It is likely involved in tumor development, and its high expression may serve as a predictor of tumor immunotherapy efficacy.
Collapse
Affiliation(s)
- Yan Qin
- Department of Health Management, The People’s Hospital of Guangxi Zhuang Autonomous Region & Research center of Health Management, Guangxi Academy of Medical Sciences, Nanning, China
| | - Liuxian Pan
- Department of Health Management, The People’s Hospital of Guangxi Zhuang Autonomous Region & Research center of Health Management, Guangxi Academy of Medical Sciences, Nanning, China
| | - Tianyu Qin
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Hanyi Ruan
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yujie Zhang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yan Zhang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jianli Li
- Department of Health Management, The People’s Hospital of Guangxi Zhuang Autonomous Region & Research center of Health Management, Guangxi Academy of Medical Sciences, Nanning, China
| | - Jianrong Yang
- Department of Health Management, The People’s Hospital of Guangxi Zhuang Autonomous Region & Research center of Health Management, Guangxi Academy of Medical Sciences, Nanning, China
- *Correspondence: Wei Li, ; Jianrong Yang,
| | - Wei Li
- Department of Health Management, The People’s Hospital of Guangxi Zhuang Autonomous Region & Research center of Health Management, Guangxi Academy of Medical Sciences, Nanning, China
- *Correspondence: Wei Li, ; Jianrong Yang,
| |
Collapse
|
14
|
Zhang Y, Hu B, Qian X, Xu G, Jin X, Chen D, Tang J, Xu L. Transcriptomics-based analysis of co-exposure of cadmium (Cd) and 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) indicates mitochondrial dysfunction induces NLRP3 inflammasome and inflammatory cell death in renal tubular epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113790. [PMID: 35753275 DOI: 10.1016/j.ecoenv.2022.113790] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Environmental pollution often releases multiple contaminants resulting in as yet largely uncharacterized additive toxicities. Cadmium (Cd) is a widespread pollutant that induces nephrotoxicity in animal models and humans. However, the combined effect of Cd in causing nephrotoxicity with 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), a typical congener of polybrominated diphenyl ethers (PBDEs), has not been evaluated and mechanisms are not completely clear. Here, we applied transcriptome sequencing analysis to investigate the combined toxicity of Cd and BDE-47 in the renal tubular epithelial cell lines HKCs. Cd or BDE-47 exposure decreased cell viability in a dose-dependent manner, and exhibited cell swelling and rounding similar to necrosis, which was exacerbated by co-exposure. Transcriptomic analysis revealed 2191, 1331 and 3787 differentially-expressed genes following treatment with Cd, BDE-47 and co-exposure, respectively. Interestingly, functional annotation and enrichment analyses showed involvement of pathways for oxidative stress, NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome and inflammatory cell death for all three treatments. Examination of indices of mitochondrial function and oxidative stress in HKC cells showed that the levels of reactive oxygen species (ROS), malondialdehyde (MDA) and intracellular calcium ion concentration [Ca2+]i were elevated, while superoxide dismutase (SOD) and mitochondrial membrane potential (MMP) were decreased. The ratio of apoptotic and necrotic cells and intracellular lactate dehydrogenase (LDH) release were increased by Cd or BDE-47 exposure, and was aggravated by co-exposure, and was attenuated by ROS scavenger N-Acetyl-L-cysteine (NAC). NLRP3 inflammasome and pyroptosis pathway-related genes of NLRP3, adaptor molecule apoptosis-associated