1
|
Quaresima B, Scicchitano S, Faniello MC, Mesuraca M. Role of solute carrier transporters in ovarian cancer (Review). Int J Mol Med 2025; 55:24. [PMID: 39611477 PMCID: PMC11637498 DOI: 10.3892/ijmm.2024.5465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/11/2024] [Indexed: 11/30/2024] Open
Abstract
Solute carrier (SLC) transporters are involved in various biological processes associated with metabolic reprogramming and cancer, supporting the increased requirement of nutrients and energy. Over the past decade, there have been significant advancements in understanding the expression and function of SLCs in ovarian cancer (OC). This gynecological condition has a high mortality rate and limited treatment options; thus, early diagnosis remains a target clinically. OC exhibits complexity and heterogeneity, resulting in different clinical characteristics, resistance to chemotherapy drugs and poor prognosis. Additionally, SLCs have a different expression pattern between healthy and tumor tissue, and consequently, their inhibition or activation could modify signaling pathways involved in the tumor growth process, such as cell proliferation, apoptosis and drug accumulation. The present review aims to consolidate current data to provide a comprehensive understanding of the potential importance of SLCs in OC. Additionally, it seeks to offer guidance for further research on utilizing SLCs as prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Barbara Quaresima
- Department of Experimental and Clinical Medicine, 'Magna Graecia' University of Catanzaro, I-88100 Catanzaro, Italy
| | - Stefania Scicchitano
- Department of Experimental and Clinical Medicine, 'Magna Graecia' University of Catanzaro, I-88100 Catanzaro, Italy
| | | | - Maria Mesuraca
- Correspondence to: Dr Maria Mesuraca or Dr Barbara Quaresima, Department of Experimental and Clinical Medicine, 'Magna Graecia' University of Catanzaro, Viale Europa, I-88100 Catanzaro, Italy, E-mail: , E-mail:
| |
Collapse
|
2
|
Jiang Q, Tong F, Xu Y, Liu C, Xu Q. Cuproptosis: a promising new target for breast cancer therapy. Cancer Cell Int 2024; 24:414. [PMID: 39702350 DOI: 10.1186/s12935-024-03572-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/10/2024] [Indexed: 12/21/2024] Open
Abstract
Breast cancer (BC) is the leading cause of cancer-related mortality among women globally, affecting approximately one-quarter of all female cancer patients and accounting for one-sixth of cancer-related deaths in women. Despite significant advancements in diagnostic and therapeutic approaches, breast cancer treatment remains challenging due to issues such as recurrence and metastasis. Recently, a novel form of regulated cell death, termed cuproptosis, has been identified. This process disrupts mitochondrial respiration by targeting the copper-dependent cellular pathways. The role of cuproptosis has been extensively investigated in various therapeutic contexts, including chemotherapy, immunotherapy, radiotherapy, and nanotherapy, with the development of novel drugs significantly improving clinical outcomes. This article aims to further elucidate the connection between cuproptosis and breast cancer, focusing on its therapeutic targets, signaling pathways, and potential biomarkers that could enhance treatment strategies. These insights may offer new opportunities for improved patient care and outcomes in breast cancer therapy.
