1
|
Kooragayala K, Wang M, Spitz FJ, Gandhi TV, Dibato J, Hong YK. Unmasking Disparities in Gallbladder Cancer Outcomes in the Disaggregated Asian American Population. Ann Surg Oncol 2024; 31:8699-8711. [PMID: 39259371 PMCID: PMC11549147 DOI: 10.1245/s10434-024-16168-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Gallbladder cancer (GBC) is associated with a high mortality rate. Asian American (AsA) are among the fastest-growing populations in the United States, yet little is known about the disparity of GBC within this cohort. This study identified trends in treatment and outcomes for GBC in a disaggregated fashion, specifically for this population. METHODS A retrospective analysis of the National Cancer Database (NCDB) between 2010 and 2019 examining all patients treated for gallbladder cancer was performed. Basic demographic factors were identified for patients of Caucasian, African American, and disaggregated Asian subpopulations. Survival curves were used to identify differences in median overall survival, and a multivariate analysis was performed to determine which factors impact overall survival. RESULTS A total of 1317 (5%) patients were of AsA origin. Median survival for the overall AsA population is 15.1 months compared with Caucasian (11.5 months) and African Americans (11.4 months) (p < 0.0001). Within the AsA groups, the Korean subpopulation had the lowest survival at 12.6 months, whereas Filipinos had the longest survival at 19.1 months (p < 0.0001). Patients of Filipino descent had the highest rate of surgical resection but lower chemotherapy utilization. Conversely, Korean patients had the highest utilization of multimodality therapy. Multivariate analysis demonstrated that belonging to Chinese, Filipino, or Indian ethnicity was associated with decreased risk of mortality. CONCLUSIONS There are disparate differences in survival for patients with GBC between AsA groups. Socioeconomic, genetic, and epigenetic factors may influence these differences. Further research is needed to delineate the causes of this disparity.
Collapse
Affiliation(s)
| | - Michael Wang
- Department of Surgery, Cooper University Hospital, Camden, NJ, USA
| | - Francis J Spitz
- Department of Surgery, Cooper University Hospital, Camden, NJ, USA
| | | | - John Dibato
- Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Young Ki Hong
- Department of Surgery, Cooper University Hospital, Camden, NJ, USA.
- Cooper Medical School of Rowan University, Camden, NJ, USA.
| |
Collapse
|
2
|
Wang Q, Zhang Z, Zhou H, Qin Y, He J, Li L, Ding X. Eosinophil-Associated Genes are Potential Biomarkers for Hepatocellular Carcinoma Prognosis. J Cancer 2024; 15:5605-5621. [PMID: 39308686 PMCID: PMC11414626 DOI: 10.7150/jca.95138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Background: Eosinophils, a type of white blood cell originating from the bone marrow, are widely believed to play a crucial role in inflammatory processes, including allergic reactions and parasitic infections. However, the relationship between eosinophils and liver cancer is not well understood. Methods: Tumor immune infiltration scores were calculated using single-sample Gene Set Enrichment Analysis (ssGSEA). Key modules and hub genes associated with eosinophils were screened using Weighted Gene Co-expression Network Analysis (WGCNA). Univariate and multivariate Cox analyses, along with LASSO regression, were used to identify prognostic genes and create a risk model. The Tumor Immune Dysfunction and Exclusion (TIDE) score was used to evaluate the immunotherapeutic significance of the eosinophil-associated gene risk score (ERS) model. Experiments such as flow cytometry, immunohistochemical analysis, real-time quantitative PCR (RT-qPCR), and Western blotting were used to determine gene expression levels and the status of eosinophil infiltration in tumors. Results: A risk trait model including 4 eosinophil-associated genes (RAMP3, G6PD, SSRP1, PLOD2) was developed by univariate Cox analysis and Lasso screening. Pathologic grading (p < 0.001) and model risk scores (p < 0.001) were found to be independent predictors of hepatocellular carcinoma (HCC) patient survival. Western blotting revealed higher levels of eosinophil peroxidase (EPX) in HCC tissues compared to adjacent normal tissues. Immunohistochemistry showed that eosinophils mainly infiltrated the connective tissue around HCC. The HCC samples showed low expression of RAMP3 and high expression of G6PD, SSRP1, and PLOD2, as detected by IHC and RT-qPCR analysis. The in vivo mouse experiments showed that IL-33 treatment induced the recruitment of eosinophils and reduced the number of intrahepatic tumor nodules. Conclusion: Overall, eosinophil infiltration in HCC is significantly correlated with patient survival. The risk assessment model based on eosinophil-related genes serves as a reliable clinical prognostic indicator and provides insights for precise treatment of HCC.
Collapse
Affiliation(s)
- Qinghao Wang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha, 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Zixin Zhang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha, 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Hao Zhou
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yanling Qin
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun He
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, 410007, China
| | - Limin Li
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- College of Engineering and Design, Hunan Normal University, Changsha, 410081, China
| | - Xiaofeng Ding
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha, 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, China
| |
Collapse
|
3
|
Pang X, Wang Y, Zhang Q, Qian S. A stemness-based signature with inspiring indications in discriminating the prognosis, immune response, and somatic mutation of endometrial cancer patients revealed by machine learning. Aging (Albany NY) 2024; 16:11248-11274. [PMID: 39079132 PMCID: PMC11315399 DOI: 10.18632/aging.205979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/02/2023] [Indexed: 08/06/2024]
Abstract
Endometrial cancer (EC) is a fatal gynecologic tumor. Bioinformatic tools are increasingly developed to screen out molecular targets related to EC. Our study aimed to identify stemness-related prognostic biomarkers for new therapeutic strategies in EC. In this study, we explored the prognostic value of cancer stem cells (CSCs), characterized by self-renewal and unlimited proliferation, and its correlation with immune infiltrates in EC. Transcriptome and somatic mutation profiles of EC were downloaded from TCGA database. Based on their stemness signature and DEGs, EC patients were divided into two subtypes via consensus clustering, and patients in Stemness Subtype I presented significantly better OS and DFS than Stemness Subtype II. Subtype I also displayed better clinicopathological features, and genomic variations demonstrated different somatic mutation from subtype II. Additionally, two stemness subtypes had distinct tumor immune microenvironment patterns. In the end, three machine learning algorithms were applied to construct a 7-gene stemness subtype risk model, which were further validated in an external independent EC cohort in our hospital. This novel stemness-based classification could provide a promising prognostic predictor for EC and may guide physicians in selecting potential responders for preferential use of immunotherapy. This novel stemness-dependent classification method has high value in predicting the prognosis, and also provides a reference for clinicians in selecting sensitive immunotherapy methods for EC patients.
Collapse
Affiliation(s)
- Xuecheng Pang
- Gynecology Department 2, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Yu Wang
- Gynecology Department 2, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Qiang Zhang
- Second Department of Anesthesia, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Sumin Qian
- Gynecology Department 2, Cangzhou Central Hospital, Cangzhou, Hebei, China
| |
Collapse
|
4
|
Fu Y, Tao J, Gu Y, Liu Y, Qiu J, Su D, Wang R, Luo W, Liu T, Zhang F, Zhang T, Zhao Y. Multiomics integration reveals NETosis heterogeneity and TLR2 as a prognostic biomarker in pancreatic cancer. NPJ Precis Oncol 2024; 8:109. [PMID: 38769374 PMCID: PMC11106236 DOI: 10.1038/s41698-024-00586-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/28/2024] [Indexed: 05/22/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant neoplasm characterized by a poor prognosis and limited therapeutic strategy. The PDAC tumor microenvironment presents a complex heterogeneity, where neutrophils emerge as the predominant constituents of the innate immune cell population. Leveraging the power of single-cell RNA-seq, spatial RNA-seq, and multi-omics approaches, we included both published datasets and our in-house patient cohorts, elucidating the inherent heterogeneity in the formation of neutrophil extracellular traps (NETs) and revealed the correlation between NETs and immune suppression. Meanwhile, we constructed a multi-omics prognostic model that suggested the patients exhibiting downregulated expression of NETs may have an unfavorable outcome. We also confirmed TLR2 as a potent prognosis factor and patients with low TLR2 expression had more effective T cells and an overall survival extension for 6 months. Targeting TLR2 might be a promising strategy to reverse immunosuppression and control tumor progression for an improved prognosis.
Collapse
Affiliation(s)
- Yifan Fu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- 4 + 4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jinxin Tao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yani Gu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100005, China
| | - Yueze Liu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jiangdong Qiu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Dan Su
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ruobing Wang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Wenhao Luo
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Tao Liu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Feifan Zhang
- Department of Computer Science, University College London, London, UK
| | - Taiping Zhang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Yupei Zhao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
5
|
Zuo A, Li J, Weng S, Xu H, Zhang Y, Wang L, Xing Z, Luo P, Cheng Q, Li J, Han X, Liu Z. Integrated Exploration of Epigenetic Dysregulation Reveals a Stemness/EMT Subtype and MMP12 Linked to the Progression and Prognosis in Hepatocellular Carcinoma. J Proteome Res 2024; 23:1821-1833. [PMID: 38652053 DOI: 10.1021/acs.jproteome.4c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Epigenetic dysregulation drives aberrant transcriptional programs playing a critical role in hepatocellular carcinoma (HCC), which may provide novel insights into the heterogeneity of HCC. This study performed an integrated exploration on the epigenetic dysregulation of miRNA and methylation. We discovered and validated three patterns endowed with gene-related transcriptional traits and clinical outcomes. Specially, a stemness/epithelial-mesenchymal transition (EMT) subtype was featured by immune exhaustion and the worst prognosis. Besides, MMP12, a characteristic gene, was highly expressed in the stemness/EMT subtype, which was verified as a pivotal regulator linked to the unfavorable prognosis and further proven to promote tumor proliferation, invasion, and metastasis in vitro experiments. Proteomic analysis by mass spectrometry sequencing also indicated that the overexpression of MMP12 was significantly associated with cell proliferation and adhesion. Taken together, this study unveils innovative insights into epigenetic dysregulation and identifies a stemness/EMT subtype-specific gene, MMP12, correlated with the progression and prognosis of HCC.
Collapse
Affiliation(s)
- Anning Zuo
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jinyu Li
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zhe Xing
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jing Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
6
|
Feng T, Chen P, Wang T, Lai C, Yao Y. Integrated clinical and prognostic analyses of mTOR/Hippo pathway core genes in hepatocellular carcinoma. J Physiol Biochem 2024; 80:439-449. [PMID: 38468074 PMCID: PMC11074052 DOI: 10.1007/s13105-024-01015-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/29/2024] [Indexed: 03/13/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the most aggressive and dismal cancers globally. Emerging evidence has established that mTOR and Hippo pathways are oncogenic drivers of HCC. However, the prognostic value of these pathways in HCC remains unclear. In this study, we aimed to develop a gene signature utilizing the mTOR/Hippo genes for HCC prognostication. A multiple stage strategy was employed to screen, and a 12-gene signature based on mTOR/Hippo pathways was constructed to predict the prognosis of HCC patients. The risk scores calculated by the signature were inversely correlated with patient prognosis. Validation of the signature in independent cohort confirmed its predictive power. Further analysis revealed molecular differences between high and low-risk groups at genomic, transcriptomic, and protein-interactive levels. Moreover, immune infiltration analysis revealed an immunosuppressive state in the high-risk group. Finally, the gene signature could predict the sensitivity to current chemotherapeutic drugs. This study demonstrated that combinatorial mTOR/Hippo gene signature was a robust and independent prognostic tool for survival prediction of HCC. Our findings not only provide novel insights for the molecular understandings of mTOR/Hippo pathways in HCC, but also have important clinical implications for guiding therapeutic strategies.
