1
|
del Puerto-Nevado L, Fernández-Aceñero MJ, Cebrián A, Fatych Y, Díez-Valladares LI, Pérez-Aguirre E, de la Serna S, García-Botella A, Martínez-Useros J, García-Foncillas J, Mateos-Gómez PA. POLQ immunostaining behaves as a prognostic factor for pancreatic carcinoma. Front Oncol 2024; 14:1433179. [PMID: 39435280 PMCID: PMC11491332 DOI: 10.3389/fonc.2024.1433179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/16/2024] [Indexed: 10/23/2024] Open
Abstract
Background DNA polymerase theta (POLQ) is a translesion synthesis polymerase essential for the repair of double strand breaks by the error-prone TMEJ (Theta Mediated End Joining) pathway. Although POLQ participates in maintaining genome stability, several studies have shown that its overexpression correlates with cancer progression and poor prognosis. Due to the fact that its role as a biomarker in pancreatic cancer remains unexplored, we aimed to study the usefulness of POLQ H-score as a prognostic factor in a pancreatic cancer patient cohort. Methods We evaluated POLQ gene expression using a web-based tool to deliver gene expression profiling and interactive analyses based on TCGA and GTEx (GEPIA) and we examined the POLQ immunostaining in 152 biliopancreatic cancer surgical specimens using tissue microarrays. Association with survival was evaluated by Kaplan Meier curves and uni-multivariate Cox regression. Results GEPIA analysis showed statistical differences according to POLQ mRNA levels in Disease Free Survival (DFS) (log rank 0.023, HR 2.8, p=0.029) and Overall Survival (OS) (log rank 0.011, HR 3.1, p=0.016). For immunohistochemistry (IHC) evaluation, POLQ H-score was calculated, and showed statistical differences for OS in Kaplan Meier curves (log rank 0.001) and uni-multivariate analysis (HR 2.27; 95% CI 1.24-4.15, p=0.008). Conclusions Our results indicate that POLQ is an independent prognostic factor in pancreatic cancer when analyzed by immunostaining, which is in agreement with the results shown by the POLQ gene expression analysis (GEPIA).
Collapse
Affiliation(s)
- Laura del Puerto-Nevado
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | | | - Arancha Cebrián
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Yuliia Fatych
- Biochemistry and Molecular Biology Unit, Systems Biology Department, School of Medicine and Health Sciences, University of Alcalá, Madrid, Spain
| | | | - Elia Pérez-Aguirre
- Hepatobiliary Unit, Surgery Department, Hospital Clínico San Carlos, Madrid, Spain
| | - Sofía de la Serna
- Hepatobiliary Unit, Surgery Department, Hospital Clínico San Carlos, Madrid, Spain
| | - Alejandra García-Botella
- Biochemistry and Molecular Biology Unit, Systems Biology Department, School of Medicine and Health Sciences, University of Alcalá, Madrid, Spain
- Hepatobiliary Unit, Surgery Department, Hospital Clínico San Carlos, Madrid, Spain
| | - Javier Martínez-Useros
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Jesús García-Foncillas
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Pedro A. Mateos-Gómez
- Biochemistry and Molecular Biology Unit, Systems Biology Department, School of Medicine and Health Sciences, University of Alcalá, Madrid, Spain
| |
Collapse
|
2
|
O'Connor CA, Harrold E, Lin D, Walch H, Gazzo A, Ranganathan M, Kane S, Keane F, Schoenfeld J, Moss D, Thurtle-Schmidt DM, Suehnholz SP, Chakravarty D, Balogun F, Varghese A, Yu K, Kelsen D, Latham A, Weigelt B, Park W, Stadler Z, O'Reilly EM. Lynch Syndrome and Somatic Mismatch Repair Variants in Pancreas Cancer. JAMA Oncol 2024:2823113. [PMID: 39235819 PMCID: PMC11378065 DOI: 10.1001/jamaoncol.2024.3651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Importance Microsatellite (MS) instability (MSI-H) occurs frequently in Lynch syndrome (LS)-associated tumors and is associated with response to immune checkpoint blockade (ICB) therapy. MSI-H is conferred by germline or somatic variants in mismatch repair genes. The contribution of somatic oncogenesis to MSI-H in pancreatic cancer (PC) is unknown. Objective To evaluate an LS-related PC cohort to define clinicogenomic features, describe somatic MSI-H cases (germline negative), characterize response to ICB, and guide preferred MS testing methods. Design, Setting, and Participants This single-institution, retrospective analysis was conducted from March 2012 to July 2023 at Memorial Sloan Kettering Cancer Center and included 55 patients with PC and either an LS germline pathogenic variant (gPV) or somatic mismatch repair (MMR) variant. Main Outcomes and Measures Composite MMR and MS status determined using orthogonal methods. An artificial intelligence classifier was used to account for low-cellularity specimens. Demographic and clinical data were abstracted from medical record. Zygosity status and somatic comutation landscape analyzed. Results Fifty-five patients (23 women [42%]) had PC and an MMR variant: 32 (58%) had LS (LS cohort) and 23 (42%) had a somatic MMR variant (no germline pathogenic variant, somatic MMR cohort). In the LS cohort, 10 (31%) had gMSH2, 9 (28%) gMSH6, 8 (25%) gPMS2, 4 (13%) gMLH1, 1 (3%) gEPCAM. The median age at diagnosis was 68 years (range, 45-88 years). For composite MS status, 17 (59%) were MSI-H, 12 (41%) MS stable, and 3 MS unknown. Five cases were reclassified as MSI-H by the artificial intelligence classifier. In the somatic MMR cohort, 11 (48%) had MSH6, 7 (30%) MLH1, 3 (13%) MSH2, and 2 (9%) PMS2. The median age at diagnosis was 72 years (range, 66-85 years). For composite MS status, 10 (43%) were MSI-H, 11 (48%) MS stable, and 2 (9%) MS indeterminate. Six cases were reclassified as MSI-H by the artificial intelligence classifier. For the LS and somatic MMR cohorts, 20 received ICB (n = 17 MSI-H). The median ICB duration was 27.7 months (95% CI, 11.5 to not reached); the disease control rate was 80%. Conclusion The results of this cross-sectional study suggest that MSI-H occurs due to LS or somatic oncogenesis in PC. Orthogonal MS testing is key in PC; the artificial intelligence classifier reclassified approximately 20% of cases, most of which were low cellularity. ICB for patients with LS or somatic MSI-H PC provided significant benefit.
Collapse
Affiliation(s)
- Catherine A O'Connor
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Biology, Davidson College, Davidson, North Carolina
| | - Emily Harrold
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Mater Misericordiae University Hospital Dublin, Dublin, Ireland
| | - David Lin
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering, New York, New York
| | - Henry Walch
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering, New York, New York
| | - Andrea Gazzo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Megha Ranganathan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sarah Kane
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Fergus Keane
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joshua Schoenfeld
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Drew Moss
- Mount Sinai Morningside West, New York, New York
| | | | - Sarah P Suehnholz
- Human Oncology Pathogenesis Program, Sloan Kettering Institute, New York, New York
| | - Debyani Chakravarty
- Human Oncology Pathogenesis Program, Sloan Kettering Institute, New York, New York
| | - Fiyinfolu Balogun
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- David M. Rubenstein Center for Pancreas Cancer Research, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Anna Varghese
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- David M. Rubenstein Center for Pancreas Cancer Research, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Kenneth Yu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- David M. Rubenstein Center for Pancreas Cancer Research, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - David Kelsen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- David M. Rubenstein Center for Pancreas Cancer Research, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Alicia Latham
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- David M. Rubenstein Center for Pancreas Cancer Research, New York, New York
| | - Britta Weigelt
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Wungki Park
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- David M. Rubenstein Center for Pancreas Cancer Research, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Zsofia Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Eileen M O'Reilly
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- David M. Rubenstein Center for Pancreas Cancer Research, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
3
|
Cristina-Marianini-Rios, Sanchez MEC, de Paredes AGG, Rodríguez M, Barreto E, López JV, Fuentes R, Beltrán MM, Sanjuanbenito A, Lobo E, Caminoa A, Ruz-Caracuel I, Durán SL, Olcina JRF, Blázquez J, Sequeros EV, Carrato A, Ávila JCM, Earl J. The best linear unbiased prediction (BLUP) method as a tool to estimate the lifetime risk of pancreatic ductal adenocarcinoma in high-risk individuals with no known pathogenic germline variants. Fam Cancer 2024; 23:233-246. [PMID: 38780705 PMCID: PMC11254992 DOI: 10.1007/s10689-024-00397-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related death in the Western world. The number of diagnosed cases and the mortality rate are almost equal as the majority of patients present with advanced disease at diagnosis. Between 4 and 10% of pancreatic cancer cases have an apparent hereditary background, known as hereditary pancreatic cancer (HPC) and familial pancreatic cancer (FPC), when the genetic basis is unknown. Surveillance of high-risk individuals (HRI) from these families by imaging aims to detect PDAC at an early stage to improve prognosis. However, the genetic basis is unknown in the majority of HRIs, with only around 10-13% of families carrying known pathogenic germline mutations. The aim of this study was to assess an individual's genetic cancer risk based on sex and personal and family history of cancer. The Best Linear Unbiased Prediction (BLUP) methodology was used to estimate an individual's predicted risk of developing cancer during their lifetime. The model uses different demographic factors in order to estimate heritability. A reliable estimation of heritability for pancreatic cancer of 0.27 on the liability scale, and 0.07 at the observed data scale as obtained, which is different from zero, indicating a polygenic inheritance pattern of PDAC. BLUP was able to correctly discriminate PDAC cases from healthy individuals and those with other cancer types. Thus, providing an additional tool to assess PDAC risk HRI with an assumed genetic predisposition in the absence of known pathogenic germline mutations.