speck-like protein (ASC), caspase-1, interleukin-18 (IL-18) and IL-1β were elevated, while gasdermin D (GSDMD) was down-regulated, and protein levels of NLRP3, cleaved caspase-1 and cleaved GSDMD were increased, most of which were relieved by NAC. Our data demonstrate that exposure to Cd and BDE-47 induces mitochondrial dysfunction and triggers NLRP3 inflammasome and GSDMD-dependent pyroptosis leading to nephrotoxicity, and co-exposure exacerbates this effect, which could be attenuated by inhibiting ROS. This study provides a further mechanistic understanding of kidney damage, and co-exposure impact is worthy of concern and should be considered to improve the accuracy of environmental health assessment.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Pathology and Key-Innovative Discipline Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Bo Hu
- Department of Pathology and Key-Innovative Discipline Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Xiaolan Qian
- Department of Pathology and Key-Innovative Discipline Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Guangtao Xu
- Forensic and Pathology Laboratory, Department of Public Health, Department of Pathology, Institute of Forensic Science, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Xin Jin
- Forensic and Pathology Laboratory, Department of Public Health, Department of Pathology, Institute of Forensic Science, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Deqing Chen
- Forensic and Pathology Laboratory, Department of Public Health, Department of Pathology, Institute of Forensic Science, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Jie Tang
- Department of Pathology and Key-Innovative Discipline Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Long Xu
- Forensic and Pathology Laboratory, Department of Public Health, Department of Pathology, Institute of Forensic Science, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| |
Collapse
|
15
|
Wang G, Wei W, Jiang Z, Jiang J, Han J, Zhang H, Hu J, Zhang P, Li X, Chen T, He J, Li Z, Lai J, Liang H, Ning C, Ye L. Talaromyces marneffei activates the AIM2-caspase-1/-4-GSDMD axis to induce pyroptosis in hepatocytes. Virulence 2022; 13:963-979. [PMID: 35639503 PMCID: PMC9176249 DOI: 10.1080/21505594.2022.2080904] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Talaromyces marneffei tends to induce systemic infection in immunocompromised individuals, which is one of the causes of the high mortality. The underlying molecular mechanisms of T.marneffei-induced abnormal liver function are still poorly understood. In this study, we found that T.marneffei-infected patients could develop abnormal liver function, evidenced by reduced albumin and increased levels of aspartate aminotransferase (AST) and AST/alanine aminotransferase (ALT). T. marneffei-infected mice exhibited similar characteristics. In vitro investigations showed that T.marneffei induced the death of AML-12 cells. Furthermore, we determined that T.marneffei infection induced pyroptosis in hepatocytes of C57BL/6J mice and AML-12 cells, demonstrated by the increase of AIM2, caspase-1/-4, Gasdermin D(GSDMD) and pyroptosis-related cytokines in T.marneffei-infected mice/cells. Importantly, cell death was markedly suppressed in the presence of VX765 (an inhibitor of caspase-1/-4). Furthermore, in the presence of VX765, T.marneffei-induced pyroptosis was blocked. Nevertheless, necroptosis and apoptosis were also detected in infected animal model at 14 days post-infection. In conclusion, T.marneffei induces pyroptosis in hepatocytes through activation of the AIM2-caspase-1/-4-GSDMD axis, which may be an important cause of liver damage, and other death pathways including necroptosis and apoptosis may also be involved in the later stage of infection.