Collapse
Affiliation(s)
- Tianhang Feng
- Department of Hepatobiliary and Pancreatic Surgery, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ping Chen
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Tao Wang
- Department of Hepatobiliary and Pancreatic Surgery, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chunyou Lai
- Department of Hepatobiliary and Pancreatic Surgery, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Yutong Yao
- Department of Hepatobiliary and Pancreatic Surgery, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
7
|
Qu X, Meng LC, Lu X, Chen X, Li Y, Zhou R, Zhu YJ, Luo YC, Huang JT, Shi XL, Zhang HB. Prognostic and metabolic characteristics of a novel cuproptosis-related signature in patients with hepatocellular carcinoma. Heliyon 2024; 10:e23686. [PMID: 38259960 PMCID: PMC10801206 DOI: 10.1016/j.heliyon.2023.e23686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 11/29/2023] [Accepted: 12/09/2023] [Indexed: 01/24/2024] Open
Abstract
Cuproptosis is a novel discovered mode of programmed cell death. To identify the molecular regulatory patterns related to cuproptosis, this study was designed for exploring the correlation between cuproptosis-related genes (CRGs) and the prognosis, metabolism, and treatment of hepatocellular carcinoma (HCC). Cancer Genome Atlas (TCGA) database was used to screen 363 HCC samples, which were categorized into 2 clusters based on the expression of CRGs. Survival analysis demonstrated that overall survival (OS) was better in Cluster 1 than Cluster 2 which might to be relevant to differences in metabolic based on functional analysis. With LASSO regression analysis and univariate COX regression, 8 prognosis-related genes were screened, a differently expressed genes (DEGs) were then constructed (HCC patients' DEGs)-based signature. The signature's stability was also validated in the 2 independent cohorts and test cohorts (GSE14520, HCC dataset in PCAWG). The 1-year, 3-year, and 5-year area under the curve (AUC) were 0.756, 0.706, and 0.722, respectively. The signature could also well predict the response to chemotherapy, targeted and transcatheter arterial chemoembolization (TACE) by providing a risk score. Moreover, the correlation was uncovered by the research between the metabolism and risk score. In conclusion, a unique cuproptosis-related signature that be capable of predicting patients' prognosis with HCC, and offered valuable insights into chemotherapy, TACE and targeted therapies for these patients has been developed.
Collapse
Affiliation(s)
- Xin Qu
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111, Dade Road, Guangzhou, Guangdong, 510120, China
| | - Ling-cui Meng
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111, Dade Road, Guangzhou, Guangdong, 510120, China
| | - Xi Lu
- Department of Ultrasound, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China
| | - Xian Chen
- Guangzhou Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510405, China
| | - Yong Li
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111, Dade Road, Guangzhou, Guangdong, 510120, China
| | - Rui Zhou
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111, Dade Road, Guangzhou, Guangdong, 510120, China
| | - Yan-juan Zhu
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Yi-chang Luo
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111, Dade Road, Guangzhou, Guangdong, 510120, China
| | - Jin-tao Huang
- Department of Oncology, Guangzhou Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Hospital of Traditional Chinese Medicine Affiliated to Guangzhou Medical University, Guangzhou, 510130, China
| | | | - Hai-Bo Zhang
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111, Dade Road, Guangzhou, Guangdong, 510120, China
| |
Collapse
|
8
|
Li X, Wang J, Guo Z, Ma Y, Xu D, Fan D, Dai P, Chen Y, Liu Q, Jiao J, Fan J, Wu N, Li X, Li G. Copper metabolism-related risk score identifies hepatocellular carcinoma subtypes and SLC27A5 as a potential regulator of cuproptosis. Aging (Albany NY) 2023; 15:15084-15113. [PMID: 38157255 PMCID: PMC10781498 DOI: 10.18632/aging.205334] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/10/2023] [Indexed: 01/03/2024]
Abstract
AIMS Dysregulated copper metabolism has been noticed in many types of cancer including hepatocellular carcinoma (HCC); however, a comprehensive understanding about this dysregulation still remains unclear in HCC. METHODS A set of bioinformatic tools was integrated to analyze the expression and prognostic significance of copper metabolism-related genes. A related risk score, termed as CMscore, was developed via univariate Cox regression, least absolute shrinkage and selection operator (LASSO) Cox regression and multivariate Cox regression. Pathway enrichment analyses and tumor immune cell infiltration were further investigated in CMscore stratified HCC patients. Weighted correlation network analysis (WGCNA) was used to identify potential regulator of cuproptosis. RESULTS Copper metabolism was dysregulated in HCC. HCC patients in the high-CMscore group showed a significantly lower overall survival (OS) and enriched in most cancer-related pathways. Besides, HCC patients with high CMscore had higher expression of pro-tumor immune infiltrates and immune checkpoints. Moreover, cancer patients with high CMscore from two large cohorts exhibited significantly prolonged survival time after immunotherapy. WGCNA and subsequently correlation analysis revealed that SLC27A5 might be a potential regulator of cuproptosis in HCC. In vitro experiments revealed that SLC27A5 inhibited cell proliferation and migration of HCC cells and could upregulate FDX1, the key regulator of cuproptosis. SIGNIFICANCE The CMscore is helpful in clustering HCC patients with distinct prognosis, gene mutation signatures, and sensitivity to immunotherapy. SLC27A5 might serve as a potential target in the induction of cuproptosis in HCC.
Collapse
Affiliation(s)
- Xiaoyan Li
- Department of Blood Transfusion, Shanxi Provincial People’s Hospital, Affiliate of Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Central Laboratory, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jinping Wang
- Department of Ultrasound, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zongliang Guo
- Department of General Surgery, Shanxi Province Cancer Hospital, Affiliated of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yong Ma
- Department of Thoracic Surgery, Shanxi Province Cancer Hospital, Affiliated of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Dawei Xu
- Department of Blood Transfusion, Shanxi Provincial People’s Hospital, Affiliate of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Daguang Fan
- Department of Hepatobiliary and Pancreatic Surgery, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Peng Dai
- Department of Hepatobiliary and Pancreatic Surgery, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yifan Chen
- College of Management, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Qiongwen Liu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Jinke Jiao
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Jinhan Fan
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Ningxue Wu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Xin Li
- Department of Geriatric Medicine, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Guoyin Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, Xi’an, Shannxi, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
9
|
Wan D, Li R, Huang H, Zhu X, Li G. Pan-cancer landscape of immunology PIWI-interacting RNAs. Comput Struct Biotechnol J 2023; 21:5309-5325. [PMID: 37941657 PMCID: PMC10628341 DOI: 10.1016/j.csbj.2023.10.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023] Open
Abstract
PIWI-interacting RNAs (piRNAs), an emergent type of non-coding RNAs during oncogenesis, play critical roles in regulating tumor microenvironment. Systematic analysis of piRNAs' roles in modulating immune pathways is important for tumor immunotherapy. In this study, in-depth analysis of piRNAs was performed to develop an integrated computational algorithm, the immunology piRNA (ImmPI) pipeline, for uncovering the global expression landscape of piRNAs and identifying their regulatory roles in immune pathways. The immunology piRNAs show a tendency towards overexpression patterns in immune cells, causing perturbations in tumors, being significantly associated with infiltration of immune cells, and having prognostic value. The ImmPI score can contribute to prioritizing tumor-related piRNAs and distinguish two subtypes of SKCM (immune-cold and hot phenotypes), as characterized by different prognoses, immunogenicity and antitumor immunity. Finally, we developed an interactive web resource (ImmPI portal: http://www.hbpding.com/ImmPi) for the biomedical research community, with several useful modules to browse, visualize, and download the results of immunology piRNAs analysis. Overall, our work provides a comprehensive landscape of piRNAs across multiple cancer types and sheds light on their regulatory and functional roles in tumor immunity. These findings pave the way for future research and development of piRNA-based immunotherapies for cancer treatment.
Collapse
Affiliation(s)
- Dongyi Wan
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ran Li
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Haohao Huang
- Department of Neurosurgery, General Hospital of Central Theater Command of Chinese People’s Liberation Army, Wuhan 430070, China
| | - Xiaohua Zhu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ganxun Li
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
10
|
Asari Y, Yamazaki J, Thandar O, Suzuki T, Aoshima K, Takeuchi K, Kinoshita R, Kim S, Hosoya K, Ishizaki T, Kagawa Y, Jelinek J, Yokoyama S, Sasaki N, Ohta H, Nakamura K, Takiguchi M. Diverse genome-wide DNA methylation alterations in canine hepatocellular tumours. Vet Med Sci 2023; 9:2006-2014. [PMID: 37483163 PMCID: PMC10508506 DOI: 10.1002/vms3.1204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 06/02/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Canine hepatocellular tumours (HCTs) are common primary liver tumours. However, the exact mechanisms of tumourigenesis remain unclear. Although some genetic mutations have been reported, DNA methylation alterations in canine HCT have not been well studied. OBJECTIVES In this study, we aimed to analyse the DNA methylation status of canine HCT. METHODS Tissues from 33 hepatocellular carcinomas, 3 hepatocellular adenomas, 1 nodular hyperplasia, 21 non-tumour livers from the patients and normal livers from 5 healthy dogs were used. We analysed the DNA methylation levels of 72,367 cytosine-guanine dinucleotides (CpG sites) in all 63 samples. RESULTS AND CONCLUSIONS Although a large fraction of CpG sites that were highly methylated in the normal liver became hypomethylated in tumours from most patients, we also found some patients with less remarkable change or no change in DNA methylation. Hierarchical clustering analysis revealed that 32 of 37 tumour samples differed from normal livers, although the remaining 5 tumour livers fell into the same cluster as normal livers. In addition, the number of hypermethylated genes in tumour livers varied among tumour cases, suggesting various DNA methylation patterns in different tumour groups. However, patient and clinical parameters, such as age, were not associated with DNA methylation status. In conclusion, we found that HCTs undergo aberrant and diverse patterns of genome-wide DNA methylation compared with normal liver tissue, suggesting a complex epigenetic mechanism in canine HCT.
Collapse
Affiliation(s)
- Yu Asari
- Laboratory of Veterinary Internal Medicine, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Jumpei Yamazaki
- Veterinary Teaching HospitalGraduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
- Translational Research Unit, Veterinary Teaching Hospital, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
- One Health Research Center, Cancer Research UnitHokkaido UniversitySapporoJapan
| | - Oo Thandar
- Laboratory of Veterinary Internal Medicine, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Tamami Suzuki
- Laboratory of Comparative Pathology, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Keisuke Aoshima
- One Health Research Center, Cancer Research UnitHokkaido UniversitySapporoJapan
- Laboratory of Comparative Pathology, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Kyosuke Takeuchi
- Veterinary Teaching HospitalGraduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Ryohei Kinoshita
- Veterinary Teaching HospitalGraduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
- One Health Research Center, Cancer Research UnitHokkaido UniversitySapporoJapan
| | - Sangho Kim
- One Health Research Center, Cancer Research UnitHokkaido UniversitySapporoJapan
- Laboratory of Veterinary Surgery, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Kenji Hosoya
- One Health Research Center, Cancer Research UnitHokkaido UniversitySapporoJapan
- Laboratory of Veterinary Surgery, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Teita Ishizaki
- Veterinary Teaching HospitalGraduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
- Laboratory of Comparative Pathology, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
- North LabSapporoJapan
| | | | | | - Shoko Yokoyama
- Veterinary Teaching HospitalGraduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
- Translational Research Unit, Veterinary Teaching Hospital, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
- One Health Research Center, Cancer Research UnitHokkaido UniversitySapporoJapan
| | - Noboru Sasaki
- Laboratory of Veterinary Internal Medicine, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Hiroshi Ohta
- Laboratory of Veterinary Internal Medicine, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Kensuke Nakamura
- Laboratory of Veterinary Internal Medicine, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Mitsuyoshi Takiguchi
- Laboratory of Veterinary Internal Medicine, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
| |
Collapse
|
11
|
Li G, Wan D, Liang J, Zhu P, Ding Z, Zhang B. IMOPAC: A web server for interactive multiomics and pharmacological analyses of patient-derived cancer cell lines. Comput Struct Biotechnol J 2023; 21:3705-3714. [PMID: 37547083 PMCID: PMC10400808 DOI: 10.1016/j.csbj.2023.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 08/08/2023] Open
Abstract
Large-scale multidimensional cancer genomic and pharmacological profiles have been created by several large consortium projects, including NCI-60, GDSC and DepMap, providing novel opportunities for data mining and further understanding of intrinsic therapeutic response mechanisms. However, it is increasingly challenging for experimental biologists, especially those without a bioinformatic background, to integrate, explore, and analyse these tremendous pharmacogenomics. To address this gap, IMOPAC, an interactive and easy-to-use web-based tool, was introduced to provide rapid visualizations and customizable functionalities on the basis of these three publicly available databases, which may reduce pharmacogenomic profiles from cell lines into readily understandable genetic, epigenetic, transcriptionomic, proteomic, metabolomic, and pharmacological events. The user-friendly query interface together with customized data storage enables users to interactively investigate and visualize multiomics alterations across genes and pathways and to link these alterations with drug responses across cell lines from diverse cancer types. The analyses in our portal include pancancer expression, drug-omics/pathway correlation, cancer subtypes, omics-omics (cis-/trans-regulation) correlation, fusion query analysis, and drug response prediction analysis. The comprehensive multiomics and pharmacogenomic analyses with simple clicking through IMOPAC will significantly benefit cancer precision medicine, contribute to the discoveries of potential biological mechanisms and facilitate pharmacogenomics mining in the identification of clinically actionable biomarkers for both basic researchers and clinical practitioners. IMOPAC is freely available at http://www.hbpding.com/IMOPAC.