Collapse
Affiliation(s)
- Cristina-Marianini-Rios
- Department of Agricultural Economics, Statistics and Business Management, Universidad Politécnica de Madrid, Madrid, Spain
| | - María E Castillo Sanchez
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9, 100, Madrid, 28034, Spain
| | - Ana García García de Paredes
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9, 100, Madrid, 28034, Spain
- Gastroenterology and Hepatology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Mercedes Rodríguez
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9, 100, Madrid, 28034, Spain
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, 28034, Spain
- The Biomedical Research Network in Cancer (CIBERONC), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid, 28029, Spain
- University of Alcalá, Madrid, Spain
| | - Emma Barreto
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9, 100, Madrid, 28034, Spain
- The Biomedical Research Network in Cancer (CIBERONC), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid, 28029, Spain
- University of Alcalá, Madrid, Spain
| | - Jorge Villalón López
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9, 100, Madrid, 28034, Spain
| | - Raquel Fuentes
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, 28034, Spain
| | | | - Alfonso Sanjuanbenito
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9, 100, Madrid, 28034, Spain
- The Biomedical Research Network in Cancer (CIBERONC), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid, 28029, Spain
- Pancreatic and Biliopancreatic Surgery Unit, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Eduardo Lobo
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9, 100, Madrid, 28034, Spain
- Pancreatic and Biliopancreatic Surgery Unit, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Alejandra Caminoa
- Department of Pathology, Hospital Universitario Ramón y Cajal, Madrid, 28034, Spain
| | - Ignacio Ruz-Caracuel
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9, 100, Madrid, 28034, Spain
- The Biomedical Research Network in Cancer (CIBERONC), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid, 28029, Spain
- Department of Pathology, Hospital Universitario Ramón y Cajal, Madrid, 28034, Spain
| | - Sergio López Durán
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9, 100, Madrid, 28034, Spain
- Gastroenterology and Hepatology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - José Ramón Foruny Olcina
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9, 100, Madrid, 28034, Spain
- Gastroenterology and Hepatology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Javier Blázquez
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9, 100, Madrid, 28034, Spain
- Radiology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Enrique Vázquez Sequeros
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9, 100, Madrid, 28034, Spain
- Gastroenterology and Hepatology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
- The Biomedical Research Network in Cancer (CIBERONC), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid, 28029, Spain
| | - Alfredo Carrato
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9, 100, Madrid, 28034, Spain
- The Biomedical Research Network in Cancer (CIBERONC), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid, 28029, Spain
- University of Alcalá, Madrid, Spain
- Pancreatic Cancer Europe, Brussels, Belgium
| | - Jose Carlos Martínez Ávila
- Department of Agricultural Economics, Statistics and Business Management, Universidad Politécnica de Madrid, Madrid, Spain.
| | - Julie Earl
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9, 100, Madrid, 28034, Spain.
- The Biomedical Research Network in Cancer (CIBERONC), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid, 28029, Spain.
| |
Collapse
|
4
|
Jacobs MF, Stoffel EM. Genetic and other risk factors for pancreatic ductal adenocarcinoma (PDAC). Fam Cancer 2024; 23:221-232. [PMID: 38573398 DOI: 10.1007/s10689-024-00372-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is often diagnosed at an advanced stage, resulting in poor prognosis and low 5-year survival rates. While early evidence suggests increased long-term survival in those with screen-detected resectable cancers, surveillance imaging is currently only recommended for individuals with a lifetime risk of PDAC ≥ 5%. Identification of risk factors for PDAC provides opportunities for early detection, risk reducing interventions, and targeted therapies, thus potentially improving patient outcomes. Here, we summarize modifiable and non-modifiable risk factors for PDAC. We review hereditary cancer syndromes associated with risk for PDAC and their implications for patients and their relatives. In addition, other biologically relevant pathways and environmental and lifestyle risk factors are discussed. Future work may focus on elucidating additional genetic, environmental, and lifestyle risk factors that may modify PDAC risk to continue to identify individuals at increased risk for PDAC who may benefit from surveillance and risk reducing interventions.
Collapse
Affiliation(s)
- Michelle F Jacobs
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Elena M Stoffel
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
5
|
Earl J, Fuentes R, Sanchez MEC, de Paredes AGG, Muñoz M, Sanjuanbenito A, Lobo E, Caminoa A, Rodríguez M, Barreto E, López JV, Ruz-Caracuel I, Durán SL, Olcina JRF, Sánchez BL, Páez SC, Torres A, Blázquez J, Sequeros EV, Carrato A. The Spanish Familial Pancreatic Cancer Registry (PANGENFAM): a decade follow-up of individuals at high-risk for pancreatic cancer. Fam Cancer 2024; 23:383-392. [PMID: 38753287 PMCID: PMC11254983 DOI: 10.1007/s10689-024-00388-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/04/2024] [Indexed: 07/18/2024]
Abstract
The Spanish Familial Pancreatic Cancer Registry (PANGENFAM) was established in 2009 and aims to characterize the genotype and phenotype of familial pancreatic cancer (FPC). Furthermore, an early detection screening program for pancreatic ductal adenocarcinoma (PDAC) is provided to healthy high-risk individuals from FPC and hereditary pancreatic cancer families (first-degree relatives). This article describes our experience over the last 10 years in high-risk screening. Hereditary and familial pancreatic cancer families were identified through the oncology and gastroenterology units. High-risk individuals underwent annual screening with endoscopic ultrasound (EUS) and magnetic resonance (MRI) from age 40 or 10 years younger than the youngest affected family member. Results: PANGENFAM has enrolled 290 individuals from 143 families, including 52 PDAC cases and 238 high-risk individuals. All high-risk individuals eligible for screening were offered to enter the surveillance program, with 143 currently participating. Pancreatic abnormalities were detected in 94 individuals (median age 53 years (29-83), with common findings including cystic lesions and inhomogeneous parenchyma. Imaging test concordance was 66%. Surgical intervention was performed in 4 high-risk individuals following highly suspicious lesions detected by imaging. PANGENFAM is a valuable resource for science innovation, such as biobanking, with clinical and imaging data available for analysis. For high-risk families, it may offer a potential for early diagnosis. Collaboration with other national and international registries is needed to increase our understanding of the disease biology and to standardize criteria for inclusion and follow-up, optimizing cost-effectiveness and efficacy.
Collapse
Affiliation(s)
- Julie Earl
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9,100, 28034, Madrid, Spain.
- The Biomedical Research Network in Cancer (CIBERONC), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain.
- Biobank and Biomodels Platform, Spanish National Biobanks Network (ISCIII Biobank Register No. B.0000678), ISCIII Research and Development Platforms in Biomedicine and Health Sciences, BioBank Hospital Ramón y Cajal-IRYCIS, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9, 100, PT20/004528034, Madrid, Spain.
| | - Raquel Fuentes
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9,100, 28034, Madrid, Spain
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain
| | - María E Castillo Sanchez
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9,100, 28034, Madrid, Spain
| | - Ana García García de Paredes
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9,100, 28034, Madrid, Spain
- Gastroenterology and Hepatology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - María Muñoz
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9,100, 28034, Madrid, Spain
- Radiology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Alfonso Sanjuanbenito
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9,100, 28034, Madrid, Spain
- Pancreatic and Biliopancreatic Surgery Unit, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Eduardo Lobo
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9,100, 28034, Madrid, Spain
- Pancreatic and Biliopancreatic Surgery Unit, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Alejandra Caminoa
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9,100, 28034, Madrid, Spain
- Department of Pathology, Hospital Universitario Ramón y Cajal, 28034, Madrid, Spain
| | - Mercedes Rodríguez
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9,100, 28034, Madrid, Spain
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain
| | - Emma Barreto
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9,100, 28034, Madrid, Spain
- The Biomedical Research Network in Cancer (CIBERONC), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain
- University of Alcalá, Madrid, Spain
| | - Jorge Villalón López
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9,100, 28034, Madrid, Spain
- Biobank and Biomodels Platform, Spanish National Biobanks Network (ISCIII Biobank Register No. B.0000678), ISCIII Research and Development Platforms in Biomedicine and Health Sciences, BioBank Hospital Ramón y Cajal-IRYCIS, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9, 100, PT20/004528034, Madrid, Spain
| | - Ignacio Ruz-Caracuel
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9,100, 28034, Madrid, Spain
- The Biomedical Research Network in Cancer (CIBERONC), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain
- Department of Pathology, Hospital Universitario Ramón y Cajal, 28034, Madrid, Spain
| | - Sergio López Durán
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9,100, 28034, Madrid, Spain
- Gastroenterology and Hepatology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - José Ramón Foruny Olcina
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9,100, 28034, Madrid, Spain
- Gastroenterology and Hepatology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Bárbara Luna Sánchez
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9,100, 28034, Madrid, Spain
- Biobank and Biomodels Platform, Spanish National Biobanks Network (ISCIII Biobank Register No. B.0000678), ISCIII Research and Development Platforms in Biomedicine and Health Sciences, BioBank Hospital Ramón y Cajal-IRYCIS, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9, 100, PT20/004528034, Madrid, Spain
| | - Sonia Camaño Páez
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9,100, 28034, Madrid, Spain
- Biobank and Biomodels Platform, Spanish National Biobanks Network (ISCIII Biobank Register No. B.0000678), ISCIII Research and Development Platforms in Biomedicine and Health Sciences, BioBank Hospital Ramón y Cajal-IRYCIS, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9, 100, PT20/004528034, Madrid, Spain
| | - Ana Torres
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9,100, 28034, Madrid, Spain
- Biobank and Biomodels Platform, Spanish National Biobanks Network (ISCIII Biobank Register No. B.0000678), ISCIII Research and Development Platforms in Biomedicine and Health Sciences, BioBank Hospital Ramón y Cajal-IRYCIS, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9, 100, PT20/004528034, Madrid, Spain
| | - Javier Blázquez
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9,100, 28034, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Enrique Vázquez Sequeros
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9,100, 28034, Madrid, Spain
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain
| | - Alfredo Carrato
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9,100, 28034, Madrid, Spain
- The Biomedical Research Network in Cancer (CIBERONC), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain
- University of Alcalá, Madrid, Spain
- Pancreatic Cancer Europe, Brussels, Belgium
| |
Collapse
|
6
|
Bugazia D, Al-Najjar E, Esmail A, Abdelrahim S, Abboud K, Abdelrahim A, Umoru G, Rayyan HA, Abudayyeh A, Al Moustafa AE, Abdelrahim M. Pancreatic ductal adenocarcinoma: the latest on diagnosis, molecular profiling, and systemic treatments. Front Oncol 2024; 14:1386699. [PMID: 39011469 PMCID: PMC11247645 DOI: 10.3389/fonc.2024.1386699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/30/2024] [Indexed: 07/17/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is currently the fourth leading cause of death in the United States and is expected to be ranked second in the next 10 years due to poor prognosis and a rising incidence. Distant metastatic PDAC is associated with the worst prognosis among the different phases of PDAC. The diagnostic options for PDAC are convenient and available for staging, tumor response evaluation, and management of resectable or borderline resectable PDAC. However, imaging is crucial in PDAC diagnosis, monitoring, resectability appraisal, and response evaluation. The advancement of medical technologies is evolving, hence the use of imaging in PDAC treatment options has grown as well as the utilization of ctDNA as a tumor marker. Treatment options for metastatic PDAC are minimal with the primary goal of therapy limited to symptom relief or palliation, especially in patients with low functional capacity at the point of diagnosis. Molecular profiling has shown promising potential solutions that would push the treatment boundaries for patients with PDAC. In this review, we will discuss the latest updates from evidence-based guidelines regarding diagnosis, therapy response evaluation, prognosis, and surveillance, as well as illustrating novel therapies that have been recently investigated for PDAC, in addition to discussing the molecular profiling advances in PDAC.