Collapse
Affiliation(s)
- Qianqian Jiang
- Department of Pharmacy, Traditional Chinese Medicine Hospital of Changshan, Quzhou, 324200, P.R. China
| | - Fei Tong
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, P.R. China
| | - Yun Xu
- Department of Pharmacy, Zhejiang Medical&Health Group Hangzhou Hospital, Hangzhou, Zhejiang, 310022, China
| | - Cheng Liu
- Department of Pharmacy, The Secend People's Hospital Of Jiande, Hangzhou, 311604, P.R. China
| | - Qiaoping Xu
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Cancer Center, Afliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
3
|
Zhang X, Tang B, Luo J, Yang Y, Weng Q, Fang S, Zhao Z, Tu J, Chen M, Ji J. Cuproptosis, ferroptosis and PANoptosis in tumor immune microenvironment remodeling and immunotherapy: culprits or new hope. Mol Cancer 2024; 23:255. [PMID: 39543600 PMCID: PMC11566504 DOI: 10.1186/s12943-024-02130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/19/2024] [Indexed: 11/17/2024] Open
Abstract
Normal life requires cell division to produce new cells, but cell death is necessary to maintain balance. Dysregulation of cell death can lead to the survival and proliferation of abnormal cells, promoting tumor development. Unlike apoptosis, necrosis, and autophagy, the newly recognized forms of regulated cell death (RCD) cuproptosis, ferroptosis, and PANoptosis provide novel therapeutic strategies for tumor treatment. Increasing research indicates that the death of tumor and immune cells mediated by these newly discovered forms of cell death can regulate the tumor microenvironment (TME) and influence the effectiveness of tumor immunotherapy. This review primarily elucidates the molecular mechanisms of cuproptosis, ferroptosis, and PANoptosis and their complex effects on tumor cells and the TME. This review also summarizes the exploration of nanoparticle applications in tumor therapy based on in vivo and in vitro evidence derived from the induction or inhibition of these new RCD pathways.
Collapse
Affiliation(s)
- Xiaojie Zhang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
| | - Bufu Tang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jinhua Luo
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
| | - Yang Yang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Qiaoyou Weng
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Shiji Fang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Zhongwei Zhao
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Jianfei Tu
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China.
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China.
| | - Minjiang Chen
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China.
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China.
| | - Jiansong Ji
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China.
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China.
| |
Collapse
|
4
|
Zhang S, Huang Q, Ji T, Li Q, Hu C. Copper homeostasis and copper-induced cell death in tumor immunity: implications for therapeutic strategies in cancer immunotherapy. Biomark Res 2024; 12:130. [PMID: 39482784 PMCID: PMC11529036 DOI: 10.1186/s40364-024-00677-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024] Open
Abstract
Copper is an important trace element for maintaining key biological functions such as cellular respiration, nerve conduction, and antioxidant defense. Maintaining copper homeostasis is critical for human health, and its imbalance has been linked to various diseases, especially cancer. Cuproptosis, a novel mechanism of copper-induced cell death, provides new therapeutic opportunities for metal ion regulation to interact with cell fate. This review provides insights into the complex mechanisms of copper metabolism, the molecular basis of cuproptosis, and its association with cancer development. We assess the role of cuproptosis-related genes (CRGs) associated with tumorigenesis, their importance as prognostic indicators and therapeutic targets, and the impact of copper homeostasis on the tumor microenvironment (TME) and immune response. Ultimately, this review highlights the complex interplay between copper, cuproptosis, and cancer immunotherapy.
Collapse
Affiliation(s)
- Suhang Zhang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430030, China
| | - Qibo Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tuo Ji
- School of Medicine, New York Medical College, Valhalla, NY, 10595, USA
| | - Qilin Li
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430030, China.
| | - Chuanyu Hu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430030, China.