Collapse
Affiliation(s)
- Ganxun Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongyi Wan
- Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Junnan Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeyang Ding
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Li R, Chen H, Li C, Qi Y, Zhao K, Wang J, You C, Huang H. The prognostic value and immune landscaps of m6A/m5C-related lncRNAs signature in the low grade glioma. BMC Bioinformatics 2023; 24:274. [PMID: 37403043 DOI: 10.1186/s12859-023-05386-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/14/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) and 5-methylcytosine (m5C) are the main RNA methylation modifications involved in the oncogenesis of cancer. However, it remains obscure whether m6A/m5C-related long non-coding RNAs (lncRNAs) affect the development and progression of low grade gliomas (LGG). METHODS We summarized 926 LGG tumor samples with RNA-seq data and clinical information from The Cancer Genome Atlas and Chinese Glioma Genome Atlas. 105 normal brain samples with RNA-seq data from the Genotype Tissue Expression project were collected for control. We obtained a molecular classification cluster from the expression pattern of sreened lncRNAs. The least absolute shrinkage and selection operator Cox regression was employed to construct a m6A/m5C-related lncRNAs prognostic signature of LGG. In vitro experiments were employed to validate the biological functions of lncRNAs in our risk model. RESULTS The expression pattern of 14 sreened highly correlated lncRNAs could cluster samples into two groups, in which various clinicopathological features and the tumor immune microenvironment were significantly distinct. The survival time of cluster 1 was significantly reduced compared with cluster 2. This prognostic signature is based on 8 m6A/m5C-related lncRNAs (GDNF-AS1, HOXA-AS3, LINC00346, LINC00664, LINC00665, MIR155HG, NEAT1, RHPN1-AS1). Patients in the high-risk group harbored shorter survival times. Immunity microenvironment analysis showed B cells, CD4 + T cells, macrophages, and myeloid-derived DC cells were significantly increased in the high-risk group. Patients in high-risk group had the worse overall survival time regardless of followed TMZ therapy or radiotherapy. All observed results from the TCGA-LGG cohort could be validated in CGGA cohort. Afterwards, LINC00664 was found to promote cell viability, invasion and migration ability of glioma cells in vitro. CONCLUSION Our study elucidated a prognostic prediction model of LGG by 8 m6A/m5C methylated lncRNAs and a critical lncRNA regulation function involved in LGG progression. High-risk patients have shorter survival times and a pro-tumor immune microenvironment.
Collapse
Affiliation(s)
- Ran Li
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haiyan Chen
- Department of Ophthalmology, General Hospital of Central Theatre Command of People's Liberation Arm, Wuhan, 430070, China
| | - Chaoxi Li
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yiwei Qi
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kai Zhao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Junwen Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chao You
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Haohao Huang
- Department of Neurosurgery, General Hospital of Central Theatre Command of People's Liberation Arm, Wuhan, 430070, China.
- General Hospital Of Central Theater Command and Hubei Key Laboratory of Central Nervous System Tumor and Intervention, Wuhan, China.
| |
Collapse
|
13
|
Shin HJ, Hua JT, Li H. Recent advances in understanding DNA methylation of prostate cancer. Front Oncol 2023; 13:1182727. [PMID: 37234978 PMCID: PMC10206257 DOI: 10.3389/fonc.2023.1182727] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Epigenetic modifications, such as DNA methylation, is widely studied in cancer. DNA methylation patterns have been shown to distinguish between benign and malignant tumors in various cancers, including prostate cancer. It may also contribute to oncogenesis, as it is frequently associated with downregulation of tumor suppressor genes. Aberrant patterns of DNA methylation, in particular the CpG island hypermethylator phenotype (CIMP), have shown associative evidence with distinct clinical features and outcomes, such as aggressive subtypes, higher Gleason score, prostate-specific antigen (PSA), and overall tumor stage, overall worse prognosis, as well as reduced survival. In prostate cancer, hypermethylation of specific genes is significantly different between tumor and normal tissues. Methylation patterns could distinguish between aggressive subtypes of prostate cancer, including neuroendocrine prostate cancer (NEPC) and castration resistant prostate adenocarcinoma. Further, DNA methylation is detectable in cell-free DNA (cfDNA) and is reflective of clinical outcome, making it a potential biomarker for prostate cancer. This review summarizes recent advances in understanding DNA methylation alterations in cancers with the focus on prostate cancer. We discuss the advanced methodology used for evaluating DNA methylation changes and the molecular regulators behind these changes. We also explore the clinical potential of DNA methylation as prostate cancer biomarkers and its potential for developing targeted treatment of CIMP subtype of prostate cancer.
Collapse
Affiliation(s)
- Hyun Jin Shin
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, United States
| | - Junjie T Hua
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, United States
| | - Haolong Li
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
14
|
Huang Y, Ouyang W, Wang Z, Huang H, Ou Q, Lin R, Yu Y, Yao H. A Comprehensive Analysis of Programmed Cell Death-Associated Genes for Tumor Microenvironment Evaluation Promotes Precise Immunotherapy in Patients with Lung Adenocarcinoma. J Pers Med 2023; 13:476. [PMID: 36983658 PMCID: PMC10058589 DOI: 10.3390/jpm13030476] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) represent a new hot spot in tumor therapy. Programmed cell death has an important role in the prognosis. We explore a programmed cell death gene prognostic model associated with survival and immunotherapy prediction via computational algorithms. Patient details were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus databases. We used LASSO algorithm and multiple-cox regression to establish a programmed cell death-associated gene prognostic model. Further, we explored whether this model could evaluate the sensitivity of patients to anti-PD-1/PD-L1. In total, 1342 patients were included. We constructed a programmed cell death model in TCGA cohorts, and the overall survival (OS) was significantly different between the high- and low-risk score groups (HR 2.70; 95% CI 1.94-3.75; p < 0.0001; 3-year OS AUC 0.71). Specifically, this model was associated with immunotherapy progression-free survival benefit in the validation cohort (HR 2.42; 95% CI 1.59-3.68; p = 0.015; 12-month AUC 0.87). We suggest that the programmed cell death model could provide guidance for immunotherapy in LUAD patients.
Collapse
Affiliation(s)
- Yunxi Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Breast Tumor Center, Phase I Clinical Trial Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Department of Experimental Research, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530000, China
| | - Wenhao Ouyang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Breast Tumor Center, Phase I Clinical Trial Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Zehua Wang
- Division of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519000, China
| | - Hong Huang
- School of Medicine, Guilin Medical University, Guilin 541000, China
| | - Qiyun Ou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Breast Tumor Center, Phase I Clinical Trial Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Division of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519000, China
| | - Ruichong Lin
- Division of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519000, China
| | - Yunfang Yu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Breast Tumor Center, Phase I Clinical Trial Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Herui Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Breast Tumor Center, Phase I Clinical Trial Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| |
Collapse
|
15
|
Nagaraju GP, Dariya B, Kasa P, Peela S, El-Rayes BF. Epigenetics in hepatocellular carcinoma. Semin Cancer Biol 2022; 86:622-632. [PMID: 34324953 DOI: 10.1016/j.semcancer.2021.07.017] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/17/2021] [Accepted: 07/25/2021] [Indexed: 01/27/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver and has a high fatality rate. Genetic and epigenetic aberrations are commonly observed in HCC. The epigenetic processes include chromatin remodelling, histone alterations, DNA methylation, and noncoding RNA (ncRNA) expression and are connected with the progression and metastasis of HCC. Due to their potential reversibility, these epigenetic alterations are widely targeted for the development of biomarkers. In-depth understanding of the epigenetics of HCC is critical for developing rational clinical strategies that can provide a meaningful improvement in overall survival and prediction of therapeutic outcomes. In this article, we have summarised the epigenetic modifications involved in HCC progression and highlighted the potential biomarkers for diagnosis and drug development.
Collapse
Affiliation(s)
- Ganji Purnachandra Nagaraju
- Department of Hematology & Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Begum Dariya
- Department of Biosciences and Biotechnology, Banasthali University, Banasthali, 304022, Rajasthan, India
| | - Prameswari Kasa
- Dr. L.V. Prasad Diagnostics and Research Laboratory, Khairtabad, Hyderabad 500004, India
| | - Sujatha Peela
- Department of Biotechnology, Dr. B.R. Ambedkar University, Srikakulam, 532410 AP, India
| | - Bassel F El-Rayes
- Department of Hematology & Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
16
|
Mou L, Jia C, Wu Z, Xin B, Liang Zhen CA, Wang B, Ni Y, Pu Z. Clinical and Prognostic Value of PPIA, SQSTM1, and CCL20 in Hepatocellular Carcinoma Patients by Single-Cell Transcriptome Analysis. Cells 2022; 11:3078. [PMID: 36231045 PMCID: PMC9563471 DOI: 10.3390/cells11193078] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most malignant and poor-prognosis subtype of primary liver cancer. The scRNA-seq approach provides unique insight into tumor cell behavior at the single-cell level. Cytokine signaling in the immune system plays an important role in tumorigenesis and has both pro-tumorigenic and anti-tumorigenic functions. A biomarker of cytokine signaling in immune-related genes (CSIRG) is urgently required to assess HCC patient diagnosis and treatment. By analyzing the expression profiles of HCC single cells, TCGA, and ICGC data, we discovered that three important CSIRG (PPIA, SQSTM1, and CCL20) were linked to the overall survival of HCC patients. Cancer status and three hub CSIRG were taken into account while creating a risk nomogram. The nomogram had a high level of predictability and accuracy. Based on the CSIRG risk score, a distinct pattern of somatic tumor mutational burden (TMB) was detected between the two groups. The enrichment of the pyrimidine metabolism pathway, purine metabolism pathway, and lysosome pathway in HCC was linked to the CSIRG high-risk scores. Overall, scRNA-seq and bulk RNA-seq were used to create a strong CSIRG signature for HCC diagnosis.
Collapse
Affiliation(s)
- Lisha Mou
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518035, China
| | - Chenyang Jia
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518035, China
| | - Zijing Wu
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518035, China
| | - Boyang Xin
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518035, China
| | - Carmen Alicia Liang Zhen
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518035, China
| | - Bailiang Wang
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518035, China
| | - Yong Ni
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518035, China
| | - Zuhui Pu
- Imaging Department, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518035, China
| |
Collapse
|
17
|
Xu Y, Xiao H, Hu W, Shen HC, Liu W, Tan S, Ren C, Zhang X, Yang X, Yu G, Yang T, Yu D, Zong L. CIMP-positive glioma is associated with better prognosis: A systematic analysis. Medicine (Baltimore) 2022; 101:e30635. [PMID: 36181110 PMCID: PMC9524892 DOI: 10.1097/md.0000000000030635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/29/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND CpG island methylator phenotype (CIMP) was closely related to the degree of pathological differentiation of tumors, and it's an important determinant of glioma pathogenicity. However, the molecular and pathological features of CIMP-positive glioma have not been fully elucidated. In addition, CIMP have been reported to be a useful prognostic marker in several human cancers, yet its prognostic value in gliomas is still controversial. Therefore, we aimed to evaluate gene mutations and pathological features of CIMP-positive glioma and explore the prognostic value of CIMP in gliomas. METHODS We comprehensively searched PubMed, Embase, and MEDLINE for studies describing gene mutations, pathological features and overall survival of gliomas stratified by CIMP status. Odds ratios (OR), hazard ratios (HR), and their 95% confidence intervals (CI) were used to estimate the correlation between CIMP and the outcome parameters. RESULTS Twelve studies with 2386 gliomas (1051 CIMP-positive and 1335 CIMP-negative) were included. Our results showed that CIMP was more frequent in isocitrate dehydrogenase 1 (IDH1)-mutated gliomas (OR 229.07; 95% CI 138.72-378.26) and 1p19q loss of heterozygosis (LOH) gliomas (OR 5.65; 95% CI 2.66-12.01). Pathological analysis showed that CIMP was common in low-malignant oligodendroglioma (OR 5.51; 95% CI 3.95-7.70) with molecular features including IDH1 mutations and 1p19q LOH, but rare in glioblastoma (OR 0.14; 95% CI 0.10-0.19). However, CIMP showed no obvious correlation with anaplastic oligoastrocytomas (OR 1.57; 95% CI 1.24-2.00) or oligoastrocytomas (OR 0.79; 95% CI 0.35-1.76). Concerning the prognosis, we found that CIMP-positive gliomas had longer overall survival (HR 0.57; 95% CI 0.97-0.16) than CIMP-negative gliomas. CONCLUSIONS CIMP could be used as a potential independent prognostic indicator for glioma.