Collapse
Affiliation(s)
- Doaa Bugazia
- Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Ebtesam Al-Najjar
- Section of GI Oncology, Department of Medical Oncology, Houston Methodist Cancer Center, Houston, TX, United States
| | - Abdullah Esmail
- Section of GI Oncology, Department of Medical Oncology, Houston Methodist Cancer Center, Houston, TX, United States
| | - Saifudeen Abdelrahim
- Challenge Early College HS, Houston Community College, Houston, TX, United States
| | - Karen Abboud
- Department of Pharmacy, Houston Methodist Hospital, Houston, TX, United States
| | | | - Godsfavour Umoru
- Department of Pharmacy, Houston Methodist Hospital, Houston, TX, United States
| | - Hashem A Rayyan
- Department of Medicine, Faculty of Medicine, The University of Jordan, Amman, Jordan
| | - Ala Abudayyeh
- Section of Nephrology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | - Maen Abdelrahim
- Section of GI Oncology, Department of Medical Oncology, Houston Methodist Cancer Center, Houston, TX, United States
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
7
|
Magnan K, Williams L, Wang Q, Meade J. A Nine-Year-Old Child With Metastatic Pancreatic Adenocarcinoma. Cureus 2024; 16:e60670. [PMID: 38899258 PMCID: PMC11186403 DOI: 10.7759/cureus.60670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Pancreatic ductal adenocarcinoma is exceedingly rare in children. Here, we report the case of a nine-year-old boy diagnosed with pancreatic ductal adenocarcinoma. The patient was treated per the National Comprehensive Cancer Network® (NCCN®) guidelines for adults with pancreatic cancer. Though the patient had multiple episodes of progression, the patient has remained alive with the disease 18 months after the initial diagnosis.
Collapse
Affiliation(s)
- Katelin Magnan
- Pediatrics, UPMC (University of Pittsburgh Medical Center) Children's Hospital of Pittsburgh, Pittsburgh, USA
| | - Linford Williams
- Medical Genetics, UPMC (University of Pittsburgh Medical Center) Children's Hospital of Pittsburgh, Pittsburgh, USA
| | - Qian Wang
- Department of Pathology, Children's Hospital of Pittsburgh, Pittsburgh, USA
| | - Julia Meade
- Pediatric Oncology, UPMC (University of Pittsburgh Medical Center), Pittsburgh, USA
| |
Collapse
|
8
|
Muhammad N, Azeem A, Arif S, Naeemi H, Masood I, Hassan U, Ijaz B, Hanif F, Syed AA, Yusuf MA, Rashid MU. Prevalence of BRCA1 and BRCA2 germline variants in an unselected pancreatic cancer patient cohort in Pakistan. Hered Cancer Clin Pract 2023; 21:22. [PMID: 37951914 PMCID: PMC10640758 DOI: 10.1186/s13053-023-00269-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND BRCA1 and BRCA2 (BRCA1/2) are the most frequently investigated genes among Caucasian pancreatic cancer patients, whereas limited reports are available among Asians. We aimed to investigate the prevalence of BRCA1/2 germline variants in Pakistani pancreatic cancer patients. METHODS One hundred and fifty unselected and prospectively enrolled pancreatic cancer patients were comprehensively screened for BRCA1/2 germline variants using denaturing high-performance liquid chromatography and high-resolution melting analyses, followed by DNA sequencing of the variant fragments. The novel variants were analyzed for their pathogenic effect using in-silico tools. Potentially functional variants were further screened in 200 cancer-free controls. RESULTS Protein truncating variant was detected in BRCA2 only, with a prevalence of 0.7% (1/150). A frameshift BRCA2 variant (p.Asp946Ilefs*14) was identified in a 71-year-old male patient of Pathan ethnicity, with a family history of abdominal cancer. Additionally, we found a novel variant in BRCA2 (p.Glu2650Gln), two previously reported variants in BRCA1 (p.Thr293Ser) and BRCA2 (p.Ile2296Leu) and a recurrent nonsense variant in BRCA2 (p.Lys3326Ter). These variants were classified as variants of uncertain significance (VUS). It is noteworthy that none of these VUS carriers had a family history of pancreatic or other cancers. CONCLUSIONS In this first study, BRCA1/2 pathogenic variant is identified with a low frequency in pancreatic cancer patients from Pakistan. Comprehensive multigene panel testing is recommended in the Pakistani pancreatic cancer patients to enhance genetic understanding in this population.
Collapse
Affiliation(s)
- Noor Muhammad
- Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
- Laboratory of Applied and Functional Genomics, National Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Ayesha Azeem
- Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| | - Shumaila Arif
- Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| | - Humaira Naeemi
- Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| | - Iqra Masood
- Clinical Research Office, SKMCH&RC, Lahore, Pakistan
| | - Usman Hassan
- Department of Pathology, SKMCH&RC, Lahore, Pakistan
| | - Bushra Ijaz
- Laboratory of Applied and Functional Genomics, National Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Faisal Hanif
- Department of Surgical Oncology, SKMCH&RC, Lahore, Pakistan
- Centre for Liver and Biliary Sciences, Bahria International Hospital, Lahore, Pakistan
| | - Aamir Ali Syed
- Department of Surgical Oncology, SKMCH&RC, Lahore, Pakistan
| | | | - Muhammad Usman Rashid
- Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan.
| |
Collapse
|
9
|
Koh Y, Kim H, Joo SY, Song S, Choi YH, Kim HR, Moon B, Byun J, Hong J, Shin DY, Park S, Lee KH, Lee KT, Lee JK, Park D, Lee SH, Jang JY, Lee H, Kim JA, Yoon SS, Park JK. Genetic assessment of pathogenic germline alterations in lysosomal genes among Asian patients with pancreatic ductal adenocarcinoma. J Transl Med 2023; 21:730. [PMID: 37848935 PMCID: PMC10580633 DOI: 10.1186/s12967-023-04549-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Lysosomes are closely linked to autophagic activity, which plays a vital role in pancreatic ductal adenocarcinoma (PDAC) biology. The survival of PDAC patients is still poor, and the identification of novel genetic factors for prognosis and treatment is highly required to prevent PDAC-related deaths. This study investigated the germline variants related to lysosomal dysfunction in patients with PDAC and to analyze whether they contribute to the development of PDAC. METHODS The germline putative pathogenic variants (PPV) in genes involved in lysosomal storage disease (LSD) was compared between patients with PDAC (n = 418) and healthy controls (n = 845) using targeted panel and whole-exome sequencing. Furthermore, pancreatic organoids from wild-type and KrasG12D mice were used to evaluate the effect of lysosomal dysfunction on PDAC development. RNA sequencing (RNA-seq) analysis was performed with established PDAC patient-derived organoids (PDOs) according to the PPV status. RESULTS The PPV in LSD-related genes was higher in patients with PDAC than in healthy controls (8.13 vs. 4.26%, Log2 OR = 1.65, P = 3.08 × 10-3). The PPV carriers of LSD-related genes with PDAC were significantly younger than the non-carriers (mean age 61.5 vs. 65.3 years, P = 0.031). We further studied a variant of the lysosomal enzyme, galactosylceramidase (GALC), which was the most frequently detected LSD variant in our cohort. Autophagolysosomal activity was hampered when GALC was downregulated, which was accompanied by paradoxically elevated autophagic flux. Furthermore, the number of proliferating Ki-67+ cells increased significantly in pancreatic organoids derived from Galc knockout KrasG12D mice. Moreover, GALC PPV carriers tended to show drug resistance in both PDAC cell line and PDAC PDO, and RNA-seq analysis revealed that various metabolism and gene repair pathways were upregulated in PDAC PDOs harboring a GALC variant. CONCLUSIONS Genetically defined lysosomal dysfunction is frequently observed in patients with young-onset PDAC. This might contribute to PDAC development by altering metabolism and impairing autophagolysosomal activity, which could be potentially implicated in therapeutic applications for PDAC.
Collapse
Affiliation(s)
- Youngil Koh
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyemin Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - So Young Joo
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Seulki Song
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Young Hoon Choi
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyung Rae Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Byul Moon
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Jamin Byun
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Junshik Hong
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong-Yeop Shin
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Solip Park
- Structural Biology Department, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Kwang Hyuck Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyu Taek Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jong Kyun Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Daechan Park
- Department of Molecular Science and Technology, Department of Biological Sciences, Ajou University, Suwon, Republic of Korea
| | - Se-Hoon Lee
- Department of Hematology/Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jin-Young Jang
- Departments of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Hyunsook Lee
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea.
| | - Jung-Ae Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, Republic of Korea.
| | - Sung-Soo Yoon
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
- Cancer Research Institute, Seoul National University School of Medicine, Seoul, Republic of Korea.
| | - Joo Kyung Park
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Ryu KH, Park S, Chun JW, Cho E, Choi J, Lee DE, Shim H, Kim YH, Han SS, Park SJ, Woo SM, Kong SY. Prevalence and Risk Factors of Germline Pathogenic Variants in Pancreatic Ductal Adenocarcinoma. Cancer Res Treat 2023; 55:1303-1312. [PMID: 37024097 PMCID: PMC10582541 DOI: 10.4143/crt.2023.291] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
PURPOSE The genetic attribution for pancreatic ductal adenocarcinoma (PDAC) has been reported as 5%-10%. However, the incidence of germline pathogenic variants (PVs) in Korean PDAC patients has not been thoroughly investigated. Therefore, we studied to identify the risk factors and prevalence of PV for future treatment strategies in PDAC. MATERIALS AND METHODS Total of 300 (155 male) patients with a median age of 65 years (range, 33 to 90 years) were enrolled in National Cancer Center in Korea. Cancer predisposition genes, clinicopathologic characteristics, and family history of cancer were analyzed. RESULTS PVs were detected in 20 patients (6.7%, median age 65) in ATM (n=7, 31.8%), BRCA1 (n=3, 13.6%), BRCA2 (n=3), and RAD51D (n=3). Each one patient showed TP53, PALB2, PMS2, RAD50, MSH3, and SPINK1 PV. Among them, two likely PVs were in ATM and RAD51D, respectively. Family history of various types of cancer including pancreatic cancer (n=4) were found in 12 patients. Three patients with ATM PVs and a patient with three germline PVs (BRCA2, MSH3, and RAD51D) had first-degree relatives with pancreatic cancer. Familial pancreatic cancer history and PVs detection had a significant association (4/20, 20% vs. 16/264, 5.7%; p=0.035). CONCLUSION Our study demonstrated that germline PVs in ATM, BRCA1, BRCA2, and RAD51D are most frequent in Korean PDAC patients and it is comparable to those of different ethnic groups. Although this study did not show guidelines for germline predisposition gene testing in patients with PDAC in Korea, it would be emphasized the need for germline testing for all PDAC patients.