| |
Collapse
|
5
|
Kawabata-Iwakawa R, Iwasa N, Satoh K, Colinge J, Shimada M, Takeuchi S, Fujiwara H, Eguchi H, Oishi T, Sugiyama T, Suzuki M, Hasegawa K, Fujiwara K, Nishiyama M. Prediction of response to promising first-line chemotherapy in ovarian cancer patients with residual peritoneal tumors: practical biomarkers and robust multiplex models. Int J Clin Oncol 2024; 29:1334-1346. [PMID: 38767719 DOI: 10.1007/s10147-024-02552-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Platinum/taxane (TC) chemotherapy with debulking surgery stays the mainstay of the treatment in ovarian cancer patients with peritoneal metastasis, and recently its novel modality, intraperitoneal carboplatin with dose-dense paclitaxel (ddTCip), was shown to have greater therapeutic impact. Nevertheless, the response varies among patients and consequent recurrence, or relapse often occurs. Discovery of therapeutic response predictor to ddTCip and/or TC therapy is eagerly awaited to improve the treatment outcome. METHODS Using datasets in 76 participants in our ddTCip study and published databases on patients received TC therapy, we first validated a total of 75 previously suggested markers, sought out more active biomarkers through the association analyses of genome-wide transcriptome and genotyping data with progression-free survival (PFS) and adverse events, and then developed multiplex statistical prediction models for PFS and toxicity by mainly using multiple regression analysis and the classification and regression tree (CART) algorithm. RESULTS The association analyses revealed that SPINK1 could be a possible biomarker of ddTCip efficacy, while ABCB1 rs1045642 and ERCC1 rs11615 would be a predictor of hematologic toxicity and peripheral neuropathy, respectively. Multiple regression analyses and CART algorithm finally provided a potent efficacy prediction model using 5 gene expression data and robust multiplex toxicity prediction models-CART models using a total of 4 genotype combinations and multiple regression models using 15 polymorphisms on 12 genes. CONCLUSION Biomarkers and multiplex models composed here could work well in the response prediction of ddTCip and/or TC therapy, which might contribute to realize optimal selection of the key therapy.
Collapse
Grants
- DOFMET-08 Development Organization for Frontier Medical Education and Therapeutics in Japan
- H21-3rd Comprehensive 10-year Strategy for Cancer Control-010 Ministry of Health, Labour and Welfare
- University Reform Action Plan "Gunma University Initiative for Advanced Research (GIAR) Ministry of Education, Culture, Sports, Science, and Technology (JP)
- University Reform Action Plan "Gunma University Initiative for Advanced Research (GIAR)" Ministry of Education, Culture, Sports, Science, and Technology (JP)
- Promotion Plan for the Platform of Human Resource Development for Cancer Ministry of Education, Culture, Sports, Science, and Technology (JP)
- the Fostering Health Professionals for Changing Needs of Cancer Ministry of Education, Culture, Sports, Science, and Technology (JP)
- New Paradigms - Establishing Center for Fostering Medical Researchers of the Future Programs Ministry of Education, Culture, Sports, Science, and Technology (JP)
Collapse
Affiliation(s)
- Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Gunma University, Maebashi, Gunma, 371-8511, Japan
- Research Unit and Immunology and Inflammation, Department of Translational Research, Division of Sohyaku Innovative Research, Tanabe Mitsubishi Pharma, Osaka, Japan
| | - Norihiro Iwasa
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Hidaka, Saitama, 350-1298, Japan
| | - Kenichi Satoh
- Faculty of Data Science, Shiga University, Hikone, Shiga, 522-8522, Japan
| | - Jacques Colinge
- Cancer Bioinformatics and System Biology, Institute of Cancer Research of Montpellier (IRCM), Inserm, University of Montpellier, ICM, 34298, Montpellier, France
| | - Muneaki Shimada
- Department of Gynecology and Obstetrics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
- Department of Obstetrics and Gynecology, Tottori University School of Medicine, Yonago, Tottori, 683-8504, Japan
| | - Satoshi Takeuchi
- Department of Gynecology, Kobe Tokushukai Hospital, Kobe, Hyogo, 655-0017, Japan
- Department of Obstetrics and Gynecology, Iwate Medical University, Morioka, Iwate, 020-8505, Japan
| | - Hiroyuki Fujiwara
- Department of Obstetrics and Gynecology, Jichi Medical University, Shimotsuke, Tochigi, 329-0498, Japan
| | - Hidetaka Eguchi
- Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, 350-1241, Japan
- Diagnosis and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Tetsuro Oishi
- Department of Obstetrics and Gynecology, Tottori University School of Medicine, Yonago, Tottori, 683-8504, Japan
- Department of Obstetrics and Gynecology, Matsue City Hospital, Matsue, Shimane, 690-8509, Japan
| | - Toru Sugiyama
- Department of Obstetrics and Gynecology, Iwate Medical University, Morioka, Iwate, 020-8505, Japan
- Department of Obstetrics and Gynecology, St. Mary's Hospital, Kurume, Fukuoka, 830-8543, Japan
| | - Mitsuaki Suzuki
- Department of Obstetrics and Gynecology, Tottori University School of Medicine, Yonago, Tottori, 683-8504, Japan
| | - Kosei Hasegawa
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Hidaka, Saitama, 350-1298, Japan
- Project Research Division, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, 350-1241, Japan
| | - Keiichi Fujiwara
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Hidaka, Saitama, 350-1298, Japan
- Project Research Division, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, 350-1241, Japan
| | - Masahiko Nishiyama
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Gunma University, Maebashi, Gunma, 371-8511, Japan.
- Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, 350-1241, Japan.
- Project Research Division, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, 350-1241, Japan.
- Laboratory for Analytical Instruments, Education and Research Support Center, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi, Gunma, 371-8511, Japan.
| |
Collapse
|
6
|
Rua AJ, Alexandrescu AT. Formerly degenerate seventh zinc finger domain from transcription factor ZNF711 rehabilitated by experimental NMR structure. Protein Sci 2024; 33:e5149. [PMID: 39180464 PMCID: PMC11344264 DOI: 10.1002/pro.5149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/19/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024]
Abstract
Domain Z7 of nuclear transcription factor ZNF711 has the consensus last metal-ligand H23 found in odd-numbered zinc fingers of this protein replaced by a phenylalanine. Ever since the discovery of ZNF711, it has been thought that Z7 is probably non-functional because of the H23F substitution. The presence of H26 three positions downstream prompted us to examine if this histidine could substitute as the last metal-ligand. The Z7 domain adopts a stable tertiary structure upon metal-binding. The NMR structure of Zn2+-bound Z7 shows the classical ββα-fold of CCHH zinc fingers. Mutagenesis and pH titration experiments indicate that H26 is not involved in metal binding and that Z7 has a tridentate metal-binding site comprised of only residues C3, C6, and H19. By contrast, an F23H mutation that introduces a histidine in the consensus position forms a tetradentate ligand. The structure of the WT Z7 is stable causing restricted ring-flipping of phenylalanines 10 and 23. Dynamics are increased with either the H26A or F23H substitutions and aromatic ring rotation is no longer hindered in the two mutants. The mutations have only small effects on the Kd values for Zn2+ and Co2+ and retain the high thermal stability of the WT domain above 80°C. Like two previously reported designed zinc fingers with the last ligand replaced by water, the WT Z7 domain is catalytically active, hydrolyzing 4-nitrophenyl acetate. We discuss the implications of naturally occurring tridentate zinc fingers for cancer mutations and drug targeting of notoriously undruggable transcription factors.
Collapse
Affiliation(s)
- Antonio J. Rua
- Department of Molecular and Cellular BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | - Andrei T. Alexandrescu
- Department of Molecular and Cellular BiologyUniversity of ConnecticutStorrsConnecticutUSA
| |
Collapse
|
7
|
Luan M, Zhang B, Wei Y, Liu F, Zhao Y, Yu Y, Wu Q. MAFF mediates PEITC-induced enhancement of sensitivity to carboplatin in ovarian cancer cell lines via activating ZNF711 transcription in vivo and invitro. Chem Biol Interact 2024; 399:111116. [PMID: 38908812 DOI: 10.1016/j.cbi.2024.111116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Enhanced drug resistance poses a significant challenge in treating ovarian cancer (OC). Phenylethyl isothiocyanate (PEITC) is involved in drug resistance in OC, but the mechanism remains unclear. In this study, we investigated the molecular regulatory mechanism of carboplatin sensitivity in OC associated with PEITC, MAF BZIP Transcription Factor F (MAFF), and Zinc finger proteins (ZNF) 711. The carboplatin sensitivity was significantly increased in OC cells after PEITC treatment. Knockdown of MAFF significantly enhanced the carboplatin sensitivity of OC cells, promoted apoptosis, inhibited colony-forming efficiency in vitro, and suppressed tumor growth in vivo. The binding site of MAFF to the ZNF711 promoter was predicted, and the knockdown of MAFF significantly increased the ZNF711 expression. Results of the dual luciferase assay and ChIP-PCR confirmed the binding of MAFF to the ZNF711 promoter. Immunofluorescence and CoIP results demonstrated the colocalization and the binding of MAFF and its interacting protein, BZIP Transcription Factor ATF-like 3 (BATF3). Similarly, we confirmed the binding of BATF3 to the ZNF711 promoter. Knockdown of BATF3 alone and simultaneous knockdown of BATF3 and MAFF showed similar regulatory effects on ZNF711 transcription and apoptosis. These suggested that the binding of MAFF to BATF3 inhibited ZNF711 transcription and reduced carboplatin sensitivity in OC.