Collapse
Affiliation(s)
- Yingying Xu
- Department of General Surgery, Yizhen People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Huashi Xiao
- Clinical Medical College, Dalian Medical University, Liaoning Province, China
| | - Wenqing Hu
- Department of Gastrointestinal Surgery, Changzhi People’s Hospital, The Affiliated Hospital of Changzhi Medical College, Changzhi, Shanxi Province, China
| | - He-Chun Shen
- Department of General Practice, Northern Jiangsu People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Wanjun Liu
- Department of Clinical Medical Testing Laboratory, Clinical Medical School of Yangzhou University, Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu Province, China
| | - Siyuan Tan
- Department of General Surgery, Yizhen People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Chuanli Ren
- Department of Clinical Medical Testing Laboratory, Clinical Medical School of Yangzhou University, Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu Province, China
| | - Xiaomin Zhang
- Central Laboratory, Changzhi People’s Hospital, The Affiliated Hospital of Changzhi Medical College, Changzhi, Shanxi Province, China
| | - Xishuai Yang
- Neurology Department, Changzhi People’s Hospital, The Affiliated Hospital of Changzhi Medical College, Changzhi, Shanxi Province, China
| | - Guo Yu
- Laboratory of Pharmacogenomics and Pharmacokinetic Research, Subei People’s Hospital, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Ting Yang
- Central Laboratory, Changzhi People’s Hospital, The Affiliated Hospital of Changzhi Medical College, Changzhi, Shanxi Province, China
| | - Duonan Yu
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University School of Medicine, Yangzhou, Jiangsu Province, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou, Jiangsu Province, China
| | - Liang Zong
- Department of Gastrointestinal Surgery, Changzhi People’s Hospital, The Affiliated Hospital of Changzhi Medical College, Changzhi, Shanxi Province, China
| |
Collapse
|
18
|
Qu X, Zhao X, Lin K, Wang N, Li X, Li S, Zhang L, Shi Y. M2-like tumor-associated macrophage-related biomarkers to construct a novel prognostic signature, reveal the immune landscape, and screen drugs in hepatocellular carcinoma. Front Immunol 2022; 13:994019. [PMID: 36177006 PMCID: PMC9513313 DOI: 10.3389/fimmu.2022.994019] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/25/2022] [Indexed: 12/23/2022] Open
Abstract
BackgroundM2-like tumor-associated macrophages (M2-like TAMs) have important roles in the progression and therapeutics of cancers. We aimed to detect novel M2-like TAM-related biomarkers in hepatocellular carcinoma (HCC) via integrative analysis of single-cell RNA-seq (scRNA-seq) and bulk RNA-seq data to construct a novel prognostic signature, reveal the “immune landscape”, and screen drugs in HCC.MethodsM2-like TAM-related genes were obtained by overlapping the marker genes of TAM identified from scRNA-seq data and M2 macrophage modular genes identified by weighted gene co-expression network analysis (WGCNA) using bulk RNA-seq data. Univariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression analyses were carried out to screen prognostic genes from M2-like TAM-related genes, followed by a construction of a prognostic signature, delineation of risk groups, and external validation of the prognostic signature. Analyses of immune cells, immune function, immune evasion scores, and immune-checkpoint genes between high- and low-risk groups were done to further reveal the immune landscape of HCC patients. To screen potential HCC therapeutic agents, analyses of gene–drug correlation and sensitivity to anti-cancer drugs were conducted.ResultsA total of 127 M2-like TAM-related genes were identified by integrative analysis of scRNA-seq and bulk-seq data. PDLIM3, PAM, PDLIM7, FSCN1, DPYSL2, ARID5B, LGALS3, and KLF2 were screened as prognostic genes in HCC by univariate Cox regression and LASSO regression analyses. Then, a prognostic signature was constructed and validated based on those genes for predicting the survival of HCC patients. In terms of drug screening, expression of PAM and LGALS3 was correlated positively with sensitivity to simvastatin and ARRY-162, respectively. Based on risk grouping, we predicted 10 anticancer drugs with high sensitivity in the high-risk group, with epothilone B having the lowest half-maximal inhibitory concentration among all drugs tested.ConclusionsOur findings enhance understanding of the M2-like TAM-related molecular mechanisms involved in HCC, reveal the immune landscape of HCC, and provide potential targets for HCC treatment.
Collapse
|
19
|
Hu H, Huang W, Zhang H, Li J, Zhang Q, Miao YR, Hu FF, Gan L, Su Z, Yang X, Guo AY. A miR-9-5p/FOXO1/CPEB3 Feed-Forward Loop Drives the Progression of Hepatocellular Carcinoma. Cells 2022; 11:cells11132116. [PMID: 35805200 PMCID: PMC9265408 DOI: 10.3390/cells11132116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide, but its regulatory mechanism remains unclear and potential clinical biomarkers are still lacking. Co-regulation of TFs and miRNAs in HCC and FFL module studies may help to identify more precise and critical driver modules in HCC development. Here, we performed a comprehensive gene expression and regulation analysis for HCC in vitro and in vivo. Transcription factor and miRNA co-regulatory networks for differentially expressed genes between tumors and adjacent tissues revealed the critical feed-forward loop (FFL) regulatory module miR-9-5p/FOXO1/CPEB3 in HCC. Gain- and loss-of-function studies demonstrated that miR-9-5p promotes HCC tumor proliferation, while FOXO1 and CPEB3 inhibit hepatocarcinoma growth. Furthermore, by luciferase reporter assay and ChIP-Seq data, CPEB3 was for the first time identified as a direct downstream target of FOXO1, negatively regulated by miR-9-5p. The miR-9-5p/FOXO1/CPEB3 FFL was associated with poor prognosis, and promoted cell growth and tumor progression of HCC in vitro and in vivo. Our study identified for the first time the existence of miR-9-5p/FOXO1/CPEB3 FFL and revealed its regulatory role in HCC progression, which may represent a new potential target for cancer therapy.
Collapse
Affiliation(s)
- Hui Hu
- Center for Artificial Intelligence Biology, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (H.H.); (Q.Z.); (Y.-R.M.); (F.-F.H.)
| | - Wei Huang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.H.); (J.L.); (L.G.)
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Hong Zhang
- Department of Gastroenterology, Wuhan Third Hospital, Wuhan 430060, China;
| | - Jianye Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.H.); (J.L.); (L.G.)
| | - Qiong Zhang
- Center for Artificial Intelligence Biology, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (H.H.); (Q.Z.); (Y.-R.M.); (F.-F.H.)
| | - Ya-Ru Miao
- Center for Artificial Intelligence Biology, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (H.H.); (Q.Z.); (Y.-R.M.); (F.-F.H.)
| | - Fei-Fei Hu
- Center for Artificial Intelligence Biology, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (H.H.); (Q.Z.); (Y.-R.M.); (F.-F.H.)
| | - Lu Gan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.H.); (J.L.); (L.G.)
| | - Zhenhong Su
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Medical College, Hubei Polytechnic University, Huangshi 435000, China;
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.H.); (J.L.); (L.G.)
- Correspondence: (X.Y.); (A.-Y.G.)
| | - An-Yuan Guo
- Center for Artificial Intelligence Biology, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (H.H.); (Q.Z.); (Y.-R.M.); (F.-F.H.)
- Correspondence: (X.Y.); (A.-Y.G.)
| |
Collapse
|
20
|
Cui Y, Jiang N. Identification of a seven-gene signature predicting clinical outcome of liver cancer based on tumor mutational burden. Hum Cell 2022; 35:1192-1206. [PMID: 35622212 DOI: 10.1007/s13577-022-00708-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/20/2022] [Indexed: 12/13/2022]
Abstract
The total number of somatic mutations may affect the prognosis of cancer, so we applied bioinformatics methods to investigate the association between the TMB (tumor mutational burden)-related differentially expressed genes (DEGs) and the prognosis of hepatocellular carcinoma (HCC). We calculated the TMB value of the patients with HCC in TCGA database and identified the differentially expressed genes between the high-TMB and low-TMB patients. We performed functional enrichment analysis and LASSO Cox regression analysis of the DEGs, and seven genes were screened to establish a risk score model. A nomogram based on the risk scores was drawn to assess the predictive outcomes compared to the actual outcomes. The expression level of the seven genes was verified in cancer cell lines. Moreover, we explored the difference in immune cells infiltration and immune checkpoints between the high-risk and low-risk groups. The results showed that the DEGs between the high-TMB and low-TMB patients were enriched in extracellular matrix organization. A seven-gene risk score model (PAGE1, CHGA, OGN, MMP7, TRIM55, MAGEA6, and MAGEA12) was established for predicting HCC prognosis. Patients with lower risk scores had longer survival time and lower mortality rate. The nomogram based on risk scores and TNM staging showed good performance and reliability in predicting the clinical outcomes. Significant differences in cell infiltration and checkpoints were found between the high-risk and low-risk groups. Our study demonstrated a seven-gene signature and a nomogram based on the risk score model to predict the prognosis of HCC. Some of the newly identified DEGs may be potential biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Yunlong Cui
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, People's Republic of China
| | - Ning Jiang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, 301617, Tianjin, People's Republic of China.
| |
Collapse
|
21
|
Li C, Tian C, Zeng Y, Liang J, Yang Q, Gu F, Hu Y, Liu L. Machine learning and bioinformatics analysis revealed classification and potential treatment strategy in stage 3-4 NSCLC patients. BMC Med Genomics 2022; 15:33. [PMID: 35193578 PMCID: PMC8862473 DOI: 10.1186/s12920-022-01184-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 02/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Precision medicine has increased the accuracy of cancer diagnosis and treatment, especially in the era of cancer immunotherapy. Despite recent advances in cancer immunotherapy, the overall survival rate of advanced NSCLC patients remains low. A better classification in advanced NSCLC is important for developing more effective treatments. METHOD The calculation of abundances of tumor-infiltrating immune cells (TIICs) was conducted using Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT), xCell (xCELL), Tumor IMmune Estimation Resource (TIMER), Estimate the Proportion of Immune and Cancer cells (EPIC), and Microenvironment Cell Populations-counter (MCP-counter). K-means clustering was used to classify patients, and four machine learning methods (SVM, Randomforest, Adaboost, Xgboost) were used to build the classifiers. Multi-omics datasets (including transcriptomics, DNA methylation, copy number alterations, miRNA profile) and ICI immunotherapy treatment cohorts were obtained from various databases. The drug sensitivity data were derived from PRISM and CTRP databases. RESULTS In this study, patients with stage 3-4 NSCLC were divided into three clusters according to the abundance of TIICs, and we established classifiers to distinguish these clusters based on different machine learning algorithms (including SVM, RF, Xgboost, and Adaboost). Patients in cluster-2 were found to have a survival advantage and might have a favorable response to immunotherapy. We then constructed an immune-related Poor Prognosis Signature which could successfully predict the advanced NSCLC patient survival, and through epigenetic analysis, we found 3 key molecules (HSPA8, CREB1, RAP1A) which might serve as potential therapeutic targets in cluster-1. In the end, after screening of drug sensitivity data derived from CTRP and PRISM databases, we identified several compounds which might serve as medication for different clusters. CONCLUSIONS Our study has not only depicted the landscape of different clusters of stage 3-4 NSCLC but presented a treatment strategy for patients with advanced NSCLC.
Collapse
Affiliation(s)
- Chang Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chen Tian
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yulan Zeng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jinyan Liang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qifan Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Feifei Gu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yue Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Li Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
22
|
ARID1A loss-of-function induces CpG island methylator phenotype. Cancer Lett 2022; 532:215587. [DOI: 10.1016/j.canlet.2022.215587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 11/26/2021] [Accepted: 02/03/2022] [Indexed: 11/22/2022]
|
23
|
Wu C, Luo Y, Chen Y, Qu H, Zheng L, Yao J. Development of a prognostic gene signature for hepatocellular carcinoma. Cancer Treat Res Commun 2022; 31:100511. [PMID: 35030478 DOI: 10.1016/j.ctarc.2022.100511] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 02/08/2023]
Abstract
Accurate prediction of overall survival is important for prognosis and the assignment of appropriate personalized clinical treatment in hepatocellular carcinoma (HCC) patients. The aim of the present study was to establish an optimal gene model for the independent prediction of prognosis associated with common clinical patterns. Gene expression profiles and the corresponding clinical information of the LIHC cohort were obtained from The Cancer Genome Atlas. Differentially expressed genes were found using the R package "limma". Subsequently, a prognostic gene signature was developed using the LASSO Cox regression model. Kaplan-Meier, log-rank, and receiver operating characteristic (ROC) analyses were performed to verify the predictive accuracy of the prognostic model. Finally, a nomogram and calibration plot were created using the "rms" package. Differentially expressed genes were screened with threshold criteria (FDR < 0.01 and |log FC|>3) and 563 differentially expressed genes were obtained, including 448 downregulated and 115 upregulated genes. Using the LASSO Cox regression model, a prognostic gene signature was developed based on nine genes, IQGAP3, BIRC5, PTTG1, STC2, CDKN3, PBK, EXO1, NEIL3, and HOXD9, the expression levels of which were quantitated using RT-qPCR. According to the risk scores, patients were separated into high-risk and low-risk groups. In conclusion, the prognostic gene signature can be used as a combined biomarker for the independent prediction of overall survival in HCC patients. Moreover, we created a nomogram that can be used to infer prognosis and aid individualized decisions regarding treatment and surveillance.