Collapse
Affiliation(s)
- Gang Wang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Wudi Wei
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhongsheng Jiang
- Department of Infectious Diseases, Liuzhou People's Hospital, Liuzhou, Guangxi, China
| | - Junjun Jiang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Jing Han
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Hong Zhang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Jiaguang Hu
- Department of Infectious Diseases, Liuzhou People's Hospital, Liuzhou, Guangxi, China
| | - Peng Zhang
- Department of Infectious Diseases, Liuzhou People's Hospital, Liuzhou, Guangxi, China
| | - Xu Li
- Department of Infectious Diseases, Liuzhou People's Hospital, Liuzhou, Guangxi, China
| | - Tao Chen
- Department of Infectious Diseases, Liuzhou People's Hospital, Liuzhou, Guangxi, China
| | - Jinhao He
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhen Li
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Jingzhen Lai
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Chuanyi Ning
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.,Nursing College, Guangxi Medical University, Nanning, Guangxi, China
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
16
|
Jayavelu AK, Wolf S, Buettner F, Alexe G, Häupl B, Comoglio F, Schneider C, Doebele C, Fuhrmann DC, Wagner S, Donato E, Andresen C, Wilke AC, Zindel A, Jahn D, Splettstoesser B, Plessmann U, Münch S, Abou-El-Ardat K, Makowka P, Acker F, Enssle JC, Cremer A, Schnütgen F, Kurrle N, Chapuy B, Löber J, Hartmann S, Wild PJ, Wittig I, Hübschmann D, Kaderali L, Cox J, Brüne B, Röllig C, Thiede C, Steffen B, Bornhäuser M, Trumpp A, Urlaub H, Stegmaier K, Serve H, Mann M, Oellerich T. The proteogenomic subtypes of acute myeloid leukemia. Cancer Cell 2022; 40:301-317.e12. [PMID: 35245447 DOI: 10.1016/j.ccell.2022.02.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/30/2021] [Accepted: 02/07/2022] [Indexed: 12/16/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive blood cancer with a poor prognosis. We report a comprehensive proteogenomic analysis of bone marrow biopsies from 252 uniformly treated AML patients to elucidate the molecular pathophysiology of AML in order to inform future diagnostic and therapeutic approaches. In addition to in-depth quantitative proteomics, our analysis includes cytogenetic profiling and DNA/RNA sequencing. We identify five proteomic AML subtypes, each reflecting specific biological features spanning genomic boundaries. Two of these proteomic subtypes correlate with patient outcome, but none is exclusively associated with specific genomic aberrations. Remarkably, one subtype (Mito-AML), which is captured only in the proteome, is characterized by high expression of mitochondrial proteins and confers poor outcome, with reduced remission rate and shorter overall survival on treatment with intensive induction chemotherapy. Functional analyses reveal that Mito-AML is metabolically wired toward stronger complex I-dependent respiration and is more responsive to treatment with the BCL2 inhibitor venetoclax.
Collapse
Affiliation(s)
- Ashok Kumar Jayavelu
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany; Clinical Cooperation Unit Pediatric Leukemia, DKFZ and Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Germany; Hopp Children's Cancer Center Heidelberg - KiTZ, Heidelberg, Germany
| | - Sebastian Wolf
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
| | - Florian Buettner
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Medicine, University Hospital Frankfurt, Goethe University, Frankfurt, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
| | - Gabriela Alexe
- Division of Hematology/Oncology, Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA, USA
| | - Björn Häupl
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
| | | | - Constanze Schneider
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany
| | - Carmen Doebele
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Sebastian Wagner
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany
| | - Elisa Donato
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Carolin Andresen
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Anne C Wilke
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany
| | - Alena Zindel
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominique Jahn
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bianca Splettstoesser
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Uwe Plessmann
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Silvia Münch
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany
| | - Khali Abou-El-Ardat
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany
| | - Philipp Makowka
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany
| | - Fabian Acker
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany
| | - Julius C Enssle
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany
| | - Anjali Cremer
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany
| | - Frank Schnütgen
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
| | - Nina Kurrle
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
| | - Björn Chapuy
- Department of Medical Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany; Department of Hematology, Oncology and Tumor Immunology, Charité, Campus Benjamin Franklin, University Medicine Berlin, Berlin, Germany
| | - Jens Löber
- Department of Medical Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany; Department of Hematology, Oncology and Tumor Immunology, Charité, Campus Benjamin Franklin, University Medicine Berlin, Berlin, Germany
| | - Sylvia Hartmann
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt, Germany
| | - Peter J Wild
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt, Germany
| | - Ilka Wittig
- Functional Proteomics, Institute of Cardiovascular Physiology, Goethe University, Frankfurt, Germany
| | - Daniel Hübschmann
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany; Pattern Recognition and Digital Medicine, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany; Computational Oncology, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lars Kaderali
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Jürgen Cox
- Computational Systems Biochemistry Research Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Bernhard Brüne
- Department of Biochemistry I, Goethe University, Frankfurt, Germany
| | - Christoph Röllig
- Department of Internal Medicine I, University Hospital Carl Gustav Carus TU Dresden, Dresden, Germany
| | - Christian Thiede
- Department of Internal Medicine I, University Hospital Carl Gustav Carus TU Dresden, Dresden, Germany
| | - Björn Steffen
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany
| | - Martin Bornhäuser
- Department of Internal Medicine I, University Hospital Carl Gustav Carus TU Dresden, Dresden, Germany; National Center for Tumor Diseases, Dresden (NCT/UCC), Dresden, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany; Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Kimberly Stegmaier
- Division of Hematology/Oncology, Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Hubert Serve
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany.