Collapse
Affiliation(s)
- Meng Luan
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bijun Zhang
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yifan Wei
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fanghua Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuhong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Yalian Yu
- Department of Otorhinolaryngology, The First Hospital of China Medical University, Shenyang, China.
| | - Qijun Wu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China; Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
8
|
Wang Y, Yan Q, Shi Y, Long M. Copper Toxicity in Animals: A Review. Biol Trace Elem Res 2024:10.1007/s12011-024-04345-8. [PMID: 39167307 DOI: 10.1007/s12011-024-04345-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/10/2024] [Indexed: 08/23/2024]
Abstract
Copper is an essential trace element in animals and humans. However, excessive intake of copper can cause copper ions to accumulate in tissues and organs of animals, leading to copper toxicity. Copper ions induce apoptosis and autophagy through oxidative stress-mediated mitochondrial dysfunction. In addition, copper induces cell death by targeting lipoylated tricarboxylic acid (TCA) cycling proteins, termed cuproptosis. In recent years, copper cytotoxicity studies have attracted attention. In addition, the number of cases of copper toxicity in animals has been increasing over the past years due to environmental pollution and overdose from copper feed supplements. Therefore, a comprehensive understanding of copper toxicity and the metabolism of copper ions can aid in devising strategies for preventing copper toxicity. This review introduces the tissue and organ toxicity and cytotoxicity caused by copper toxicity and reviews the metabolism of copper ions in tissues, organs, and cells. The paper also reviews the clinical cases and animal experiments of copper toxicity in recent years. Finally, the preventive and curative measures for copper toxicity and the future challenges are also discussed. The general objective of this paper is to provide a reliable reference for copper toxicity prevention.
Collapse
Affiliation(s)
- Yudong Wang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Qiushi Yan
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Yang Shi
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Miao Long
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China.
| |
Collapse
|
9
|
Phadte P, Bishnu A, Dey P, M M, Mehrotra M, Singh P, Chakrabarty S, Majumdar R, Rekhi B, Patra M, De A, Ray P. Autophagy-mediated ID1 turnover dictates chemo-resistant fate in ovarian cancer stem cells. J Exp Clin Cancer Res 2024; 43:222. [PMID: 39123206 PMCID: PMC11316295 DOI: 10.1186/s13046-024-03147-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND The mechanisms enabling dynamic shifts between drug-resistant and drug-sensitive states in cancer cells are still underexplored. This study investigated the role of targeted autophagic protein degradation in regulating ovarian cancer stem cell (CSC) fate decisions and chemo-resistance. METHODS Autophagy levels were compared between CSC-enriched side population (SP) and non-SP cells (NSP) in multiple ovarian cancer cell lines using immunoblotting, immunofluorescence, and transmission electron microscopy. The impact of autophagy modulation on CSC markers and differentiation was assessed by flow cytometry, immunoblotting and qRT-PCR. In silico modeling and co-immunoprecipitation identified ID1 interacting proteins. Pharmacological and genetic approaches along with Annexin-PI assay, ChIP assay, western blotting, qRT-PCR and ICP-MS were used to evaluate effects on cisplatin sensitivity, apoptosis, SLC31A1 expression, promoter binding, and intracellular platinum accumulation in ID1 depleted backdrop. Patient-derived tumor spheroids were analyzed for autophagy and SLC31A1 levels. RESULTS Ovarian CSCs exhibited increased basal autophagy compared to non-CSCs. Further autophagy stimulation by serum-starvation and chemical modes triggered proteolysis of the stemness regulator ID1, driving the differentiation of chemo-resistant CSCs into chemo-sensitive non-CSCs. In silico modeling predicted TCF12 as a potent ID1 interactor, which was validated by co-immunoprecipitation. ID1 depletion freed TCF12 to transactivate the cisplatin influx transporter SLC31A1, increasing intracellular cisplatin levels and cytotoxicity. Patient-derived tumor spheroids exhibited a functional association between autophagy, ID1, SLC31A1, and platinum sensitivity. CONCLUSIONS This study reveals a novel autophagy-ID1-TCF12-SLC31A1 axis where targeted autophagic degradation of ID1 enables rapid remodeling of CSCs to reverse chemo-resistance. Modulating this pathway could counter drug resistance in ovarian cancer.