Collapse
Affiliation(s)
- Cuiyun Wu
- Department of Laboratory, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, 528308, Guangdong, China
| | - Yaosheng Luo
- Medical research center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, 528308, Guangdong, China
| | - Yinghui Chen
- Department of Laboratory, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, 528308, Guangdong, China
| | - Hongling Qu
- Department of Laboratory, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, 528308, Guangdong, China
| | - Lin Zheng
- Department of Laboratory, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, 528308, Guangdong, China
| | - Jie Yao
- Department of Laboratory, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, 528308, Guangdong, China; Medical research center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, 528308, Guangdong, China.
| |
Collapse
|
24
|
Liu Y, Liu C, Zhang H, Yi X, Yu A. Establishment of A Nomogram for Predicting the Prognosis of Soft Tissue Sarcoma Based on Seven Glycolysis-Related Gene Risk Score. Front Genet 2021; 12:675865. [PMID: 34925434 PMCID: PMC8674658 DOI: 10.3389/fgene.2021.675865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 11/16/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Soft tissue sarcoma (STS) is a group of tumors with a low incidence and a complex type. Therefore, it is an arduous task to accurately diagnose and treat them. Glycolysis-related genes are closely related to tumor progression and metastasis. Hence, our study is dedicated to the development of risk characteristics and nomograms based on glycolysis-related genes to assess the survival possibility of patients with STS. Methods: All data sets used in our research include gene expression data and clinical medical characteristics in the Genomic Data Commons Data Portal (National Cancer Institute) Soft Tissue Sarcoma (TCGA SARC) and GEO database, gene sequence data of corresponding non-diseased human tissues in the Genotype Tissue Expression (GTEx).Next, transcriptome data in TCGA SARC was analyzed as the training set to construct a glycolysis-related gene risk signature and nomogram, which were confirmed in external test set. Results: We identified and verified the 7 glycolysis-related gene signature that is highly correlated with the overall survival (OS) of STS patients, which performed excellently in the evaluation of the size of AUC, and calibration curve. As well as, the results of the analysis of univariate and multivariate Cox regression demonstrated that this 7 glycolysis-related gene characteristic acts independently as an influence predictor for STS patients. Therefore, a prognostic-related nomogram combing 7 gene signature with clinical influencing features was constructed to predict OS of patients with STS in the training set that demonstrated strong predictive values for survival. Conclusion: These results demonstrate that both glycolysis-related gene risk signature and nomogram were efficient prognostic indicators for patients with STS. These findings may contribute to make individualize clinical decisions on prognosis and treatment.
Collapse
Affiliation(s)
- Yuhang Liu
- Department of Trauma and Microsurgery Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Changjiang Liu
- Department of Trauma and Microsurgery Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hao Zhang
- Department of Trauma and Microsurgery Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinzeyu Yi
- Department of Trauma and Microsurgery Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Aixi Yu
- Department of Trauma and Microsurgery Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
25
|
Ge QY, Chen J, Li GX, Tan XL, Song J, Ning D, Mo J, Du PC, Liu QM, Liang HF, Ding ZY, Zhang XW, Zhang BX. GRAMD4 inhibits tumour metastasis by recruiting the E3 ligase ITCH to target TAK1 for degradation in hepatocellular carcinoma. Clin Transl Med 2021; 11:e635. [PMID: 34841685 PMCID: PMC8597946 DOI: 10.1002/ctm2.635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Aberrant TAK1 (transforming growth factor β-activated kinase 1) activity is known to be involved in a variety of malignancies, but the regulatory mechanisms of TAK1 remain poorly understood. GRAMD4 (glucosyltransferase Rab-like GTPase activator and myotubularin domain containing 4) is a newly discovered p53-independent proapoptotic protein with an unclear role in HCC (hepatocellular carcinoma). RESULTS In this research, we found that GRAMD4 expression was lower in HCC samples, and its downregulation predicted worse prognosis for patients after surgical resection. Functionally, GRAMD4 inhibited HCC migration, invasion and metastasis. Mechanistically, GRAMD4 interacted with TAK1 to promote its protein degradation, thus, resulting in the inactivation of MAPK (Mitogen-activated protein kinase) and NF-κB pathways. Furthermore, GRAMD4 was proved to recruit ITCH (itchy E3 ubiquitin protein ligase) to promote the ubiquitination of TAK1. Moreover, high expression of TAK1 was correlated with low expression of GRAMD4 in HCC patients. CONCLUSIONS GRAMD4 inhibits the migration and metastasis of HCC, mainly by recruiting ITCH to promote the degradation of TAK1, which leads to the inactivation of MAPK and NF-κB signalling pathways.
Collapse
Affiliation(s)
- Qian yun Ge
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP. R. China
- Clinical Medical Research Center of Hepatic SurgeryWuhanP. R. China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanP. R. China
| | - Jin Chen
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP. R. China
- Clinical Medical Research Center of Hepatic SurgeryWuhanP. R. China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanP. R. China
| | - Gan xun Li
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP. R. China
- Clinical Medical Research Center of Hepatic SurgeryWuhanP. R. China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanP. R. China
| | - Xiao long Tan
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP. R. China
- Clinical Medical Research Center of Hepatic SurgeryWuhanP. R. China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanP. R. China
| | - Jia Song
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP. R. China
- Clinical Medical Research Center of Hepatic SurgeryWuhanP. R. China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanP. R. China
| | - Deng Ning
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP. R. China
- Clinical Medical Research Center of Hepatic SurgeryWuhanP. R. China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanP. R. China
| | - Jie Mo
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP. R. China
- Clinical Medical Research Center of Hepatic SurgeryWuhanP. R. China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanP. R. China
| | - Peng cheng Du
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP. R. China
- Clinical Medical Research Center of Hepatic SurgeryWuhanP. R. China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanP. R. China
| | - Qiu meng Liu
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP. R. China
- Clinical Medical Research Center of Hepatic SurgeryWuhanP. R. China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanP. R. China
| | - Hui fang Liang
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP. R. China
- Clinical Medical Research Center of Hepatic SurgeryWuhanP. R. China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanP. R. China
| | - Ze yang Ding
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP. R. China
- Clinical Medical Research Center of Hepatic SurgeryWuhanP. R. China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanP. R. China
| | - Xue wu Zhang
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP. R. China
- Clinical Medical Research Center of Hepatic SurgeryWuhanP. R. China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanP. R. China
| | - Bi xiang Zhang
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP. R. China
- Clinical Medical Research Center of Hepatic SurgeryWuhanP. R. China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanP. R. China
- Key Laboratory of Organ TransplantationMinistry of EducationWuhanP. R. China
- Key Laboratory of Organ TransplantationNational Health CommissionWuhanP. R. China
- Key Laboratory of Organ TransplantationChinese Academy of Medical SciencesWuhanP. R. China
| |
Collapse
|
26
|
Zhao H, Zhang J, Fu X, Mao D, Qi X, Liang S, Meng G, Song Z, Yang R, Guo Z, Tong B, Sun M, Zuo B, Li G. Integrated bioinformatics analysis of the NEDD4 family reveals a prognostic value of NEDD4L in clear-cell renal cell cancer. PeerJ 2021; 9:e11880. [PMID: 34458018 PMCID: PMC8378337 DOI: 10.7717/peerj.11880] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/07/2021] [Indexed: 12/20/2022] Open
Abstract
The members of the Nedd4-like E3 family participate in various biological processes. However, their role in clear cell renal cell carcinoma (ccRCC) is not clear. This study systematically analyzed the Nedd4-like E3 family members in ccRCC data sets from multiple publicly available databases. NEDD4L was identified as the only NEDD4 family member differentially expressed in ccRCC compared with normal samples. Bioinformatics tools were used to characterize the function of NEDD4L in ccRCC. It indicated that NEDD4L might regulate cellular energy metabolism by co-expression analysis, and subsequent gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. A prognostic model developed by the LASSO Cox regression method showed a relatively good predictive value in training and testing data sets. The result revealed that NEDD4L was associated with biosynthesis and metabolism of ccRCC. Since NEDD4L is downregulated and dysregulation of metabolism is involved in tumor progression, NEDD4L might be a potential therapeutic target in ccRCC.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Urology, Affiliated Hospital of Weifang Medical University, Weifang, China.,Department of Urology, China Rehabilitation Research Centre, Rehabilitation School of Capital Medical University, Beijing, China
| | - Junjun Zhang
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoliang Fu
- Department of Urology, The Second Affiliated Hospital of Air Force Medical University, Xian, China
| | - Dongdong Mao
- Department of Urology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xuesen Qi
- Department of Urology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Shuai Liang
- Department of Urology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Gang Meng
- Department of Urology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Zewen Song
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Ru Yang
- Henan Key Laboratory of Neurorestoratology, The First Affliated Hospital of Xinxiang Medical University, Weihui, China
| | - Zhenni Guo
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Binghua Tong
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Meiqing Sun
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Baile Zuo
- Tumor Molecular Immunology and Immunotherapy Laboratory, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Guoyin Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
27
|
Cai G, Jin G, Liang J, Li G, Chen X, Liang H, Ding Z. Pan-cancer analysis of the prognostic value of C12orf75 based on data mining. Aging (Albany NY) 2021; 13:15214-15239. [PMID: 34074799 PMCID: PMC8221310 DOI: 10.18632/aging.203081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/11/2021] [Indexed: 01/14/2023]
Abstract
The differential expression of chromosome 12 open reading frame 75 (C12orf75) is closely related with cancer progression. Here, we studied the expression levels of C12orf75 and investigated its prognostic value in various cancers across distinct datasets including ONCOMINE, PrognoScan, GEPIA, and TCGA. The correlation between genetic alteration of C12orf75 and immune infiltration was investigated using the cBioPortal and TIMER databases. RNA interference was used to verify the influence of C12orf75 knockdown on the biological phenotype of hepatocellular carcinoma cells. C12orf75 showed increased expression in most tested human cancers. The increased expression of C12orf75 was related with a poor prognosis in urothelial bladder carcinoma and hepatocellular liver carcinoma, but it was surprisingly converse in renal papillary cell carcinoma. In urothelial bladder carcinoma and hepatocellular liver carcinoma, we observed positive correlations between the expression of C12orf75 and the infiltration of immune cells, including B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells. The knockdown of C12orf75 in hepatocellular carcinoma cells suppressed the proliferation, migration, and invasion and arrested the cell cycle. This is the first report C12orf75 has potential as a prognostic biomarker and therapeutic target for molecularly targeted drugs in urothelial bladder carcinoma, hepatocellular liver carcinoma, and renal papillary cell carcinoma.
Collapse
Affiliation(s)
- Guangzhen Cai
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, PR China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, PR China
| | - Guannan Jin
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Junnan Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, PR China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, PR China
| | - Ganxun Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, PR China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, PR China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, PR China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, PR China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, PR China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, PR China
| | - Zeyang Ding
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, PR China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, PR China
| |
Collapse
|
28
|
Dai ZT, Xiang Y, Wang Y, Bao LY, Wang J, Li JP, Zhang HM, Lu Z, Ponnambalam S, Liao XH. Prognostic value of members of NFAT family for pan-cancer and a prediction model based on NFAT2 in bladder cancer. Aging (Albany NY) 2021; 13:13876-13897. [PMID: 33962392 PMCID: PMC8202856 DOI: 10.18632/aging.202982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 03/26/2021] [Indexed: 04/23/2023]
Abstract
Bladder cancer (BLCA) is one of the common malignant tumors of the urinary system. The poor prognosis of BLCA patients is due to the lack of early diagnosis and disease recurrence after treatment. Increasing evidence suggests that gene products of the nuclear factor of activated T-cells (NFAT) family are involved in BLCA progression and subsequent interaction(s) with immune surveillance. In this study, we carried out a pan-cancer analysis of the NFAT family and found that NFAT2 is an independent prognostic factor for BLCA. We then screened for differentially expressed genes (DEGs) and further analyzed such candidate gene loci using gene ontology enrichment to curate the KEGG database. We then used Lasso and multivariate Cox regression to identify 4 gene loci (FER1L4, RNF128, EPHB6, and FN1) which were screened together with NFAT2 to construct a prognostic model based on using Kaplan-Meier analysis to predict the overall survival of BLCA patients. Moreover, the accuracy of our proposed model is supported by deposited datasets in the Gene Expression Omnibus (GEO) database. Finally, a nomogram of this prognosis model for BLCA was established which could help to provide better disease management and treatment.