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | - Thomas Oellerich
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany.
| |
Collapse
|
17
|
Hydroquinone destabilizes BIM mRNA through upregulation of p62 in chronic myeloid leukemia cells. Biochem Pharmacol 2022; 199:115017. [DOI: 10.1016/j.bcp.2022.115017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 11/21/2022]
|
18
|
Zhang W, Guo X, Ren J, Chen Y, Wang J, Gao A. GCN5-mediated PKM2 acetylation participates in benzene-induced hematotoxicity through regulating glycolysis and inflammation via p-Stat3/IL17A axis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118708. [PMID: 34929209 DOI: 10.1016/j.envpol.2021.118708] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Benzene is a common environmental carcinogen that induces leukemia. Studies suggest that metabolic disorder has a relationship with the toxicity of benzene. Pyruvate kinase M2 (PKM2) is a key rate-limiting enzyme in glycolysis. However, the upstream and downstream regulatory mechanisms of PKM2 in benzene-induced hematotoxicity and the therapeutic effects of targeting PKM2 in vivo are unclear. This study aims to provide insights into the new mechanism of benzene-induced hematotoxicity and reveal the therapeutic significance of targeting PKM2. Herein, we demonstrated that PKM2-dependent glycolysis contributes to benzene-induced hematotoxicity by regulating inflammation reaction. Mechanistically, acetylated proteomics revealed that 1,4-benzoquinone (1,4-BQ) induced acetylation of PKM2 at position K66, and this modification contributed to the increase of PKM2 expression and can be inhibited by inhibition of acetyltransferase GCN5. Meanwhile, the elevated PKM2 was shown to prompt the activation of nuclear phosphorylated Stat3 (p-Stat3) and IL17A. Clinically, pharmacological inhibition of PKM2 alleviated the blood toxicity induced by benzene, which was mainly characterized by an increase in routine blood parameters and improvement of hematopoietic imbalance. Besides, elevated PKM2 is a promising biomarker in people occupationally exposed to benzene. Overall, we identified PKM2/p-Stat3/IL-17A axis participates in the hematotoxicity of benzene, and targeting PKM2 has certain therapeutic implications in hematologic diseases.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Xiaoli Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Jing Ren
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Yujiao Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Jingyu Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| |
Collapse
|
19
|
Guo X, Zhang L, Wang J, Zhang W, Ren J, Chen Y, Zhang Y, Gao A. Plasma metabolomics study reveals the critical metabolic signatures for benzene-induced hematotoxicity. JCI Insight 2022; 7:154999. [PMID: 35076025 PMCID: PMC8855792 DOI: 10.1172/jci.insight.154999] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022] Open
Affiliation(s)
- Xiaoli Guo
- Department of Occupational Health and Environmental Health, School of Public Health, and
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Lei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, and
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Jingyu Wang
- Department of Occupational Health and Environmental Health, School of Public Health, and
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Wei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, and
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Jing Ren
- Department of Occupational Health and Environmental Health, School of Public Health, and
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Yujiao Chen
- Department of Occupational Health and Environmental Health, School of Public Health, and
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Yanlin Zhang
- Research Center of Occupational Medicine, Peking University Third Hospital, Haidian District, Beijing, China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, and
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Nour-Eldine W, Sayyed K, Harhous Z, Dagher-Hamalian C, Mehanna S, Achkouti D, ElKazzaz H, Khnayzer RS, Kobeissy F, Khalil C, Abi-Gerges A. Gasoline fume inhalation induces apoptosis, inflammation, and favors Th2 polarization in C57BL/6 mice. J Appl Toxicol 2022; 42:1178-1191. [PMID: 35001415 DOI: 10.1002/jat.4286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/11/2021] [Accepted: 12/23/2021] [Indexed: 11/10/2022]
Abstract