Collapse
Affiliation(s)
- Pratham Phadte
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Aniketh Bishnu
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Pranay Dey
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Manikandan M
- Laboratory of Medicinal Chemistry and Cell Biology, Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Megha Mehrotra
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Prerna Singh
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Shritama Chakrabarty
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
- Indian Institute of Science Education and Research, Bhopal, 462066, India
| | - Rounak Majumdar
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
- Indian Institute of Science Education and Research, Kolkata, 741246, India
| | - Bharat Rekhi
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
- Department of Pathology, Tata Memorial Hospital, Mumbai, 400012, India
| | - Malay Patra
- Laboratory of Medicinal Chemistry and Cell Biology, Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Abhijit De
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Pritha Ray
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India.
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
10
|
Lin Y, Yuan M, Wang G. Copper homeostasis and cuproptosis in gynecological disorders: Pathogenic insights and therapeutic implications. J Trace Elem Med Biol 2024; 84:127436. [PMID: 38547725 DOI: 10.1016/j.jtemb.2024.127436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/16/2024] [Accepted: 03/17/2024] [Indexed: 05/27/2024]
Abstract
This review comprehensively explores the complex role of copper homeostasis in female reproductive system diseases. As an essential trace element, copper plays a crucial role in various biological functions. Its dysregulation is increasingly recognized as a pivotal factor in the pathogenesis of gynecological disorders. We investigate how copper impacts these diseases, focusing on aspects like oxidative stress, inflammatory responses, immune function, estrogen levels, and angiogenesis. The review highlights significant changes in copper levels in diseases such as cervical, ovarian, endometrial cancer, and endometriosis, underscoring their potential roles in disease mechanisms and therapeutic exploration. The recent discovery of 'cuproptosis,' a novel cell death mechanism induced by copper ions, offers a fresh molecular perspective in understanding these diseases. The review also examines genes associated with cuproptosis, particularly those related to drug resistance, suggesting new strategies to enhance traditional therapy effectiveness. Additionally, we critically evaluate current therapeutic approaches targeting copper homeostasis, including copper ionophores, chelators, and nanoparticles, emphasizing their emerging potential in gynecological disease treatment. This article aims to provide a comprehensive overview of copper's role in female reproductive health, setting the stage for future research to elucidate its mechanisms and develop targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ying Lin
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, China; Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China; Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Disease, Jinan, Shandong Province China; Gynecology Laboratory, Shandong Provincial Hospital, Jinan Shandong Province, China; Gynecology Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan Shandong Province, China
| | - Ming Yuan
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, China; Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Disease, Jinan, Shandong Province China; Gynecology Laboratory, Shandong Provincial Hospital, Jinan Shandong Province, China; Gynecology Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan Shandong Province, China
| | - Guoyun Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, China; Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Disease, Jinan, Shandong Province China; Gynecology Laboratory, Shandong Provincial Hospital, Jinan Shandong Province, China; Gynecology Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan Shandong Province, China.