Collapse
Affiliation(s)
- Zhou-Tong Dai
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, Hubei, P.R. China
| | - Yuan Xiang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, Hubei, P.R. China
- Department of Medical Laboratory, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, Hubei, P.R. China
| | - Yundan Wang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, Hubei, P.R. China
| | - Le-Yuan Bao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, Hubei, P.R. China
| | - Jun Wang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, Hubei, P.R. China
| | - Jia-Peng Li
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, Hubei, P.R. China
| | - Hui-Min Zhang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, Hubei, P.R. China
| | - Zhongxin Lu
- Department of Medical Laboratory, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, Hubei, P.R. China
| | - Sreenivasan Ponnambalam
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Xing-Hua Liao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, Hubei, P.R. China
| |
Collapse
|
29
|
Zhang Y, Tang Y, Guo C, Li G. Integrative analysis identifies key mRNA biomarkers for diagnosis, prognosis, and therapeutic targets of HCV-associated hepatocellular carcinoma. Aging (Albany NY) 2021; 13:12865-12895. [PMID: 33946043 PMCID: PMC8148482 DOI: 10.18632/aging.202957] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/23/2021] [Indexed: 02/05/2023]
Abstract
Hepatitis C virus-associated HCC (HCV-HCC) is a prevalent malignancy worldwide and the molecular mechanisms are still elusive. Here, we screened 240 differentially expressed genes (DEGs) of HCV-HCC from Gene expression omnibus (GEO) and the Cancer Genome Atlas (TCGA), followed by weighted gene coexpression network analysis (WGCNA) to identify the most significant module correlated with the overall survival. 10 hub genes (CCNB1, AURKA, TOP2A, NEK2, CENPF, NUF2, CDKN3, PRC1, ASPM, RACGAP1) were identified by four approaches (Protein-protein interaction networks of the DEGs and of the significant module by WGCNA, and diagnostic and prognostic values), and their abnormal expressions, diagnostic values, and prognostic values were successfully verified. A four hub gene-based prognostic signature was built using the least absolute shrinkage and selection operator (LASSO) algorithm and a multivariate Cox regression model with the ICGC-LIRI-JP cohort (N =112). Kaplan-Meier survival plots (P = 0.0003) and Receiver Operating Characteristic curves (ROC = 0.778) demonstrated the excellent predictive potential for the prognosis of HCV-HCC. Additionally, upstream regulators including transcription factors and miRNAs of hub genes were predicted, and candidate drugs or herbs were identified. These findings provide a firm basis for the exploration of the molecular mechanism and further clinical biomarkers development of HCV-HCC.
Collapse
Affiliation(s)
- Yongqiang Zhang
- Molecular Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China.,West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Yuqin Tang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China
| | - Chengbin Guo
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, P.R. China
| | - Gen Li
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, P.R. China
| |
Collapse
|
30
|
Wang Z, Wang Y, Yang T, Xing H, Wang Y, Gao L, Guo X, Xing B, Wang Y, Ma W. Machine learning revealed stemness features and a novel stemness-based classification with appealing implications in discriminating the prognosis, immunotherapy and temozolomide responses of 906 glioblastoma patients. Brief Bioinform 2021; 22:6220175. [PMID: 33839757 PMCID: PMC8425448 DOI: 10.1093/bib/bbab032] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is the most malignant and lethal intracranial tumor, with extremely limited treatment options. Immunotherapy has been widely studied in GBM, but none can significantly prolong the overall survival (OS) of patients without selection. Considering that GBM cancer stem cells (CSCs) play a non-negligible role in tumorigenesis and chemoradiotherapy resistance, we proposed a novel stemness-based classification of GBM and screened out certain population more responsive to immunotherapy. The one-class logistic regression algorithm was used to calculate the stemness index (mRNAsi) of 518 GBM patients from The Cancer Genome Atlas (TCGA) database based on transcriptomics of GBM and pluripotent stem cells. Based on their stemness signature, GBM patients were divided into two subtypes via consensus clustering, and patients in Stemness Subtype I presented significantly better OS but poorer progression-free survival than Stemness Subtype II. Genomic variations revealed patients in Stemness Subtype I had higher somatic mutation loads and copy number alteration burdens. Additionally, two stemness subtypes had distinct tumor immune microenvironment patterns. Tumor Immune Dysfunction and Exclusion and subclass mapping analysis further demonstrated patients in Stemness Subtype I were more likely to respond to immunotherapy, especially anti-PD1 treatment. The pRRophetic algorithm also indicated patients in Stemness Subtype I were more resistant to temozolomide therapy. Finally, multiple machine learning algorithms were used to develop a 7-gene Stemness Subtype Predictor, which were further validated in two external independent GBM cohorts. This novel stemness-based classification could provide a promising prognostic predictor for GBM and may guide physicians in selecting potential responders for preferential use of immunotherapy.
Collapse
Affiliation(s)
- Zihao Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yaning Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Tianrui Yang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Hao Xing
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yuekun Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lu Gao
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiaopeng Guo
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Bing Xing
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
31
|
Jiang J, Liu B, Liu R, Yang W. Overexpression of Taspase 1 Predicts Poor Prognosis in Patients with Hepatocellular Carcinoma. Cancer Manag Res 2021; 13:2517-2537. [PMID: 33758547 PMCID: PMC7981154 DOI: 10.2147/cmar.s296069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/25/2021] [Indexed: 12/16/2022] Open
Abstract
Background Taspase 1 (TASP1) is a highly conserved protease involved in site-specific proteolysis. Existing researches have revealed a link between TASP1 expression and carcinogenesis. However, limited data are available regarding the prognosis and functions of TASP1 in hepatocellular carcinoma (HCC). Methods Western Blotting and qRT-PCR were employed to evaluate the level of TASP1 in HCC cell lines and clinical specimens. TASP1 expression was further calculated in clinical specimens by immunohistochemistry and the mRNA level of TASP1 in HCC was analyzed using Oncomine and UALCAN databases. The TASP1 promoter methylation modification was shown via MEXPRESS and UALCAN. The association between TASP1 expression and postoperative prognosis was evaluated using Kaplan–Meier and Cox regression analysis in clinical patients. The effect of TASP1 on HCC prognosis was analyzed via Kaplan-Meier plotter, GEPIA and UALCAN. Additionally, the regulators, kinases, miRNA and transcription factor targets of TASP1 were identified using LinkedOmics. Moreover, cBioPortal was used to detect the genetic alteration of TASP1. Finally, TIMER was utilized to assess the relation between TASP1 and the immune cell infiltration, whereas the correlation of TASP1 with three immune factors was detected through TISIDB. Results TASP1 expression was increased in HCC cell lines and HCC tissues. CNV and DNA methylation of TASP1 were changed. Survival analysis revealed that high TASP1 expression was correlated with overall survival (OS). Functional network analysis about TASP1 in HCC showed that the double-strand break repair, peptidyl-threonine modification, spindle organization, peptidyl-lysine modification and microtubule-based movement were modulated. Furthermore, TASP1 expression revealed puissant relation to the infiltration of immune cells and three immune factors in HCC. Conclusion These data indicate that TASP1 may act as a potential prognostic marker in HCC and regulate HCC via multiple mechanisms.
Collapse
Affiliation(s)
- Jie Jiang
- Department of Gastroenterology and Hepatology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Bin Liu
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Ruilin Liu
- Department of Pulmonary, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Wenzhuo Yang
- Department of Gastroenterology and Hepatology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
32
|
Xiao S, Hu J, Hu N, Sheng L, Rao H, Zheng G. Identification of a Novel Epithelial-to-Mesenchymal-related Gene Signature in Predicting Survival of Patients with Hepatocellular Carcinoma. Comb Chem High Throughput Screen 2021; 25:1254-1270. [PMID: 33655854 DOI: 10.2174/1386207324666210303093629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/11/2020] [Accepted: 02/09/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Epithelial-mesenchymal transformation (EMT) promotes cancer metastasis including hepatocellular carcinoma. Therefore, EMT-related gene signature was explored. OBJECTIVE The present study was designed to develop an EMT-related gene signature for predicting the prognosis of patients with hepatocellular carcinoma. METHODS We conducted an integrated gene expression analysis based on tumor data of the patients with hepatocellular carcinoma from The Cancer Genome Atlas (TCGA), HCCDB18 and GSE14520 dataset. An EMT-related gene signature was constructed by least absolute shrinkage and selection operator (LASSO) and COX regression analysis of univariate and multivariate survival. RESULTS A 3-EMT gene signature was developed and validated based on gene expression profiles of hepatocellular carcinoma from three microarray platforms. Patients with a high risk score had a significantly worse overall survival (OS) than those with low risk scores. The EMT-related gene signature showed a high performance in accurately predicting prognosis and in examining the clinical characteristics and immune score analysis. Univariate and multivariate Cox regression analyses confirmed that the EMT-related gene signature was an independent prognostic factor for predicting survival in hepatocellular carcinoma patients. Compared with the existing models, our EMT-related gene signature reached higher area under curve (AUC). CONCLUSION Our findings provide novel insight into understanding EMT and help identify hepatocellular carcinoma patients with poor prognosis.
Collapse
Affiliation(s)
- Simeng Xiao
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065. China
| | - Junjie Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065. China
| | - Na Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065. China
| | - Lei Sheng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065. China
| | - Hui Rao
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065. China
| | - Guohua Zheng
- Key Laboratory for Chinese Medicine Resource and Compound Prescription of Ministry of Education, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065. China
| |
Collapse
|
33
|
Wang W, Wang L, Xie X, Yan Y, Li Y, Lu Q. A gene-based risk score model for predicting recurrence-free survival in patients with hepatocellular carcinoma. BMC Cancer 2021; 21:6. [PMID: 33402113 PMCID: PMC7786458 DOI: 10.1186/s12885-020-07692-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/25/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) remains the most frequent liver cancer, accounting for approximately 90% of primary liver cancers worldwide. The recurrence-free survival (RFS) of HCC patients is a critical factor in devising a personal treatment plan. Thus, it is necessary to accurately forecast the prognosis of HCC patients in clinical practice. METHODS Using The Cancer Genome Atlas (TCGA) dataset, we identified genes associated with RFS. A robust likelihood-based survival modeling approach was used to select the best genes for the prognostic model. Then, the GSE76427 dataset was used to evaluate the prognostic model's effectiveness. RESULTS We identified 1331 differentially expressed genes associated with RFS. Seven of these genes were selected to generate the prognostic model. The validation in both the TCGA cohort and GEO cohort demonstrated that the 7-gene prognostic model can predict the RFS of HCC patients. Meanwhile, the results of the multivariate Cox regression analysis showed that the 7-gene risk score model could function as an independent prognostic factor. In addition, according to the time-dependent ROC curve, the 7-gene risk score model performed better in predicting the RFS of the training set and the external validation dataset than the classical TNM staging and BCLC. Furthermore, these seven genes were found to be related to the occurrence and development of liver cancer by exploring three other databases. CONCLUSION Our study identified a seven-gene signature for HCC RFS prediction that can be used as a novel and convenient prognostic tool. These seven genes might be potential target genes for metabolic therapy and the treatment of HCC.
Collapse
Affiliation(s)
- Wenhua Wang
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, Jiangxi, China.,Department of Biostatistics and Epidemiology, School of Public Health, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Lingchen Wang
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, Jiangxi, China.,Department of Biostatistics and Epidemiology, School of Public Health, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xinsheng Xie
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yehong Yan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yue Li
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, Jiangxi, China.,Department of Biostatistics and Epidemiology, School of Public Health, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Quqin Lu
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, Jiangxi, China. .,Department of Biostatistics and Epidemiology, School of Public Health, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
34
|
Huang W, Weng W, Wu B, Ye T, Lin Z, Zhang Z, Shi K. Development and validation of the trans-omics model for pancreatic adenocarcinoma. Epigenomics 2021; 13:15-30. [PMID: 33356543 DOI: 10.2217/epi-2020-0184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Aim: To develop a trans-omics-based molecular clinicopathological algorithm for predicting pancreatic adenocarcinoma prognosis, we performed a comprehensive analysis of the expression levels of mRNA, DNA methylation and DNA copy number in The Cancer Genome Atlas dataset. Materials & methods: Based on the least absolute shrinkage and selection operator method - COX regression analysis, a trans-omics-based classifier was established to predict overall survival. Nomogram was constructed by combining the classifier band clinical pathological characterization. Results: Based on trans-omics, we developed a 10-gene-based classifier and a molecular-clinicopathologic nomogram for predicting overall survival with satisfactory accuracy. Conclusion: Trans-omics-based classifier and molecule-clinicopathological nomogram based on the classifier can accurately predict the prognosis of pancreatic adenocarcinoma patients.