Collapse
Affiliation(s)
- Kum Hei Ryu
- Center for Cancer Prevention and Detection, National Cancer Center, Goyang, Korea
| | - Sunhwa Park
- Targeted Therapy Branch, Center for Rare Cancers, National Cancer Center, Goyang, Korea
| | - Jung Won Chun
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Korea
| | - Eunhae Cho
- GC Genome, Green Cross Laboratories, Yongin, Korea
| | - Jongmun Choi
- GC Genome, Green Cross Laboratories, Yongin, Korea
| | - Dong-Eun Lee
- Biostatics Collaboration Team, Research Institute, National Cancer Center, Goyang, Korea
| | - Hyoeun Shim
- Department of Laboratory Medicine, Hospital, National Cancer Center, Goyang, Korea
| | - Yun-Hee Kim
- Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Korea
- Division of Convergence Technology, Research Institute, National Cancer Center, Goyang, Korea
| | - Sung-Sik Han
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Korea
| | - Sang-Jae Park
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Korea
| | - Sang Myung Woo
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Korea
- Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Korea
| | - Sun-Young Kong
- Targeted Therapy Branch, Center for Rare Cancers, National Cancer Center, Goyang, Korea
- Department of Laboratory Medicine, Hospital, National Cancer Center, Goyang, Korea
- Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Korea
| |
Collapse
|
11
|
Parisi GF, Papale M, Pecora G, Rotolo N, Manti S, Russo G, Leonardi S. Cystic Fibrosis and Cancer: Unraveling the Complex Role of CFTR Gene in Cancer Susceptibility. Cancers (Basel) 2023; 15:4244. [PMID: 37686519 PMCID: PMC10486401 DOI: 10.3390/cancers15174244] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/06/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Cystic fibrosis (CF) is a genetic disorder affecting multiple organs, primarily the lungs and digestive system. Over the years, advancements in medical care and treatments have significantly increased the life expectancy of individuals with CF. However, with this improved longevity, concerns about the potential risk of developing certain types of cancers have arisen. This narrative review aims to explore the relationship between CF, increased life expectancy, and the associated risk for cancers. We discuss the potential mechanisms underlying this risk, including chronic inflammation, immune system dysregulation, and genetic factors. Additionally, we review studies that have examined the incidence and types of cancers seen in CF patients, with a focus on gastrointestinal, breast, and respiratory malignancies. We also explore the impact of CFTR modulator therapies on cancer risk. In the gastrointestinal tract, CF patients have an elevated risk of developing colorectal cancer, pancreatic cancer, and possibly esophageal cancer. The underlying mechanisms contributing to these increased risks are not fully understood, but chronic inflammation, altered gut microbiota, and genetic factors are believed to play a role. Regular surveillance and colonoscopies are recommended for early detection and management of colorectal cancer in CF patients. Understanding the factors contributing to cancer development in CF patients is crucial for implementing appropriate surveillance strategies and improving long-term outcomes. Further research is needed to elucidate the molecular mechanisms involved and develop targeted interventions to mitigate cancer risk in individuals with CF.
Collapse
Affiliation(s)
- Giuseppe Fabio Parisi
- Pediatric Respiratory Unit, Department of Clinical and Experimental Medicine, San Marco Hospital, University of Catania, Viale Carlo Azeglio Ciampi sn, 95121 Catania, Italy; (M.P.); (G.P.); (N.R.); (S.L.)
| | - Maria Papale
- Pediatric Respiratory Unit, Department of Clinical and Experimental Medicine, San Marco Hospital, University of Catania, Viale Carlo Azeglio Ciampi sn, 95121 Catania, Italy; (M.P.); (G.P.); (N.R.); (S.L.)
| | - Giulia Pecora
- Pediatric Respiratory Unit, Department of Clinical and Experimental Medicine, San Marco Hospital, University of Catania, Viale Carlo Azeglio Ciampi sn, 95121 Catania, Italy; (M.P.); (G.P.); (N.R.); (S.L.)
| | - Novella Rotolo
- Pediatric Respiratory Unit, Department of Clinical and Experimental Medicine, San Marco Hospital, University of Catania, Viale Carlo Azeglio Ciampi sn, 95121 Catania, Italy; (M.P.); (G.P.); (N.R.); (S.L.)
| | - Sara Manti
- Pediatric Unit, Department of Human and Pediatric Pathology “Gaetano Barresi”, AOUP G. Martino, University of Messina, Via Consolare Valeria, 1, 98124 Messina, Italy;
| | - Giovanna Russo
- Pediatric Hematology and Oncology Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy;
| | - Salvatore Leonardi
- Pediatric Respiratory Unit, Department of Clinical and Experimental Medicine, San Marco Hospital, University of Catania, Viale Carlo Azeglio Ciampi sn, 95121 Catania, Italy; (M.P.); (G.P.); (N.R.); (S.L.)
| |
Collapse
|
12
|
Lehman B, Matthäi E, Gercke N, Denzer UW, Figiel J, Hess T, Slater EP, Bartsch DK. Characteristics of familial pancreatic cancer families with additional colorectal carcinoma. Fam Cancer 2023; 22:323-330. [PMID: 36717525 PMCID: PMC10276072 DOI: 10.1007/s10689-023-00328-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/23/2023] [Indexed: 02/01/2023]
Abstract
Familial pancreatic cancer (FPC) is a rare hereditary tumor entity with broad phenotypic heterogeneity, including colorectal carcinoma (CRC) in some families. The underlying factors for this co-occurrence are still not well evaluated. FPC families in the National Case Collection of Familial Pancreatic Cancer with an additional occurrence of CRC were analyzed regarding the phenotype, genotype and recommendation for a clinical screening program. The total cohort of 272 FPC families included 30 (11%) families with at least one CRC case. The proportion of affected family members with PDAC was 16.1% (73/451) compared to 9.3% of family members with CRC (42/451, p < 0.01). Females were affected with PDAC in 49% (36/73) and CRC in 38% (16/42). The median age of PDAC was 63 compared to 66 years in CRC, whereas 8 (26.6%) of families had an early onset of PDAC and 2 (6.7%) of CRC. Seventeen families had 2 or more affected generations with PDAC and 6 families with CRC. Eleven (9.6%) of affected patients had both PDAC and CRC. Potentially causative germline mutations (2 ATM, 1 CDKN2a, 1 MLH1, 1 PALB2) were detected in 5 of 18 (27.7%) analyzed cases. These findings provide a step forward to include the phenotypic and genotypic characteristics of FPC-CRC families for the genetic counseling and management of these families. Nevertheless, results need to be verified in a larger patient cohort beforehand.
Collapse
Affiliation(s)
- Bettina Lehman
- Departments of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Baldingerstrasse, 35043, Marburg, Germany.
| | - Elvira Matthäi
- Departments of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Baldingerstrasse, 35043, Marburg, Germany
| | - Norman Gercke
- Departments of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Baldingerstrasse, 35043, Marburg, Germany
| | - Ulrike W Denzer
- Gastroenterology and Endocrinology, University Hospital Marburg, Marburg, Germany
| | - Jens Figiel
- Gastroenterology and Endocrinology, University Hospital Marburg, Marburg, Germany
| | - Timo Hess
- Centre for Human Genetics, University Hospital Marburg, Marburg, Germany
| | - Emily P Slater
- Departments of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Baldingerstrasse, 35043, Marburg, Germany
| | - Detlef K Bartsch
- Departments of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Baldingerstrasse, 35043, Marburg, Germany
| |
Collapse
|
13
|
Chung AK, Lin RT, Yeh CC, Yang CY, Wu CJ, Chen PL, Lin JT. Diagnostic rate of germline pathogenic variants in pancreatic ductal adenocarcinoma patients using whole genome sequencing. Front Genet 2023; 14:1172365. [PMID: 37234870 PMCID: PMC10205989 DOI: 10.3389/fgene.2023.1172365] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Identification of germline pathogenic variants in cancer patients is critical for treatment planning, genetic counseling, and health policymaking. However, previous estimates of the prevalence of germline etiology of pancreatic ductal adenocarcinoma (PDAC) were biased because they were based only on sequencing data of protein-coding regions of known PDAC candidate genes. To determine the percentage of patients with PDAC carrying germline pathogenic variants, we enrolled the inpatients from the digestive health clinics, hematology and oncology clinics, and surgical clinics of a single tertiary medical center in Taiwan for whole genome sequencing (WGS) analysis of genomic DNA. The virtual gene panel of 750 genes comprised PDAC candidate genes and those listed in the COSMIC Cancer Gene Census. The genetic variant types under investigation included single nucleotide substitutions, small indels, structural variants, and mobile element insertions (MEIs). In 8 of 24 (33.3%) patients with PDAC, we identified pathogenic/likely pathogenic variants, including single nucleotide substitutions and small indels in ATM, BRCA1, BRCA2, POLQ, SPINK1 and CASP8, as well as structural variants in CDC25C and USP44. We identified additional patients carrying variants that could potentially affect splicing. This cohort study demonstrates that an extensive analysis of the abundant information yielded by the WGS approach can uncover many pathogenic variants that could be missed by traditional panel-based or whole exome sequencing-based approaches. The percentage of patients with PDAC carrying germline variants might be much higher than previously expected.
Collapse
Affiliation(s)
- An-Ko Chung
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ro-Ting Lin
- Department of Occupational Safety and Health, College of Public Health, China Medical University, Taichung, Taiwan
| | - Chun-Chieh Yeh
- School of Medicine, China Medical University, Taichung, Taiwan
- Department of Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chi-Ying Yang
- Department of Internal Medicine, Digestive Medicine Center, China Medical University Hospital, Taichung, Taiwan
| | - Chang-Jiun Wu
- Department of Genomic Medicine, MD Anderson Cancer Center, University of Texas, Houston, TX, United States
| | - Pei-Lung Chen
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Jaw-Town Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, E-Da Hospital, Kaohsiung, Taiwan
| |
Collapse
|
14
|
Marin AM, Sanchuki HBS, Namur GN, Uno M, Zanette DL, Aoki MN. Circulating Cell-Free Nucleic Acids as Biomarkers for Diagnosis and Prognosis of Pancreatic Cancer. Biomedicines 2023; 11:biomedicines11041069. [PMID: 37189687 DOI: 10.3390/biomedicines11041069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
A lack of reliable early diagnostic tools represents a major challenge in the management of pancreatic cancer (PCa), as the disease is often only identified after it reaches an advanced stage. This highlights the urgent need to identify biomarkers that can be used for the early detection, staging, treatment monitoring, and prognosis of PCa. A novel approach called liquid biopsy has emerged in recent years, which is a less- or non-invasive procedure since it focuses on plasmatic biomarkers such as DNA and RNA. In the blood of patients with cancer, circulating tumor cells (CTCs) and cell-free nucleic acids (cfNAs) have been identified such as DNA, mRNA, and non-coding RNA (miRNA and lncRNA). The presence of these molecules encouraged researchers to investigate their potential as biomarkers. In this article, we focused on circulating cfNAs as plasmatic biomarkers of PCa and analyzed their advantages compared to traditional biopsy methods.