Gasoline exposure has been widely reported in the literature as being toxic to human health. However, the exact underlying molecular mechanisms triggered by its inhalation have not been thoroughly investigated. We herein present a model of sub-chronic, static gasoline vapor inhalation in adult female C57BL/6 mice. Animals were exposed daily to either gasoline vapors (0.86 g/animal/90 minutes) or ambient air for five days/week over seven consecutive weeks. At the end of the study period, toxic and molecular mechanisms, underlying the inflammatory, oxidative, and apoptotic effects triggered by gasoline vapors, were examined in the lungs and liver of gasoline exposed mice. Static gasoline exposure induced a significant increase (+21 %) in lungs/body weight ratio in gasoline-exposed (GE) versus control (CON) mice along with a pulmonary inflammation attested by histological staining. The latter was consistent with increases in the transcript levels of proinflammatory cytokines [Interleukins (ILs) 4 and 6], respectively by ~ 6-, 4-fold in the lungs of GE mice compared to CON. Interestingly, IL-10 expression was also increased by ~ 10-fold in the lungs of GE mice suggesting an attempt to counterbalance the established inflammation. Moreover, the pulmonary expression of IL-12 and TNF-α was downregulated by 2- and 4-fold, respectively, suggesting the skewing toward Th2 phenotype. Additionally, GE mice showed a significant upregulation in Bax/Bcl-2 ratio, caspases 3, 8 and 9 with no change in JNK expression in the lungs, suggesting the activation of both intrinsic and extrinsic apoptotic pathways. Static gasoline exposure over seven consecutive weeks had a minor hepatic portal inflammation attested by H&E staining along with an increase in the hepatic expression of the mitochondrial complexes in GE mice. Therefore, tissue damage biomarkers highlight the health risks associated with vapor exposure and may present potential therapeutic targets for recovery from gasoline intoxication.
Collapse
Affiliation(s)
- Wared Nour-Eldine
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Katia Sayyed
- School of Arts and Sciences, Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Zeina Harhous
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Carole Dagher-Hamalian
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Stephanie Mehanna
- Department of Natural Sciences, Lebanese American University, Chouran, Beirut, Lebanon
| | - Donna Achkouti
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Hanan ElKazzaz
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Rony S Khnayzer
- Department of Natural Sciences, Lebanese American University, Chouran, Beirut, Lebanon
| | - Firas Kobeissy
- Faculty of Medicine, Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Christian Khalil
- School of Arts and Sciences, Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Aniella Abi-Gerges
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| |
Collapse
|
21
|
Guan S, Jian L, He Y, Su Y, Zhou L. Bioinformatic identification of differentially expressed genes regulated by DNA-methylation in glioblastoma. Eur J Neurosci 2021; 55:1278-1290. [PMID: 34963193 DOI: 10.1111/ejn.15580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/25/2022]
Abstract
DNA methylation-driven differentially expressed genes (DEGs) play potentially important roles in glioblastoma (GBM). In the present study, we applied bioinformatic analyses to identify key methylation-regulated DEGs (MeDEGs) in glioblastoma and elucidate their functions. Gene expression and methylation profile data from glioblastoma samples along with clinical information were obtained from GEO and TCGA databases. A total of 65 genes were identified as MeDEGs from the aforementioned data. Subsequently, gene ontology and kyoto encyclopedia of genes and genomes enrichment analyses of these MeDEGs exhibited that MeDEGs were mostly enriched in several tumor-related terms such as "activation of cysteine-type endopeptidase activity involved in apoptotic process" and "phospholipid scrambling". Kaplan-Meier survival analysis demonstrated significant correlation of CASP1, CFH, and TTLL7 hyper-methylation with patient prognosis. Finally, CASP1 protein could indirectly interact with CFH protein, but interaction of TTLL7 protein with CASP1 or CFH protein was not evident. Based on gene set enrichment analysis, hyper-methylation of CASP1, CFH, and TTLL7 were found enriched in tumor-related KEGG terms, such as "RNA degradation", "apyruvate metabolism", and "nitrogen metabolism". Methylation levels of CASP1, CFH, and TTLL7 were addressed to negatively correlate with their mRNA levels in GBM cell lines. In sum, the present identification of MeDEGs associated with overall survival put forth potential molecular targets for translation towards improved diagnosis and treatment of GBM and specifically, methylation levels of CASP1, CFH, and TTLL7 genes could serve as key prognostic biomarkers in GBM.