Collapse
Affiliation(s)
- Weiguo Huang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang Province, PR China
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang Province, PR China
| | - Wanqing Weng
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang Province, PR China
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang Province, PR China
| | - Boda Wu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang Province, PR China
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang Province, PR China
| | - Tingbo Ye
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang Province, PR China
| | - Zhuo Lin
- Department of Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, PR China
| | - Zhongjing Zhang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang Province, PR China
| | - Keqing Shi
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang Province, PR China
| |
Collapse
|
35
|
Huo J, Wu L, Zang Y. Development and validation of a CTNNB1-associated metabolic prognostic model for hepatocellular carcinoma. J Cell Mol Med 2020; 25:1151-1165. [PMID: 33300278 PMCID: PMC7812275 DOI: 10.1111/jcmm.16181] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a heterogeneous malignancy closely related to metabolic reprogramming. We investigated how CTNNB1 mutation regulates the HCC metabolic phenotype and thus affects the prognosis of HCC. We obtained the mRNA expression profiles and clinicopathological data from The Cancer Genome Atlas (TCGA), the International Cancer Genomics Consortium (ICGC) and the Gene Expression Omnibus database (GSE14520 and GSE116174). We conducted gene set enrichment analysis on HCC patients with and without mutant CTNNB1 through TCGA dataset. The Kaplan‐Meier analysis and univariate Cox regression analysis assisted in screening metabolic genes related to prognosis, and the prognosis model was constructed using the Lasso and multivariate Cox regression analysis. The prognostic model showed good prediction performance in both the training cohort (TCGA) and the validation cohorts (ICGC, GSE14520, GSE116174), and the high‐risk group presented obviously poorer overall survival compared with low‐risk group. Cox regression analysis indicated that the risk score can be used as an independent predictor for the overall survival of HCC. The immune infiltration in different risk groups was also evaluated in this study to explore underlying mechanisms. This study is also the first to describe an metabolic prognostic model associated with CTNNB1 mutations and could be implemented for determining the prognoses of individual patients in clinical practice.
Collapse
Affiliation(s)
- Junyu Huo
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liqun Wu
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yunjin Zang
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
36
|
Fernández-Barrena MG, Arechederra M, Colyn L, Berasain C, Avila MA. Epigenetics in hepatocellular carcinoma development and therapy: The tip of the iceberg. JHEP Rep 2020; 2:100167. [PMID: 33134907 PMCID: PMC7585149 DOI: 10.1016/j.jhepr.2020.100167] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a deadly tumour whose causative agents are generally well known, but whose pathogenesis remains poorly understood. Nevertheless, key genetic alterations are emerging from a heterogeneous molecular landscape, providing information on the tumorigenic process from initiation to progression. Among these molecular alterations, those that affect epigenetic processes are increasingly recognised as contributing to carcinogenesis from preneoplastic stages. The epigenetic machinery regulates gene expression through intertwined and partially characterised circuits involving chromatin remodelers, covalent DNA and histone modifications, and dedicated proteins reading these modifications. In this review, we summarise recent findings on HCC epigenetics, focusing mainly on changes in DNA and histone modifications and their carcinogenic implications. We also discuss the potential drugs that target epigenetic mechanisms for HCC treatment, either alone or in combination with current therapies, including immunotherapies.
Collapse
Key Words
- 5acC, 5-acetylcytosine
- 5fC, 5-formylcytosine
- 5hmC, 5-hydoxymethyl cytosine
- 5mC, 5-methylcytosine
- Acetyl-CoA, acetyl coenzyme A
- BER, base excision repair
- BRD, bromodomain
- CDA, cytidine deaminase
- CGI, CpG island
- CIMP, CGI methylator phenotype
- CTLA-4, cytotoxic T-lymphocyte-associated protein 4
- DNMT, DNA methyltransferase
- DNMTi, DNMT inhibitor
- Epigenetics
- FAD, flavin adenine dinucleotide
- HAT, histone acetyltransferases
- HCC, hepatocellular carcinoma
- HDAC, histone deacetylase
- HDACi, HDAC inhibitor
- HDM, histone demethylase
- HMT, histone methyltransferase
- Hepatocellular carcinoma
- KMT, lysine methyltransferase
- LSD/KDM, lysine specific demethylases
- NAFLD, non-alcoholic fatty liver disease
- NK, natural killer
- NPC, nasopharyngeal carcinoma
- PD-L1, programmed cell death ligand-1
- PD1, programmed cell death protein 1
- PHD, plant homeodomain
- PTM, post-translational modification
- SAM, S-adenosyl-L-methionine
- TDG, thymidine-DNA-glycosylase
- TERT, telomerase reverse transcriptase
- TET, ten-eleven translocation
- TME, tumour microenvironment
- TSG, tumour suppressor gene
- Therapy
- UHRF1, ubiquitin like with PHD and ring finger domains 1
- VEGF, vascular endothelial growth factor
- ncRNAs, non-coding RNAs
- α-KG, α-ketoglutarate
Collapse
Affiliation(s)
- Maite G. Fernández-Barrena
- Hepatology Program CIMA, University of Navarra, Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - María Arechederra
- Hepatology Program CIMA, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Leticia Colyn
- Hepatology Program CIMA, University of Navarra, Pamplona, Spain
| | - Carmen Berasain
- Hepatology Program CIMA, University of Navarra, Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Matias A. Avila
- Hepatology Program CIMA, University of Navarra, Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| |
Collapse
|
37
|
Dai ZT, Wang J, Zhao K, Xiang Y, Li JP, Zhang HM, Peng ZT, Liao XH. Integrated TCGA and GEO analysis showed that SMAD7 is an independent prognostic factor for lung adenocarcinoma. Medicine (Baltimore) 2020; 99:e22861. [PMID: 33126329 PMCID: PMC7598801 DOI: 10.1097/md.0000000000022861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The lack of effective markers leads to missed optimal treatment times, resulting in poorer prognosis in most cancers. Drosophila mothers against decapentaplegic protein (SMAD) family members are important cytokines in the transforming growth factor-beta family. They jointly regulate the processes of cell growth, differentiation, and apoptosis. However, the expression of SMAD family genes in pan-cancers and their impact on prognosis have not been elucidated. Perl software and R software were used to perform expression analysis and survival curve analysis on the data collected by TCGA, GTEx, and GEO, and the potential regulatory pathways were determined through gene ontology enrichment and kyoto encyclopedia of genes and genomes enrichment analysis. It was found that SMAD7 and SMAD9 expression decreased in lung adenocarcinoma (LUAD), and their expression was positively correlated with survival time. Additionally, SMAD7 could be used as an independent prognostic factor for LUAD. In general, SMAD7 and SMAD9 can be used as prognostic markers of LUAD. Further, SMAD7 is expected to become a therapeutic target for LUAD.
Collapse
Affiliation(s)
- Zhou-Tong Dai
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan
| | - Jun Wang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan
| | - Kai Zhao
- Huangshi Central Hospital, Huangshi
| | | | - Jia Peng Li
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan
| | - Hui-Min Zhang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan
| | - Zi-Tan Peng
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan
- Hebei Kingsci Pharmaceutical Technology Co., Ltd, Shijiazhuang, Hebei, P.R. China
| | - Xing Hua Liao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan
| |
Collapse
|
38
|
Huang Y, Chen S, Qin W, Wang Y, Li L, Li Q, Yuan X. A Novel RNA Binding Protein-Related Prognostic Signature for Hepatocellular Carcinoma. Front Oncol 2020; 10:580513. [PMID: 33251144 PMCID: PMC7673432 DOI: 10.3389/fonc.2020.580513] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly malignant and aggressive cancer with high recurrence rates and mortality. Some studies have illustrated that RNA binding proteins (RBPs) were involved in the carcinogenesis and development of multiple cancers, but the roles in HCC were still unclear. We downloaded the RNA-seq and corresponding clinical information of HCC from The Cancer Genome Atlas (TCGA) database, and 330 differentially expressed RBPs were identified between normal and HCC tissues. Through series of the univariate, the least absolute shrinkage selection operator (LASSO), and the stepwise multivariate Cox regression analyses, six prognosis-related key RBPs (CNOT6, UPF3B, MRPL54, ZC3H13, IFIT5, and PPARGC1A) were screened out from DE RBPs, and a six-RBP gene risk score signature was constructed in training set. Survival analysis indicated that HCC patients with high-risk scores had significantly worse overall survival than low-risk patients, and furthermore, the signature can be used as an independent prognostic indicator. The good accuracy of this prognostic signature was confirmed by the ROC curve analysis and was further validated in the International Cancer Genome Consortium (ICGC) HCC cohort. Besides, a nomogram based on six RBP genes was established and internally validated in the TCGA cohort. Gene set enrichment analysis demonstrated some cancer-related phenotypes were significantly gathered in the high-risk group. Overall, our study first identified an RBP-related six-gene prognostic signature, which could serve as a promising prognostic biomarker and provide some potential therapeutic targets for HCC.
Collapse
Affiliation(s)
- Yongbiao Huang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Wan Qin
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yali Wang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Long Li
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Qianxia Li
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
39
|
Huo J, Wu L, Zang Y. A robust nine-gene prognostic signature associated with tumour doubling time for hepatocellular carcinoma. Life Sci 2020; 260:118396. [PMID: 32918973 DOI: 10.1016/j.lfs.2020.118396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/25/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Tumour doubling time (TDT) is an indicator reflecting tumour growth rate, however, the prognostic genes associated with the TDT in hepatocellular carcinoma (HCC) have not been fully identified. MATERIALS AND METHODS We obtained mRNA expression profiles and tumour doubling time from GSE54236 and used the Pearson correlation test to identify tumour doubling time-related genes (TDTRGs). We extracted TDTRGs from The Cancer Genome Atlas (TCGA) and identified prognostic genes using univariate Cox regression analysis and Kaplan-Meier survival analysis. Lasso and multivariate Cox regression analysis assisted in constructing the signature and International Cancer Genome Consortium (ICGC) served as an external validation. RESULTS We identified a total of 296 genes associated with tumour doubling time and developed a prognostic signature consisting of 9 genes. Patients were divided into high- and low-risk groups according to the uniform cutoff (0.85). Regardless of the clinical characteristics of the patients, the group at high risk exhibited obviously lower overall survival (OS) than did the group with low risk in both TCGA and ICGC cohorts. The prognostic model showed superior accuracy in both TCGA and ICGC cohorts, as confirmed by receiver operating characteristic (ROC) curve analysis. The univariate together with multivariate Cox regression analysis further suggested the ability of the signature to predict prognosis independently. CONCLUSION A novel prognostic signature for HCC was developed and validated in the study, which may be beneficial to improve the treatment strategy of HCC.
Collapse
Affiliation(s)
- Junyu Huo
- Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao 266003, China.
| | - Liqun Wu
- Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao 266003, China.
| | - Yunjin Zang
- Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao 266003, China.
| |
Collapse
|
40
|
Li R, Shui L, Jia J, Wu C. Construction and Validation of Novel Diagnostic and Prognostic DNA Methylation Signatures for Hepatocellular Carcinoma. Front Genet 2020; 11:906. [PMID: 32922438 PMCID: PMC7456968 DOI: 10.3389/fgene.2020.00906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 07/22/2020] [Indexed: 12/20/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent life-threatening human cancers and the leading cause of cancer-related mortality, with increased global incidence within the last decade. Identification of effective diagnostic and prognostic biomarkers would enable reliable risk stratification and efficient screening of high-risk patients, thereby facilitating clinical decision-making. Herein, we performed a comprehensive, robust DNA methylation analysis based on genome-wide DNA methylation profiling. We constructed a diagnostic signature with five DNA methylation markers, which precisely distinguished HCC patients from normal controls. Cox regression and LASSO analysis were applied to construct a prognostic signature with four DNA methylation markers. A one-to-one correlation analysis was carried out between genes of the whole genome and our prognostic signature. Exploration of the biological function and the role of the underlying significantly correlated genes was conducted. A mixed dataset of 463 HCC patients and 253 normal controls, derived from six independent datasets, was used to valid the diagnostic signature. Results showed a specificity of 96.84% and sensitivity of 96.77%. Class scores for the diagnostic signature were significantly different between normal controls, individuals with liver diseases, and HCC patients. The present signature has the potential to serve as a biomarker to monitor health in normal controls. Additionally, HCC patients were successfully separated into low-risk and high-risk groups by the prognostic signature, with a better prognosis for patients in the low-risk group. Kaplan-Meier and ROC analysis confirmed that the prognostic signature performed well. We found eight of the top ten genes to positively correlate with risk scores of the prognostic signature, and to be involved in cell cycle regulation. This eight-gene panel also served as a prognostic signature. The robust evidence presented in this study therefore demonstrates the effectiveness of the prognostic signature. In summary, we constructed diagnostic and prognostic signatures, which have potential for use in diagnosis, surveillance, and prognostic prediction for HCC patients. Eight genes that were significantly and positively correlated with the prognostic signature were strongly associated with cell cycle processes. Therefore, the prognostic signature can be used as a guide by which to measure responsiveness to cell-cycle-targeting agents.