Collapse
Affiliation(s)
- Anelis Maria Marin
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Prof Algacyr Munhoz Mader 3775 Street, Curitiba 81350-010, Brazil
| | - Heloisa Bruna Soligo Sanchuki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Prof Algacyr Munhoz Mader 3775 Street, Curitiba 81350-010, Brazil
| | - Guilherme Naccache Namur
- Center for Translational Research in Oncology (LIM24), Departamento de Radiologia e Oncologia, Instituto do Câncer do Estado de São Paulo (ICESP), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo 01246-000, Brazil
| | - Miyuki Uno
- Center for Translational Research in Oncology (LIM24), Departamento de Radiologia e Oncologia, Instituto do Câncer do Estado de São Paulo (ICESP), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo 01246-000, Brazil
| | - Dalila Luciola Zanette
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Prof Algacyr Munhoz Mader 3775 Street, Curitiba 81350-010, Brazil
| | - Mateus Nóbrega Aoki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Prof Algacyr Munhoz Mader 3775 Street, Curitiba 81350-010, Brazil
| |
Collapse
|
15
|
Paiella S, Azzolina D, Gregori D, Malleo G, Golan T, Simeone DM, Davis MB, Vacca PG, Crovetto A, Bassi C, Salvia R, Biankin AV, Casolino R. A systematic review and meta-analysis of germline BRCA mutations in pancreatic cancer patients identifies global and racial disparities in access to genetic testing. ESMO Open 2023; 8:100881. [PMID: 36822114 PMCID: PMC10163165 DOI: 10.1016/j.esmoop.2023.100881] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Germline BRCA1 and BRCA2 mutations (gBRCAm) can inform pancreatic cancer (PC) risk and treatment but most of the available information is derived from white patients. The ethnic and geographic variability of gBRCAm prevalence and of germline BRCA (gBRCA) testing uptake in PC globally is largely unknown. MATERIALS AND METHODS We carried out a systematic review and prevalence meta-analysis of gBRCA testing and gBRCAm prevalence in PC patients stratified by ethnicity. The main outcome was the distribution of gBRCA testing uptake across diverse populations worldwide. Secondary outcomes included: geographic distribution of gBRCA testing uptake, temporal analysis of gBRCA testing uptake in ethnic groups, and pooled proportion of gBRCAm stratified by ethnicity. The study is listed under PROSPERO registration number #CRD42022311769. RESULTS A total of 51 studies with 16 621 patients were included. Twelve of the studies (23.5%) enrolled white patients only, 10 Asians only (19.6%), and 29 (56.9%) included mixed populations. The pooled prevalence of white, Asian, African American, and Hispanic patients tested per study was 88.7%, 34.8%, 3.6%, and 5.2%, respectively. The majority of included studies were from high-income countries (HICs) (64; 91.2%). Temporal analysis showed a significant increase only in white and Asians patients tested from 2000 to present (P < 0.001). The pooled prevalence of gBRCAm was: 3.3% in white, 1.7% in Asian, and negligible (<0.3%) in African American and Hispanic patients. CONCLUSIONS Data on gBRCA testing and gBRCAm in PC derive mostly from white patients and from HICs. This limits the interpretation of gBRCAm for treating PC across diverse populations and implies substantial global and racial disparities in access to BRCA testing in PC.
Collapse
Affiliation(s)
- S Paiella
- General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona, Verona. https://twitter.com/Totuccio83
| | - D Azzolina
- Department of Environmental and Preventive Science, University of Ferrara, Ferrara
| | - D Gregori
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, Padova, Italy. https://twitter.com/gregoriDario
| | - G Malleo
- General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona, Verona. https://twitter.com/gimalleo
| | - T Golan
- Oncology Institute, Sheba Medical Center at Tel-Hashomer, Tel Aviv University, Tel Aviv, Israel
| | - D M Simeone
- Department of Surgery, New York University, New York; Perlmutter Cancer Center, New York University, New York. https://twitter.com/MadameSurgeon
| | - M B Davis
- Department of Surgery and Surgical Oncology, Weill Cornell University, New York; Englander Institute of Precision Medicine, Weill Cornell University, New York, USA. https://twitter.com/MeliD32
| | - P G Vacca
- General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona, Verona. https://twitter.com/pvhdfm
| | - A Crovetto
- General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona, Verona. https://twitter.com/crovetto_a
| | - C Bassi
- General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona, Verona
| | - R Salvia
- General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona, Verona. https://twitter.com/SalviaRobi
| | - A V Biankin
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow; West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK; Faculty of Medicine, South Western Sydney Clinical School, University of NSW, Liverpool, Australia.
| | - R Casolino
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow.
| |
Collapse
|
16
|
Muhammad N, Sadaqat R, Naeemi H, Masood I, Hassan U, Ijaz B, Hanif F, Syed AA, Yusuf MA, Rashid MU. Contribution of germline PALB2 variants to an unselected and prospectively registered pancreatic cancer patient cohort in Pakistan. HPB (Oxford) 2022; 24:2134-2144. [PMID: 36175305 DOI: 10.1016/j.hpb.2022.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/02/2022] [Accepted: 09/12/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND Partner and localizer of BRCA2 (PALB2) is a pancreatic cancer (PC) susceptibility gene reported in Caucasians. However, limited data are available among Asians. We investigated the contribution of PALB2 germline variants to Pakistani PC patients. METHODS 150 unselected and prospectively enrolled PC patients were comprehensively screened for PALB2 variants, using denaturing high-performance liquid chromatography and DNA sequencing. Novel variants were investigated for their pathogenic effect using in-silico tools. Potentially functional variants were screened in 200 controls. RESULTS Twenty-two different PALB2 variants were identified. A missense variant (p.Arg37His) was identified in a 48-years-old male patient with a family history of breast cancer. Another missense variant (p.Trp898Arg) was identified in a 48-years-old male patient with a family history of esophageal cancer. A novel 3' downstream variant (c.∗480A>G) was detected in a 34-years-old female patient with family history of lung cancer. Another novel 3' downstream variant (c.∗417A>C) was identified in a 41-years-old male patient. All these variants were absent in 200 controls. p.Arg37His and p.Trp898Arg were predicted as likely pathogenic. c.∗417A>C and c.∗480A>G were classified as variants of uncertain significance. CONCLUSION This is the first study that suggests a minimal contribution of PALB2 variants to PC risk in Pakistani population.
Collapse
Affiliation(s)
- Noor Muhammad
- Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Center (SKMCH&RC), Lahore, Pakistan
| | - Rida Sadaqat
- Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Center (SKMCH&RC), Lahore, Pakistan
| | - Humaira Naeemi
- Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Center (SKMCH&RC), Lahore, Pakistan
| | - Iqra Masood
- Clinical Research Office, SKMCH&RC, Lahore, Pakistan
| | - Usman Hassan
- Department of Pathology, SKMCH&RC, Lahore, Pakistan
| | - Bushra Ijaz
- Laboratory of Applied and Functional Genomics, National Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Faisal Hanif
- Department of Surgical Oncology, SKMCH&RC, Lahore, Pakistan; Centre for Liver and Biliary Sciences, Bahria International Hospital, Lahore, Pakistan
| | - Aamir A Syed
- Department of Surgical Oncology, SKMCH&RC, Lahore, Pakistan
| | | | - Muhammad U Rashid
- Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Center (SKMCH&RC), Lahore, Pakistan.
| |
Collapse
|
17
|
Lai J, Chen W, Zhao A, Huang J. Determination of a DNA repair-related gene signature with potential implications for prognosis and therapeutic response in pancreatic adenocarcinoma. Front Oncol 2022; 12:939891. [PMID: 36353555 PMCID: PMC9638008 DOI: 10.3389/fonc.2022.939891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/06/2022] [Indexed: 11/30/2022] Open
Abstract
Background Pancreatic adenocarcinoma (PAAD) is one of the leading causes of cancer death worldwide. Alterations in DNA repair-related genes (DRGs) are observed in a variety of cancers and have been shown to affect the development and treatment of cancers. The aim of this study was to develop a DRG-related signature for predicting prognosis and therapeutic response in PAAD. Methods We constructed a DRG signature using least absolute shrinkage and selection operator (LASSO) Cox regression analysis in the TCGA training set. GEO datasets were used as the validation set. A predictive nomogram was constructed based on multivariate Cox regression. Calibration curve and decision curve analysis (DCA) were applied to validate the performance of the nomogram. The CIBERSORT and ssGSEA algorithms were utilized to explore the relationship between the prognostic signature and immune cell infiltration. The pRRophetic algorithm was used to estimate sensitivity to chemotherapeutic agents. The CellMiner database and PAAD cell lines were used to investigate the relationship between DRG expression and therapeutic response. Results We developed a DRG signature consisting of three DRGs (RECQL, POLQ, and RAD17) that can predict prognosis in PAAD patients. A prognostic nomogram combining the risk score and clinical factors was developed for prognostic prediction. The DCA curve and the calibration curve demonstrated that the nomogram has a higher net benefit than the risk score and TNM staging system. Immune infiltration analysis demonstrated that the risk score was positively correlated with the proportions of activated NK cells and monocytes. Drug sensitivity analysis indicated that the signature has potential predictive value for chemotherapy. Analyses utilizing the CellMiner database showed that RAD17 expression is correlated with oxaliplatin. The dynamic changes in three DRGs in response to oxaliplatin were examined by RT-qPCR, and the results show that RAD17 is upregulated in response to oxaliplatin in PAAD cell lines. Conclusion We constructed and validated a novel DRG signature for prediction of the prognosis and drug sensitivity of patients with PAAD. Our study provides a theoretical basis for further unraveling the molecular pathogenesis of PAAD and helps clinicians tailor systemic therapies within the framework of individualized treatment.
Collapse
Affiliation(s)
- Jinzhi Lai
- Department of Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Weijie Chen
- Department of Surgical Oncology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Aiyue Zhao
- Department of Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Jingshan Huang
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
18
|
Jiang S, Fagman JB, Ma Y, Liu J, Vihav C, Engstrom C, Liu B, Chen C. A comprehensive review of pancreatic cancer and its therapeutic challenges. Aging (Albany NY) 2022; 14:7635-7649. [PMID: 36173644 PMCID: PMC9550249 DOI: 10.18632/aging.204310] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/17/2022] [Indexed: 11/25/2022]
Abstract
Pancreatic cancer is a devastating and lethal human malignancy with no curable chemo-treatments available thus far. More than 90% of pancreatic tumors are formed from ductal epithelium as pancreatic ductal adenocarcinoma (PDAC), which often accompany with the expression of mutant K-ras. The incidences of pancreatic cancer are expected to increase rapidly worldwide in the near future, due to environmental pollution, obesity epidemics and etc. The dismal prognosis of this malignancy is contributed to its susceptibility to tumor micro-metastasis from inception and the lack of methods to detect precursor lesions at very early stages of the onset until clinical symptoms occur. In recent years, basic and clinical studies have been making promising progresses for discovering markers to determine the subtypes or stages of this malignancy, which allow effectively implementing personalized therapeutic interventions. The purpose of this review is to discuss the existing knowledge of the molecular mechanisms of pancreatic cancer and the current state of treatment options with the emphasis on targeting therapeutic approaches. The specific focuses are on the molecular mechanisms of the disease, identifications of drug resistance, establishment of immune escaping mechanisms as well as potential of targeting identified pathways in combinations with existing chemo-drugs.