Collapse
Affiliation(s)
- Sizhong Guan
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, P.R. China
| | - Linge Jian
- West China Medical School, Sichuan University, Chengdu, P.R. China
| | - Ye He
- Department of Laboratory, The First Hospital of China Medical University, Shenyang, P.R. China
| | - Yanna Su
- Department of Laboratory, The First Hospital of China Medical University, Shenyang, P.R. China
| | - Liping Zhou
- Post Graduation Training Department, The First Hospital of China Medical University, Shenyang, P.R. China
| |
Collapse
|
22
|
Zhang W, Guo X, Ren J, Chen Y, Wang J, Gao A. Glycine/glycine N-methyltransferase/sarcosine axis mediates benzene-induced hematotoxicity. Toxicol Appl Pharmacol 2021; 428:115682. [PMID: 34418406 DOI: 10.1016/j.taap.2021.115682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 11/20/2022]
Abstract
Benzene, an important and widely used industrial chemical, is the cause of different types of blood disorders. However, the mechanisms of benzene-induced hematotoxicity are still unclear. This study aimed to explore the effects of benzene on metabolism, especially in amino acid metabolism, in human peripheral blood B lymphocyte cells (AHH-1 cells) treated with 1,4-benzoquinone (1,4-BQ) and in benzene-exposed population based on the un-targeted and targeted metabolomics platforms. The results showed that 1,4-BQ disturbed the metabolic activity, such as arginine biosynthesis, citrate cycle, glycine, serine, and threonine metabolism pathways, and significantly upregulated the ratio of sarcosine/glycine in vitro. Meanwhile, the targeted metabolomics further showed that the ratio of sarcosine/glycine was also increased in the benzene exposure population. Notably, the expression of glycine N-methyltransferase (GNMT), an enzyme catalyzing the transformation of glycine to sarcosine, was upregulated both in 1,4-BQ treated AHH-1 cells and benzene-exposed workers. These results imply that the glycine/GNMT/sarcosine axis was involved in benzene-induced hematotoxicity. Such evidence will help to develop a better understanding of the underlying mechanism of benzene-induced hematotoxicity at the level of amino acid metabolism.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Xiaoli Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Jing Ren
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yujiao Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Jingyu Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
23
|
Cox LA, Ketelslegers HB, Lewis RJ. The shape of low-concentration dose-response functions for benzene: implications for human health risk assessment. Crit Rev Toxicol 2021; 51:95-116. [PMID: 33853483 DOI: 10.1080/10408444.2020.1860903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Are dose-response relationships for benzene and health effects such as myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) supra-linear, with disproportionately high risks at low concentrations, e.g. below 1 ppm? To investigate this hypothesis, we apply recent mode of action (MoA) and mechanistic information and modern data science techniques to quantify air benzene-urinary metabolite relationships in a previously studied data set for Tianjin, China factory workers. We find that physiologically based pharmacokinetics (PBPK) models and data for Tianjin workers show approximately linear production of benzene metabolites for air benzene (AB) concentrations below about 15 ppm, with modest sublinearity at low concentrations (e.g. below 5 ppm). Analysis of the Tianjin worker data using partial dependence plots reveals that production of metabolites increases disproportionately with increases in air benzene (AB) concentrations above 10 ppm, exhibiting steep sublinearity (J shape) before becoming saturated. As a consequence, estimated cumulative exposure is not an adequate basis for predicting risk. Risk assessments must consider the variability of exposure concentrations around estimated exposure concentrations to avoid over-estimating risks at low concentrations. The same average concentration for a specified duration is disproportionately risky if it has higher variance. Conversely, if chronic inflammation via activation of inflammasomes is a critical event for induction of MDS and other health effects, then sufficiently low concentrations of benzene are predicted not to cause increased risks of inflammasome-mediated diseases, no matter how long the duration of exposure. Thus, we find no evidence that the dose-response relationship is supra-linear at low doses; instead sublinear or zero excess risk at low concentrations is more consistent with the data. A combination of physiologically based pharmacokinetic (PBPK) modeling, Bayesian network (BN) analysis and inference, and partial dependence plots appears a promising and practical approach for applying current data science methods to advance benzene risk assessment.