Collapse
Affiliation(s)
- Ran Li
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Liyan Shui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Junling Jia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Innovation Center for Precision Medicine, Zhongtong-Lanbo Diagnostic Ltd, Beijing, China
| | - Chao Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
41
|
Zeng Z, Xie D, Gong J. Genome-wide identification of CpG island methylator phenotype related gene signature as a novel prognostic biomarker of gastric cancer. PeerJ 2020; 8:e9624. [PMID: 32821544 PMCID: PMC7396145 DOI: 10.7717/peerj.9624] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 07/07/2020] [Indexed: 12/24/2022] Open
Abstract
Background Gastric cancer (GC) is one of the most fatal cancers in the world. Results of previous studies on the association of the CpG island methylator phenotype (CIMP) with GC prognosis are conflicting and mainly based on selected CIMP markers. The current study attempted to comprehensively assess the association between CIMP status and GC survival and to develop a CIMP-related prognostic gene signature of GC. Methods We used a hierarchical clustering method based on 2,082 GC-related methylation sites to stratify GC patients from the cancer genome atlas into three different CIMP subgroups according to the CIMP status. Gene set enrichment analysis, tumor-infiltrating immune cells, and DNA somatic mutations analysis were conducted to reveal the genomic characteristics in different CIMP-related patients. Cox regression analysis and the least absolute shrinkage and selection operator were performed to develop a CIMP-related prognostic signature. Analyses involving a time-dependent receiver operating characteristic (ROC) curve and calibration plot were adopted to assess the performance of the prognostic signature. Results We found a positive relationship between CIMP and prognosis in GC. Gene set enrichment analysis indicated that cancer-progression-related pathways were enriched in the CIMP-L group. High abundances of CD8+ T cells and M1 macrophages were found in the CIMP-H group, meanwhile more plasma cells, regulatory T cells and CD4+ memory resting T cells were detected in the CIMP-L group. The CIMP-H group showed higher tumor mutation burden, more microsatellite instability-H, less lymph node metastasis, and more somatic mutations favoring survival. We then established a CIMP-related prognostic gene signature comprising six genes (CST6, SLC7A2, RAB3B, IGFBP1, VSTM2L and EVX2). The signature was capable of classifying patients into high‐and low‐risk groups with significant difference in overall survival (OS; p < 0.0001). To assess performance of the prognostic signature, the area under the ROC curve (AUC) for OS was calculated as 0.664 at 1 year, 0.704 at 3 years and 0.667 at 5 years. When compared with previously published gene-based signatures, our CIMP-related signature was comparable or better at predicting prognosis. A multivariate Cox regression analysis indicated the CIMP-related prognostic gene signature was an independent prognostic indicator of GC. In addition, Gene ontology analysis indicated that keratinocyte differentiation and epidermis development were enriched in the high-risk group. Conclusion Collectively, we described a positive association between CIMP status and prognosis in GC and proposed a CIMP-related gene signature as a promising prognostic biomarker for GC.
Collapse
Affiliation(s)
- Zhuo Zeng
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of GI Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Daxing Xie
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of GI Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianping Gong
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of GI Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
42
|
Yu T, Lu S, Xie W. Downregulation of GNA14 in hepatocellular carcinoma indicates an unfavorable prognosis. Oncol Lett 2020; 20:165-172. [PMID: 32565944 PMCID: PMC7285778 DOI: 10.3892/ol.2020.11538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 03/05/2020] [Indexed: 12/19/2022] Open
Abstract
Guanine nucleotide-binding protein subunit α14 (GNA14) knockdown was demonstrated to inhibit the proliferation of endometrial carcinoma cells in a recent study; however, its role in hepatocellular carcinoma (HCC) is unknown. In the present study, the clinical significance of GNA14 in HCC was assessed using a dataset of patients with HCC from The Cancer Genome Atlas database. The Integrative Molecular Database of Hepatocellular Carcinoma and Oncomine databases were also used to identify the expression levels of GNA14 in HCC tissues. The association between GNA14 expression levels and clinicopathological features was assessed using the Wilcoxon signed-rank test and logistic regression analysis. Kaplan-Meier curves and Cox regression analysis were applied to evaluate the independent risk factors for clinical outcomes. The present study determined GNA14 DNA methylation levels and tumor-infiltrating immune cells, as well as used Gene Set Enrichment Analysis (GSEA) in HCC. GNA14 mRNA expression levels were lower in HCC compared with normal tissues. Downregulation of GNA14 in HCC was significantly associated with tumor grade, clinical stage and T stage. Furthermore, low expression of GNA14 was an independent predictor for survival outcomes. GNA14 expression levels were partially correlated with the infiltration of B cells and macrophages. Additionally, GSEA analysis revealed that the expression levels of GNA14 were associated with multiple signaling pathways, such as translation, DNA replication, and homologous recombination. In conclusion, low GNA14 expression may be a novel biomarker for diagnosis and prognosis prediction for patients with HCC.
Collapse
Affiliation(s)
- Tao Yu
- Department of Medical Oncology, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Siyu Lu
- Department of Anesthesiology, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Wenjing Xie
- Department of Anesthesiology, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| |
Collapse
|
43
|
Yang S, Wu Y, Wang S, Xu P, Deng Y, Wang M, Liu K, Tian T, Zhu Y, Li N, Zhou L, Dai Z, Kang H. HPV-related methylation-based reclassification and risk stratification of cervical cancer. Mol Oncol 2020; 14:2124-2141. [PMID: 32408396 PMCID: PMC7463306 DOI: 10.1002/1878-0261.12709] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/01/2020] [Accepted: 05/09/2020] [Indexed: 12/16/2022] Open
Abstract
Human papillomavirus (HPV) is a clear etiology of cervical cancer (CC). However, the associations between HPV infection and DNA methylation have not been thoroughly investigated. Additionally, it remains unknown whether HPV‐related methylation signatures can identify subtypes of CC and stratify the prognosis of CC patients. DNA methylation profiles were obtained from The Cancer Genome Atlas to identify HPV‐related methylation sites. Unsupervised clustering analysis of HPV‐related methylation sites was performed to determine the different CC subtypes. CC patients were categorized into cluster 1 (Methylation‐H), cluster 2 (Methylation‐M), and cluster 3 (Methylation‐L). Compared to Methylation‐M and Methylation‐L, Methylation‐H exhibited a significantly improved overall survival (OS). Gene set enrichment analysis (GSEA) was conducted to investigate the functions that correlated with different CC subtypes. GSEA indicated that the hallmarks of tumors, including KRAS signaling, TNFα signaling via NF‐κB, inflammatory response, epithelial–mesenchymal transition, and interferon‐gamma response, were enriched in Methylation‐M and Methylation‐L. Based on mutation and copy number variation analyses, we found that aberrant mutations, amplifications, and deletions among the MYC, Notch, PI3K‐AKT, and RTK‐RAS pathways were most frequently detected in Methylation‐H. Additionally, mutations, amplifications, and deletions within the Hippo, PI3K‐AKT, and TGF‐β pathways were presented in Methylation‐M. Genes within the cell cycle, Notch, and Hippo pathways possessed aberrant mutations, amplifications, and deletions in Methylation‐L. Moreover, the analysis of tumor microenvironments revealed that Methylation‐H was characterized by a relatively low degree of immune cell infiltration. Finally, a prognostic signature based on six HPV‐related methylation sites was developed and validated. Our study revealed that CC patients could be classified into three heterogeneous clusters based on HPV‐related methylation signatures. Additionally, we derived a prognostic signature using six HPV‐related methylation sites that stratified the OS of patients with CC into high‐ and low‐risk groups.
Collapse
Affiliation(s)
- Si Yang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Wu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shuqian Wang
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Peng Xu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yujiao Deng
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Meng Wang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Kang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tian Tian
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuyao Zhu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Na Li
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Linghui Zhou
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Huafeng Kang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
44
|
Ou Q, Ma N, Yu Z, Wang R, Hou Y, Wang Z, Chen F, Li W, Bi J, Ma J, Zhang L, Su Q, Huang X. Nudix hydrolase 1 is a prognostic biomarker in hepatocellular carcinoma. Aging (Albany NY) 2020; 12:7363-7379. [PMID: 32341205 PMCID: PMC7202498 DOI: 10.18632/aging.103083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 04/07/2020] [Indexed: 12/11/2022]
Abstract
We investigated the prognostic significance of Nudix hydrolase 1 (NUDT1) in hepatocellular carcinoma (HCC). NUDT1 mRNA and protein levels were significantly higher in HCC tissues than normal liver tissues. The level of NUDT1 expression correlated with tumor grade, stage, size, differentiation, degree of vascular invasion, overall survival (OS), and disease-free survival (DFS) in HCC patients. Multivariate analysis showed that NUDT1 expression was an independent prognostic factor for OS and DFS in HCC patients. We constructed a prognostic nomogram with NUDT1 expression, AFP levels, vascular invasion, Child-Pugh classification, age, sex, AJCC staging, and tumor differentiation as variables. This nomogram was highly accurate in predicting the 5-year OS of HCC patients (c-index= 0.709; AUC= 0.740). NUDT1 silencing in HCC cells significantly reduced their survival, colony formation, migration, and invasiveness. Gene set enrichment analysis showed that biological pathways related to cell cycle, fatty acid metabolism, bile acid and bile salt metabolism, and PLK1 signaling were associated with NUDT1, as were the gene ontology terms "DNA binding transcription activator activity," "RNA polymerase II," "nuclear division," and "transmembrane transporter activity." Our study thus demonstrates that NUDT1 is a prognostic biomarker with therapeutic potential in HCC patients.
Collapse
Affiliation(s)
- Qifeng Ou
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ning Ma
- Department of Gastrointestinal Surgery and Hernia Center, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Supported by National Key Clinical Discipline, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510000, China
| | - Zheng Yu
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Rongchang Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, China
| | - Yucheng Hou
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ziming Wang
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Fan Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Wen Li
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jiong Bi
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jieyi Ma
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Longjuan Zhang
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qiao Su
- Animal Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiaohui Huang
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
45
|
Transcriptomic profiling of peroxisome-related genes reveals a novel prognostic signature in hepatocellular carcinoma. Genes Dis 2020; 9:116-127. [PMID: 35005112 PMCID: PMC8720664 DOI: 10.1016/j.gendis.2020.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/25/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023] Open
Abstract
Emerging evidence suggests that peroxisomes play a role in the regulation of tumorigenesis and cancer progression. However, the prognostic value of peroxisome-related genes has been rarely investigated. This study aimed to establish a peroxisome-related gene signature for overall survival (OS) prediction in patients with hepatocellular carcinoma (HCC). First, univariate Cox regression analysis was employed to identify prognostic peroxisome-related genes in The Cancer Genome Atlas liver cancer cohort, and least absolute shrinkage and selection operator Cox regression analysis was used to construct a 10-gene signature. The risk score based on the signature was positively correlated with poor prognosis (HR = 4.501, 95% CI = 3.021–6.705, P = 1.39e−13). Second, multivariate Cox regression incorporating additional characteristics revealed that the signature was an independent predictor. Time-dependent ROC curves demonstrated good performance of the signature in predicting the OS of HCC patients. The prognostic performance was validated using International Cancer Genome Consortium HCC cohort data. Gene set enrichment analysis revealed that the signature-related alterations in biological processes mainly involved peroxisomal functions. Finally, we developed a nomogram model based on the gene signature and TNM stage, which showed a superior prognostic power (C-index = 0.702). Thus, our study revealed a novel peroxisome-related gene signature that may help improve personalized OS prediction in HCC patients.
Collapse
|