Collapse
Affiliation(s)
- Shan Jiang
- Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Johan Bourghardt Fagman
- Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Yunyun Ma
- Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Jian Liu
- Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
- The First Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Caroline Vihav
- Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Cecilia Engstrom
- Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Changyan Chen
- Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
19
|
Bennett C, Suguitan M, Abad J, Chawla A. Identification of high-risk germline variants for the development of pancreatic cancer: Common characteristics and potential guidance to screening guidelines. Pancreatology 2022; 22:719-729. [PMID: 35798629 DOI: 10.1016/j.pan.2022.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/05/2022] [Accepted: 05/25/2022] [Indexed: 12/11/2022]
Abstract
Pancreatic cancer (PC) is a product of a variety of environmental and genetic factors. Recent work has highlighted the influence of hereditary syndromes on pancreatic cancer incidence. The purpose of this review is to identify the high-risk syndromes, common variants, and risks associated with PC. The study also elucidates common characteristics of patients with these mutations, which is used to recommend potential changes to current screening protocols for greater screening efficacy. We analyzed 8 syndromes and their respective variants: Hereditary Breast and Ovarian Cancer (BRCA1/2), Familial Atypical Multiple Mole Melanoma Syndrome (CDKN2A), Peutz-Jeghers Syndrome (STK11), Lynch Syndrome (PMS2, MLH1, MSH2, MSH6, EPCAM), Ataxia Telangiectasia (ATM), Li-Fraumeni Syndrome (TP53), Fanconi Anemia (PALB2), and Hereditary Pancreatitis (PRSS1, SPINK1, CFTR). Of 587 studies evaluated, 79 studies fit into our inclusion criteria. Information from each study was analyzed to draw conclusions on these variants as well as their association with pancreatic cancer. Information from this review is intended to improve precision medicine and improve criteria for screening.
Collapse
Affiliation(s)
- Cade Bennett
- Division of Surgical Oncology, Department of Surgery, Northwestern Medicine Regional Medical Group, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mike Suguitan
- Division of Surgical Oncology, Department of Surgery, Northwestern Medicine Regional Medical Group, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - John Abad
- Division of Surgical Oncology, Department of Surgery, Northwestern Medicine Regional Medical Group, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Akhil Chawla
- Division of Surgical Oncology, Department of Surgery, Northwestern Medicine Regional Medical Group, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, USA.
| |
Collapse
|
20
|
Overbeek KA, Levink IJM, Koopmann BDM, Harinck F, Konings ICAW, Ausems MGEM, Wagner A, Fockens P, van Eijck CH, Groot Koerkamp B, Busch ORC, Besselink MG, Bastiaansen BAJ, van Driel LMJW, Erler NS, Vleggaar FP, Poley JW, Cahen DL, van Hooft JE, Bruno MJ. Long-term yield of pancreatic cancer surveillance in high-risk individuals. Gut 2022; 71:1152-1160. [PMID: 33820756 PMCID: PMC9120399 DOI: 10.1136/gutjnl-2020-323611] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVE We aimed to determine the long-term yield of pancreatic cancer surveillance in hereditary predisposed high-risk individuals. DESIGN From 2006 to 2019, we prospectively enrolled asymptomatic individuals with an estimated 10% or greater lifetime risk of pancreatic ductal adenocarcinoma (PDAC) after obligatory evaluation by a clinical geneticist and genetic testing, and subjected them to annual surveillance with both endoscopic ultrasonography (EUS) and MRI/cholangiopancreatography (MRI/MRCP) at each visit. RESULTS 366 individuals (201 mutation-negative familial pancreatic cancer (FPC) kindreds and 165 PDAC susceptibility gene mutation carriers; mean age 54 years, SD 9.9) were followed for 63 months on average (SD 43.2). Ten individuals developed PDAC, of which four presented with a symptomatic interval carcinoma and six underwent resection. The cumulative PDAC incidence was 9.3% in the mutation carriers and 0% in the FPC kindreds (p<0.001). Median PDAC survival was 18 months (range 1-32). Surgery was performed in 17 individuals (4.6%), whose pathology revealed 6 PDACs (3 T1N0M0), 7 low-grade precursor lesions, 2 neuroendocrine tumours <2 cm, 1 autoimmune pancreatitis and in 1 individual no abnormality. There was no surgery-related mortality. EUS detected more solid lesions than MRI/MRCP (100% vs 22%, p<0.001), but less cystic lesions (42% vs 83%, p<0.001). CONCLUSION The diagnostic yield of PDAC was substantial in established high-risk mutation carriers, but non-existent in the mutation-negative proven FPC kindreds. Nevertheless, timely identification of resectable lesions proved challenging despite the concurrent use of two imaging modalities, with EUS outperforming MRI/MRCP. Overall, surveillance by imaging yields suboptimal results with a clear need for more sensitive diagnostic markers, including biomarkers.
Collapse
Affiliation(s)
- Kasper A Overbeek
- Department of Gastroenterology & Hepatology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Iris J M Levink
- Department of Gastroenterology & Hepatology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Brechtje D M Koopmann
- Department of Gastroenterology & Hepatology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Femme Harinck
- Department of Gastroenterology & Hepatology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ingrid C A W Konings
- Department of Gastroenterology & Hepatology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Margreet G E M Ausems
- Division Laboratories, Pharmacy and Biomedical Genetics, Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anja Wagner
- Department of Clinical Genetics, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Paul Fockens
- Department of Gastroenterology & Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Casper H van Eijck
- Department of Surgery, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Bas Groot Koerkamp
- Department of Surgery, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Olivier R C Busch
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Marc G Besselink
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Barbara A J Bastiaansen
- Department of Gastroenterology & Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lydi M J W van Driel
- Department of Gastroenterology & Hepatology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Nicole S Erler
- Department of Biostatistics, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Frank P Vleggaar
- Department of Gastroenterology & Hepatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jan-Werner Poley
- Department of Gastroenterology & Hepatology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Djuna L Cahen
- Department of Gastroenterology & Hepatology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jeanin E van Hooft
- Department of Gastroenterology & Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Marco J Bruno
- Department of Gastroenterology & Hepatology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
21
|
Bhattacharya R, Blankenheim Z, Scott PM, Cormier RT. CFTR and Gastrointestinal Cancers: An Update. J Pers Med 2022; 12:868. [PMID: 35743652 PMCID: PMC9224611 DOI: 10.3390/jpm12060868] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Cystic Fibrosis (CF) is a disease caused by mutations in the CFTR gene that severely affects the lungs as well as extra-pulmonary tissues, including the gastrointestinal (GI) tract. CFTR dysfunction resulting from either mutations or the downregulation of its expression has been shown to promote carcinogenesis. An example is the enhanced risk for several types of cancer in patients with CF, especially cancers of the GI tract. CFTR also acts as a tumor suppressor in diverse sporadic epithelial cancers in many tissues, primarily due to the silencing of CFTR expression via multiple mechanisms, but especially due to epigenetic regulation. This review provides an update on the latest research linking CFTR-deficiency to GI cancers, in both CF patients and in sporadic GI cancers, with a particular focus on cancer of the intestinal tract. It will discuss changes in the tissue landscape linked to CFTR-deficiency that may promote cancer development such as breakdowns in physical barriers, microbial dysbiosis and inflammation. It will also discuss molecular pathways and mechanisms that act upstream to modulate CFTR expression, such as by epigenetic silencing, as well as molecular pathways that act downstream of CFTR-deficiency, such as the dysregulation of the Wnt/β-catenin and NF-κB signaling pathways. Finally, it will discuss the emerging CFTR modulator drugs that have shown promising results in improving CFTR function in CF patients. The potential impact of these modulator drugs on the treatment and prevention of GI cancers can provide a new example of personalized cancer medicine.
Collapse
Affiliation(s)
| | | | - Patricia M. Scott
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA or (R.B.); (Z.B.)
| | - Robert T. Cormier
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA or (R.B.); (Z.B.)
| |
Collapse
|
22
|
Tan M, Brusgaard K, Gerdes AM, Larsen MJ, Mortensen MB, Detlefsen S, de Muckadell OBS, Joergensen MT. Whole genome sequencing identifies rare genetic variants in familial pancreatic cancer patients. Ann Hum Genet 2022; 86:195-206. [PMID: 35312039 PMCID: PMC9313800 DOI: 10.1111/ahg.12464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/25/2022] [Accepted: 03/03/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Ming Tan
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Medical Gastroenterology, Odense University Hospital, Odense, Denmark.,Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark
| | - Klaus Brusgaard
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Anne-Marie Gerdes
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
| | - Martin Jakob Larsen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Michael Bau Mortensen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark.,Department of Surgery, Odense University Hospital, Odense, Denmark
| | - Sönke Detlefsen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark.,Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Ove B Schaffalitzky de Muckadell
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Medical Gastroenterology, Odense University Hospital, Odense, Denmark.,Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark
| | - Maiken Thyregod Joergensen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Medical Gastroenterology, Odense University Hospital, Odense, Denmark.,Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark
| |
Collapse
|
23
|
Pan B, Ren L, Onuchic V, Guan M, Kusko R, Bruinsma S, Trigg L, Scherer A, Ning B, Zhang C, Glidewell-Kenney C, Xiao C, Donaldson E, Sedlazeck FJ, Schroth G, Yavas G, Grunenwald H, Chen H, Meinholz H, Meehan J, Wang J, Yang J, Foox J, Shang J, Miclaus K, Dong L, Shi L, Mohiyuddin M, Pirooznia M, Gong P, Golshani R, Wolfinger R, Lababidi S, Sahraeian SME, Sherry S, Han T, Chen T, Shi T, Hou W, Ge W, Zou W, Guo W, Bao W, Xiao W, Fan X, Gondo Y, Yu Y, Zhao Y, Su Z, Liu Z, Tong W, Xiao W, Zook JM, Zheng Y, Hong H. Assessing reproducibility of inherited variants detected with short-read whole genome sequencing. Genome Biol 2022; 23:2. [PMID: 34980216 PMCID: PMC8722114 DOI: 10.1186/s13059-021-02569-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Reproducible detection of inherited variants with whole genome sequencing (WGS) is vital for the implementation of precision medicine and is a complicated process in which each step affects variant call quality. Systematically assessing reproducibility of inherited variants with WGS and impact of each step in the process is needed for understanding and improving quality of inherited variants from WGS. RESULTS To dissect the impact of factors involved in detection of inherited variants with WGS, we sequence triplicates of eight DNA samples representing two populations on three short-read sequencing platforms using three library kits in six labs and call variants with 56 combinations of aligners and callers. We find that bioinformatics pipelines (callers and aligners) have a larger impact on variant reproducibility than WGS platform or library preparation. Single-nucleotide variants (SNVs), particularly outside difficult-to-map regions, are more reproducible than small insertions and deletions (indels), which are least reproducible when > 5 bp. Increasing sequencing coverage improves indel reproducibility but has limited impact on SNVs above 30×. CONCLUSIONS Our findings highlight sources of variability in variant detection and the need for improvement of bioinformatics pipelines in the era of precision medicine with WGS.