Collapse
Affiliation(s)
- Louis A Cox
- Cox Associates LLC, Denver, CO, USA.,Department of Business Analytics, University of Colorado, Denver, CO, USA
| | - Hans B Ketelslegers
- Concawe Division, European Petroleum Refiners Association, Brussels, Belgium
| | - R Jeffrey Lewis
- Concawe Division, European Petroleum Refiners Association, Brussels, Belgium.,ExxonMobil Biomedical Sciences, Inc, Clinton, NJ, USA
| |
Collapse
|
24
|
Wang J, Guo X, Chen Y, Zhang W, Ren J, Gao A. Association between benzene exposure, serum levels of cytokines and hematological measures in Chinese workers: A cross-sectional study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111562. [PMID: 33254416 DOI: 10.1016/j.ecoenv.2020.111562] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Low benzene exposure leads to hematotoxicity, but we still lack sensitive early monitoring and early warning markers. Benzene is associated with inflammation, which is mainly mediated by cytokines network. However, until now few studies have conducted high-throughput detection of multi-cytokines to get a global view of cytokine changes and screen for markers of benzene-induced toxicity. We hypothesized that cytokine profiles mediate benzene-induced hematotoxicity. METHODS 228 subjects consisting of 114 low benzene exposed workers and 114 healthy controls were recruited at Research Center of Occupational Medicine, Peking University Third Hospital, Beijing. The serum concentrations of 27 cytokines were detected by cytokinomics array, urinary benzene series metabolites were measured by UPLC-MS/MS, and peripheral blood cell counts were observed by basic blood test. RESULTS Among 27 cytokines, IL-9 and MIP1-α were significantly lower, but IL-4, IL-10, IL-15, MCP-1, TNF-α and VEGF were significantly higher in benzene exposure group than controls. Urinary benzene metabolite S-phenylmercapturic acid (S-PMA) was significantly higher in benzene exposure group and had a negative linear relationship with WBC count. S-PMA was only significantly associated with IL-9, meanwhile IL-9, IL-15 and VEGF had a positive linear relationship with WBC count. The bootstrapping mediation models showed that the effect of S-PMA on WBC count was partially explained by IL-9 for 10.11%. CONCLUSION This study suggests that exposure to benzene was associated with alternation of blood cell count and cytokine profiles in workers exposed to low levels of benzene, especially decreases of WBC count and IL-9. We also found IL-9 partially mediated the effect of low benzene exposure on WBC count, which may be a potential and promising early monitoring and early warning marker of benzene hematotoxicity.