Collapse
Affiliation(s)
- Bohu Pan
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Luyao Ren
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438, China
- Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | | | | | | | | | - Len Trigg
- Real Time Genomics, Hamilton, New Zealand
| | - Andreas Scherer
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- EATRIS ERIC- European Infrastructure for Translational Medicine, Amsterdam, the Netherlands
| | - Baitang Ning
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Chaoyang Zhang
- School of Computing Sciences and Computer Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | | | - Chunlin Xiao
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Eric Donaldson
- Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Gokhan Yavas
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | | | | | | | - Joe Meehan
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Jing Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100013, China
| | - Jingcheng Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438, China
- Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | - Jonathan Foox
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Jun Shang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438, China
- Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | | | - Lianhua Dong
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100013, China
| | - Leming Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438, China
- Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | | | - Mehdi Pirooznia
- Bioinformatics and Computational Biology Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ping Gong
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, MS, 39180, USA
| | | | | | - Samir Lababidi
- Office of Health Informatics, Office of the Commissioner, US Food and Drug Administration, Silver Spring, MD, 20993, USA
| | | | - Steve Sherry
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Tao Han
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Tao Chen
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Tieliu Shi
- The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Wanwan Hou
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438, China
- Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | - Weigong Ge
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Wen Zou
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Wenjing Guo
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Wenjun Bao
- SAS Institute Inc., Cary, NC, 27513, USA
| | - Wenzhong Xiao
- Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA, 94305, USA
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yoichi Gondo
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, 259-1193, Japan
| | - Ying Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438, China
- Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | - Yongmei Zhao
- CCR-SF Bioinformatics Group, Advanced Biomedical and Computational Sciences, Biomedical Informatics and Data Science, Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Zhenqiang Su
- Takeda Pharmaceuticals, Cambridge, MA, 02139, USA
| | - Zhichao Liu
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Weida Tong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Wenming Xiao
- Division of Molecular Genetics and Pathology, Center for Device and Radiological Health, US Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Justin M Zook
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA.
| | - Yuanting Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438, China.
- Human Phenome Institute, Fudan University, Shanghai, 200438, China.
| | - Huixiao Hong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA.
| |
Collapse
|
24
|
Astiazaran-Symonds E, Goldstein AM. A systematic review of the prevalence of germline pathogenic variants in patients with pancreatic cancer. J Gastroenterol 2021; 56:713-721. [PMID: 34255164 PMCID: PMC8475496 DOI: 10.1007/s00535-021-01806-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/22/2021] [Indexed: 02/04/2023]
Abstract
The genetics of pancreatic ductal adenocarcinoma (PDAC) is complex with patients reported to harbor germline pathogenic variants (PVs) in many different genes. PDAC patients with familial pancreatic cancer (FPC) are more likely to carry germline PVs but there is no consensus main gene involved in FPC. We performed a systematic review of publications from PubMed and Scopus reporting PVs in patients with FPC, sporadic pancreatic cancer (SPC) and unselected cohorts of PDAC patients undergoing genetic testing and calculated a cumulative prevalence of PVs for each gene evaluated across these three groups of patients. When available, variants in the selected publications were reclassified according to the American College of Medical Genetics and Genomics classification system and used for prevalence calculations if classified as pathogenic or likely pathogenic. We observed an increased prevalence of PVs in FPC compared to SPC or unselected PDAC patients for most of the 41 genes reported. The genes with the highest prevalence of carriers of PVs in FPC were ATM, BRCA2, and CDKN2A. BRCA2 and ATM showed the highest prevalence of PVs in both SPC and unselected PDAC cohorts. Several genes with the highest prevalence of PVs are involved in breast and ovarian cancer suggesting strong overlap with underlying genetics in these disorders but no single gene was predominant. More research is needed to further understand the risk of PDAC associated with these many diverse genes.
Collapse
Affiliation(s)
- Esteban Astiazaran-Symonds
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Rockville, MD, USA,National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Alisa M Goldstein
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Rockville, MD, USA
| |
Collapse
|
25
|
Kassem N, Kassem H, Kassem L, Hassan M. Detection of activating mutations in liquid biopsy of Egyptian breast cancer patients using targeted next-generation sequencing: a pilot study. J Egypt Natl Canc Inst 2021; 33:10. [PMID: 33864517 DOI: 10.1186/s43046-021-00067-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/09/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Breast cancer (BC) is the 2nd most prevalent malignancy worldwide and is the most prevalent cancer among Egyptian women. The number of newly described cancer-associated genes has grown exponentially since the emergence of next-generation sequencing (NGS) technology. We aim to identify activating mutations in liquid biopsy of Egyptian breast cancer patients using targeted NGS technology. We also demonstrate the microsatellite instability (MSI) status using BAT25, BAT26, and NR27 markers which are tested on the Bioanalyzer 2100 system. RESULTS Twenty-one variants were detected in 15 genes: 7 Substitution-Missense, 12 Substitution-coding silent, and 2 Substitution-intronic. Regarding ClinVar database, out of 21 variants there were 14 benign variants, 3 variants with conflicting interpretations of pathogenicity, 3 variants not reported, and 1 drug response variant. TP53 p.(Pro72Arg) missense mutations were found in 75% of patients. PIK3CA p.(Ile391Met), KDR p.(Gln472His) missense mutations were detected in 25% of patients each. Two patients revealed APC gene missense mutation with p.(Ile1307Lys) and p.(Glu1317Gln) variants. Only one patient showed ATM p.(Phe858Leu) gene mutation and one showed FGFR3 p.(Ala719Thr) variant. Regarding microsatellite instability (MSI) status, 2/8 (25%) patients were MSS, 3/8 (37.5%) patients were MSI-L, and 3/8 (37.5%) patients were MSI-HI. CONCLUSION It is essential to use and validate minimally invasive liquid biopsy for activating mutations detection by next-generation sequencing especially in patients with inoperable disease or bone metastasis. This work should be extended with larger patient series with comparison of genetic mutations in liquid-based versus tissue-based biopsy and longer follow up period.
Collapse
Affiliation(s)
- Neemat Kassem
- Clinical and Chemical Pathology Department, Kasr Al Ainy Centre of Clinical Oncology & Nuclear Medicine, School of Medicine, Cairo University, Cairo, Egypt
| | - Hebatallah Kassem
- Clinical and Chemical Pathology Department, Kasr Al Ainy Centre of Clinical Oncology & Nuclear Medicine, School of Medicine, Cairo University, Cairo, Egypt.
| | - Loay Kassem
- Clinical Oncology Department, School of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Hassan
- Clinical Oncology Department, School of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
26
|
Elsayed M, Abdelrahim M. The Latest Advancement in Pancreatic Ductal Adenocarcinoma Therapy: A Review Article for the Latest Guidelines and Novel Therapies. Biomedicines 2021; 9:389. [PMID: 33917380 PMCID: PMC8067364 DOI: 10.3390/biomedicines9040389] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer deaths in the US, and it is expected to be the second leading cause of cancer deaths by 2030. The lack of effective early screening tests and alarming symptoms with early undetectable micro-metastasis at the time of presentation play a vital role in the high death rate from pancreatic cancer. In addition to this, the low mutation burden in pancreatic cancer, low immunological profile, dense tumorigenesis stroma, and decreased tumor sensitivity to cytotoxic drugs contribute to the low survival rates in PDAC patients. Despite breakthroughs in chemotherapeutic and immunotherapeutic drugs, pancreatic cancer remains one of the solid tumors that exhibit meager curative rates. Therefore, researchers must dedicate more effort to understanding the pathology and immunological behavior of PDAC, in addition to properly utilizing more advanced screening modalities and new therapeutic agents. In our review, we focus mainly on the latest updates from clinical guidelines and novel therapies that have been recently investigated or are under investigation for PDAC. We used PubMed as a search tool for finding original research articles addressing the latest developments in diagnosing and treating PDAC. Additionally, we also used the clinical trials published on clinicaltrialsgov as sources for our data.
Collapse
Affiliation(s)
- Marwa Elsayed
- School of Medicine, University of Missouri Kansas City, 2301 Holmes, St. Kansas City, MO 64018, USA;
| | - Maen Abdelrahim
- Houston Methodist Cancer Center, Houston Methodist Hospital, 6445 Main Street, Outpatient Center, 24th Floor, Houston, TX 77030, USA
- Cockrell Center of Advanced Therapeutics Phase I Program, Houston Methodist Research Institute, Houston, TX 77030, USA
- Weill Cornell Medical College, Institute of Academic Medicine, Houston, TX 77030, USA
| |
Collapse
|
27
|
Somatic Mutation Profiling in the Liquid Biopsy and Clinical Analysis of Hereditary and Familial Pancreatic Cancer Cases Reveals KRAS Negativity and a Longer Overall Survival. Cancers (Basel) 2021; 13:cancers13071612. [PMID: 33807330 PMCID: PMC8038004 DOI: 10.3390/cancers13071612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/27/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis. KRAS mutations occur in up to 95% of cases and render the tumor resistant to many types of therapy. Therefore, these patients are treated with traditional cytotoxic agents, according to guidelines. The familial or hereditary form of the disease accounts for up to 10–15% of cases. We hypothesized that hereditary and Familial Pancreatic Cancer cases (H/FPC) have a distinct tumor specific mutation profile due to the presence of pathogenic germline mutations and we used circulating free DNA (cfDNA) in plasma to assess this hypothesis. H/FPC cases were mainly KRAS mutation negative and harbored tumor specific mutations that are potential treatment targets in the clinic. Thus, we conclude that cases with a hereditary or familial background can be treated with newer and more effective agents that may ultimately improve their overall survival. Abstract Pancreatic ductal adenocarcinoma (PDAC) presents many challenges in the clinic and there are many areas for improvement in diagnostics and patient management. The five-year survival rate is around 7.2% as the majority of patients present with advanced disease at diagnosis that is treatment resistant. Approximately 10–15% of PDAC cases have a hereditary basis or Familial Pancreatic Cancer (FPC). Here we demonstrate the use of circulating free DNA (cfDNA) in plasma as a prognostic biomarker in PDAC. The levels of cfDNA correlated with disease status, disease stage, and overall survival. Furthermore, we show for the first time via BEAMing that the majority of hereditary or familial PDAC cases (around 84%) are negative for a KRAS somatic mutation. In addition, KRAS mutation negative cases harbor somatic mutations in potentially druggable genes such as KIT, PDGFR, MET, BRAF, and PIK3CA that could be exploited in the clinic. Finally, familial or hereditary cases have a longer overall survival compared to sporadic cases (10.2 vs. 21.7 months, respectively). Currently, all patients are treated the same in the clinic with cytotoxic agents, although here we demonstrate that there are different subtypes of tumors at the genetic level that could pave the way to personalized treatment.
Collapse
|
28
|
Zimmermann MT, Mathison AJ, Stodola T, Evans DB, Abrudan JL, Demos W, Tschannen M, Aldakkak M, Geurts J, Lomberk G, Tsai S, Urrutia R. Interpreting Sequence Variation in PDAC-Predisposing Genes Using a Multi-Tier Annotation Approach Performed at the Gene, Patient, and Cohort Level. Front Oncol 2021; 11:606820. [PMID: 33747920 PMCID: PMC7973372 DOI: 10.3389/fonc.2021.606820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
We investigated germline variation in pancreatic ductal adenocarcinoma (PDAC) predisposition genes in 535 patients, using a custom-built panel and a new complementary bioinformatic approach. Our panel assessed genes belonging to DNA repair, cell cycle checkpoints, migration, and preneoplastic pancreatic conditions. Our bioinformatics approach integrated annotations of variants by using data derived from both germline and somatic references. This integrated approach with expanded evidence enabled us to consider patterns even among private mutations, supporting a functional role for certain alleles, which we believe enhances individualized medicine beyond classic gene-centric approaches. Concurrent evaluation of three levels of evidence, at the gene, sample, and cohort level, has not been previously done. Overall, we identified in PDAC patient germline samples, 12% with mutations previously observed in pancreatic cancers, 23% with mutations previously discovered by sequencing other human tumors, and 46% with mutations with germline associations to cancer. Non-polymorphic protein-coding pathogenic variants were found in 18.4% of patient samples. Moreover, among patients with metastatic PDAC, 16% carried at least one pathogenic variant, and this subgroup was found to have an improved overall survival (22.0 months versus 9.8; p=0.008) despite a higher pre-treatment CA19-9 level (p=0.02). Genetic alterations in DNA damage repair genes were associated with longer overall survival among patients who underwent resection surgery (92 months vs. 46; p=0.06). ATM alterations were associated with more frequent metastatic stage (p = 0.04) while patients with BRCA1 or BRCA2 alterations had improved overall survival (79 months vs. 39; p=0.05). We found that mutations in genes associated with chronic pancreatitis were more common in non-white patients (p<0.001) and associated with longer overall survival (52 months vs. 26; p=0.004), indicating the need for greater study of the relationship among these factors. More than 90% of patients were found to have variants of uncertain significance, which is higher than previously reported. Furthermore, we generated 3D models for selected mutant proteins, which suggested distinct mechanisms underlying their dysfunction, likely caused by genetic alterations. Notably, this type of information is not predictable from sequence alone, underscoring the value of structural bioinformatics to improve genomic interpretation. In conclusion, the variation in PDAC predisposition genes appears to be more extensive than anticipated. This information adds to the growing body of literature on the genomic landscape of PDAC and brings us closer to a more widespread use of precision medicine for this challenging disease.
Collapse
Affiliation(s)
- Michael T Zimmermann
- Bioinformatics Research and Development Laboratory, Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Angela J Mathison
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States.,Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Tim Stodola
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Douglas B Evans
- Division of Surgical Oncology, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States.,LaBahn Pancreatic Cancer Program, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jenica L Abrudan
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Wendy Demos
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michael Tschannen
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Mohammed Aldakkak
- Division of Surgical Oncology, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jennifer Geurts
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Genetic Counseling Program, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Gwen Lomberk
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States.,Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States.,LaBahn Pancreatic Cancer Program, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Susan Tsai
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States.,Division of Surgical Oncology, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States.,LaBahn Pancreatic Cancer Program, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Raul Urrutia
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States.,Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States.,Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States.,LaBahn Pancreatic Cancer Program, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
29
|
Zheng-Lin B, O'Reilly EM. Pancreatic ductal adenocarcinoma in the era of precision medicine. Semin Oncol 2021; 48:19-33. [PMID: 33637355 PMCID: PMC8355264 DOI: 10.1053/j.seminoncol.2021.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/21/2021] [Indexed: 12/13/2022]
Abstract
The paradigm for treatment of PDAC is shifting from a "one size fits all" of cytotoxic therapy to a precision medicine approach based on specific predictive biomarkers for a subset of patients. As the genomic landscape of pancreatic carcinogenesis has become increasingly defined, several oncogenic alterations have emerged as actionable targets and their use has been validated in novel approaches such as targeting mutated germline DNA damage response genes (BRCA) and mismatch deficiency (dMMR/MSI-H) or blockade of rare somatic oncogenic fusions. Chemotherapy selection based on transcriptomic subtypes and developing stroma- and immune-modulating strategies have yielded encouraging results and may open therapeutic refinement to a broader PDAC population. Notwithstanding, a series of negative late-stage trials over the last year continue to underscore the inherent challenges in the treatment of PDAC. Multifactorial therapy resistance warrants further exploration in PDAC "omics" and tumor-stroma-immune cells crosstalk. Herein, we discuss precision medicine approaches applied to the treatment of PDAC, its current state and future perspective.
Collapse
Affiliation(s)
- Binbin Zheng-Lin
- Department of Medicine, Icahn School of Medicine at Mount Sinai Morningside and Mount Sinai West, New York, NY, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eileen M O'Reilly
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Department of Medicine, Weill Cornell Medicine, New York, NY, USA; David M. Rubenstein Center for Pancreatic Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
30
|
Thompson ED, Roberts NJ, Wood LD, Eshleman JR, Goggins MG, Kern SE, Klein AP, Hruban RH. The genetics of ductal adenocarcinoma of the pancreas in the year 2020: dramatic progress, but far to go. Mod Pathol 2020; 33:2544-2563. [PMID: 32704031 PMCID: PMC8375585 DOI: 10.1038/s41379-020-0629-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
The publication of the "Pan-Cancer Atlas" by the Pan-Cancer Analysis of Whole Genomes Consortium, a partnership formed by The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC), provides a wonderful opportunity to reflect on where we stand in our understanding of the genetics of pancreatic cancer, as well as on the opportunities to translate this understanding to patient care. From germline variants that predispose to the development of pancreatic cancer, to somatic mutations that are therapeutically targetable, genetics is now providing hope, where there once was no hope, for those diagnosed with pancreatic cancer.
Collapse
Affiliation(s)
- Elizabeth D Thompson
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicholas J Roberts
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laura D Wood
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James R Eshleman
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael G Goggins
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Scott E Kern
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alison P Klein
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ralph H Hruban
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
31
|
Gentiluomo M, Canzian F, Nicolini A, Gemignani F, Landi S, Campa D. Germline genetic variability in pancreatic cancer risk and prognosis. Semin Cancer Biol 2020; 79:105-131. [DOI: 10.1016/j.semcancer.2020.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023]
|
32
|
Ciernikova S, Earl J, García Bermejo ML, Stevurkova V, Carrato A, Smolkova B. Epigenetic Landscape in Pancreatic Ductal Adenocarcinoma: On the Way to Overcoming Drug Resistance? Int J Mol Sci 2020; 21:ijms21114091. [PMID: 32521716 PMCID: PMC7311973 DOI: 10.3390/ijms21114091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/02/2020] [Accepted: 06/06/2020] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive solid malignancies due to the rapid rate of metastasis and high resistance to currently applied cancer therapies. The complex mechanism underlying the development and progression of PDAC includes interactions between genomic, epigenomic, and signaling pathway alterations. In this review, we summarize the current research findings on the deregulation of epigenetic mechanisms in PDAC and the influence of the epigenome on the dynamics of the gene expression changes underlying epithelial–mesenchymal transition (EMT), which is responsible for the invasive phenotype of cancer cells and, therefore, their metastatic potential. More importantly, we provide an overview of the studies that uncover potentially actionable pathways. These studies provide a scientific basis to test epigenetic drug efficacy in synergy with other anticancer therapies in future clinical trials, in order to reverse acquired therapy resistance. Thus, epigenomics has the potential to generate relevant new knowledge of both a biological and clinical impact. Moreover, the potential, hurdles, and challenges of predictive biomarker discoveries will be discussed, with a special focus on the promise of liquid biopsies.
Collapse
Affiliation(s)
- Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia;
- Correspondence: ; Tel.: +421-2-3229-5198
| | - Julie Earl
- Molecular Epidemiology and Predictive Tumor Markers Group, Medical Oncology Research Laboratory, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9100, 28034 Madrid, Spain; (J.E.); (A.C.)
| | - María Laura García Bermejo
- Biomarkers and Therapeutic Targets Group, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9100, 28034 Madrid, Spain;
| | - Viola Stevurkova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia;
| | - Alfredo Carrato
- Molecular Epidemiology and Predictive Tumor Markers Group, Medical Oncology Research Laboratory, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9100, 28034 Madrid, Spain; (J.E.); (A.C.)
| | - Bozena Smolkova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia;
| |
Collapse
|
33
|
Scott P, Anderson K, Singhania M, Cormier R. Cystic Fibrosis, CFTR, and Colorectal Cancer. Int J Mol Sci 2020; 21:E2891. [PMID: 32326161 PMCID: PMC7215855 DOI: 10.3390/ijms21082891] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 02/06/2023] Open
Abstract
Cystic fibrosis (CF), caused by biallelic inactivating mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, has recently been categorized as a familial colorectal cancer (CRC) syndrome. CF patients are highly susceptible to early, aggressive colorectal tumor development. Endoscopic screening studies have revealed that by the age of forty 50% of CF patients will develop adenomas, with 25% developing aggressive advanced adenomas, some of which will have already advanced to adenocarcinomas. This enhanced risk has led to new CF colorectal cancer screening recommendations, lowering the initiation of endoscopic screening to age forty in CF patients, and to age thirty in organ transplant recipients. The enhanced risk for CRC also extends to the millions of people (more than 10 million in the US) who are heterozygous carriers of CFTR gene mutations. Further, lowered expression of CFTR is reported in sporadic CRC, where downregulation of CFTR is associated with poor survival. Mechanisms underlying the actions of CFTR as a tumor suppressor are not clearly understood. Dysregulation of Wnt/β-catenin signaling and disruption of intestinal stem cell homeostasis and intestinal barrier integrity, as well as intestinal dysbiosis, immune cell infiltration, stress responses, and intestinal inflammation have all been reported in human CF patients and in animal models. Notably, the development of new drug modalities to treat non-gastrointestinal pathologies in CF patients, especially pulmonary disease, offers hope that these drugs could be repurposed for gastrointestinal cancers.
Collapse
Affiliation(s)
| | | | | | - Robert Cormier
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; (P.S.); (K.A.); (M.S.)
| |
Collapse
|