Collapse
Affiliation(s)
- Jingyu Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Xiaoli Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yujiao Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Wei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Jing Ren
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
25
|
LncRNA-OBFC2A targeted to Smad3 regulated Cyclin D1 influences cell cycle arrest induced by 1,4-benzoquinone. Toxicol Lett 2020; 332:74-81. [DOI: 10.1016/j.toxlet.2020.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/22/2020] [Accepted: 07/05/2020] [Indexed: 02/03/2023]
|
26
|
Guo H, Ahn S, Zhang L. Benzene-associated immunosuppression and chronic inflammation in humans: a systematic review. Occup Environ Med 2020; 78:oemed-2020-106517. [PMID: 32938756 PMCID: PMC7960562 DOI: 10.1136/oemed-2020-106517] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 08/01/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Recent evidence has accumulated that the immune system is intimately intertwined with cancer development. Two key characteristics of carcinogens in which the immune system plays a central role are chronic inflammation and immunosuppression. In this systematic review, we investigated the association of chronic inflammatory and immunosuppressive outcomes with benzene, a widely used industrial chemical. Benzene has been confirmed to cause acute myeloid leukaemia and suspected to cause non-Hodgkin lymphoma, two cancers of the blood-forming system that affect immune cells. METHODS We systematically searched PubMed and Embase for all relevant studies using a combination of Medical Subject Headings (MeSH) and selected key words. The detailed review protocol, including search strategy, was registered with PROSPERO, the international prospective register of systematic reviews (#CRD42019138611). RESULTS Based on all human studies selected in the final review, we report new evidence of a benzene-induced immunosuppressive effect on the adaptive immune system and activation of the innate immune system to cause inflammation. In particular, benzene significantly lowers the number of white blood cells, particularly lymphocytes such as CD4+ T-cells, B-cells and natural killer cells, and increases proinflammatory biomarkers at low levels of exposure. CONCLUSION To the best of our knowledge, this is the first comprehensive review of benzene's immunotoxicity in humans. Based on results obtained from this review, we propose two potential immunotoxic mechanisms of how benzene induces leukaemia/lymphoma: (1) cancer invasion caused by proinflammatory cytokine production, and (2) cancer promotion via impaired immunosurveillance. Further studies will be required to confirm the connection between benzene exposure and its effects on the immune system.
Collapse
Affiliation(s)
- Helen Guo
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, California, USA
| | - Stacy Ahn
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, California, USA
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
27
|
He Z, Li Y, Lian Z, Liu J, Xian H, Jiang R, Hu Z, Fang D, Hu D. Exosomal secretion may be a self-protective mechanism of its source cells under environmental stress: A study on human bronchial epithelial cells treated with hydroquinone. J Appl Toxicol 2020; 41:265-275. [PMID: 32725655 DOI: 10.1002/jat.4043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/30/2020] [Accepted: 07/08/2020] [Indexed: 01/21/2023]
Abstract
Accumulating evidence reveals that exosome plays an important role in cell-to-cell communication in both physiological and pathological processes by transferring bioactive molecules. However, the role of exosomal secretion in the adaption of its source cells to the stimuli of environmental chemicals remains elusive. In this study, we revealed that the exposure of hydroquinone (HQ; the main bioactive metabolite of benzene) to human bronchial epithelial cells (16HBE) resulted in decreased ability of cell proliferation and migration, and simultaneously DNA damage and micronuclei formation. Interestingly, when exosomal secretion of HQ treated 16HBE cells was inhibited with the inhibitor GW4869, cellular proliferation and migration were further significantly reduced; concurrently, their DNA damage and micronuclei formation were both further significantly aggravated. Herein, we conclude that exosomal secretion of 16HBE cells may be an important self-protective function against the toxic effects induced by HQ.
Collapse
Affiliation(s)
- Zhonghan He
- Shiyan Institute of Preventive Medicine and Health Care, Shenzhen City, China.,Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yanfeng Li
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhenwei Lian
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jin Liu
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.,Department of Rehabilitation Medicine, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Hongyi Xian
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ran Jiang
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zuqing Hu
- Department of Clinical Medicine, Jiamusi University, China
| | - Daokui Fang
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.,Department of Environmental Health, Center for Disease Control and Prevention of Shenzhen City, Shenzhen, China
| | - Dalin Hu
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|