| |
Collapse
|
11
|
Li L, Zhou H, Zhang C. Cuproptosis in cancer: biological implications and therapeutic opportunities. Cell Mol Biol Lett 2024; 29:91. [PMID: 38918694 PMCID: PMC11201306 DOI: 10.1186/s11658-024-00608-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Cuproptosis, a newly identified copper (Cu)-dependent form of cell death, stands out due to its distinct mechanism that sets it apart from other known cell death pathways. The molecular underpinnings of cuproptosis involve the binding of Cu to lipoylated enzymes in the tricarboxylic acid cycle. This interaction triggers enzyme aggregation and proteotoxic stress, culminating in cell death. The specific mechanism of cuproptosis has yet to be fully elucidated. This newly recognized form of cell death has sparked numerous investigations into its role in tumorigenesis and cancer therapy. In this review, we summarized the current knowledge on Cu metabolism and its link to cancer. Furthermore, we delineated the molecular mechanisms of cuproptosis and summarized the roles of cuproptosis-related genes in cancer. Finally, we offered a comprehensive discussion of the most recent advancements in Cu ionophores and nanoparticle delivery systems that utilize cuproptosis as a cutting-edge strategy for cancer treatment.
Collapse
Affiliation(s)
- Liping Li
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Houfeng Zhou
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Chenliang Zhang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
12
|
Yi WJ, Yuan Y, Bao Q, Zhao Z, Ding HS, Song J. Analyzing Immune Cell Infiltration and Copper Metabolism in Diabetic Foot Ulcers. J Inflamm Res 2024; 17:3143-3157. [PMID: 38774446 PMCID: PMC11107912 DOI: 10.2147/jir.s452609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/18/2024] [Indexed: 05/24/2024] Open
Abstract
Background Diabetes impairs wound healing, notably in diabetic foot ulcers (DFU). Stress, marked by the accumulation of lipoylated mitochondrial enzymes and the depletion of Fe-S cluster proteins, triggers cuproptosis-a distinct form of cell death. The involvement of copper in the pathophysiology of DFU has been recognized, and currently, a copper-based therapeutic strategy is emerging as a viable option for enhancing ulcer healing. This study investigates genes linked to copper metabolism in DFU, aiming to uncover potential targets for therapeutic intervention. Methods Two diabetic wound Gene Expression Omnibus (GEO) datasets were analyzed to study immune cell dysregulation in diabetic wounds. Differentially expressed genes related to copper metabolism were identified and analyzed using machine learning methods. Gene ontology, pathway enrichment, and immune infiltration analyses were performed using DFU samples. The expression of identified genes was validated using qRT-PCR and single-cell RNA sequencing. Results Ten genes associated with copper metabolism were identified. Among these, SLC31A1 and ADNP were found to be significantly differentially expressed in DFU. Notably, SLC31A1 exhibited higher expression in macrophages, whereas ADNP was found to be highly expressed in fibroblasts and chondrocytes. Conclusion The study indicates a close link between copper metabolism, the infiltration of immune cells, and DFU. It proposes that copper metabolism could influence the progression of DFU through the activation of immune responses. These observations offer fresh perspectives on the underlying mechanisms of DFU and identify potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Wen-Juan Yi
- Department of Dermatology, Zhongnan hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Yifan Yuan
- Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Qionglin Bao
- Wound Repair Center, Chronic Wound and Diabetic Foot Clinical Medical Research Center, Liyuan Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Zhuowei Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Hua-Sheng Ding
- Department of Emergency, Shenzhen Hospital, Southern Medical University, Shenzhen, People’s Republic of China
| | - Jiquan Song
- Department of Dermatology, Zhongnan hospital of Wuhan University, Wuhan, People’s Republic of China
| |
Collapse
|
13
|
Shi X, Ni H, Tang L, Li M, Wu Y, Xu Y. Comprehensive Gene Analysis Reveals Cuproptosis-Related Gene Signature Associated with M2 Macrophage in Staphylococcus aureus-Infected Osteomyelitis. J Inflamm Res 2024; 17:3057-3077. [PMID: 38770176 PMCID: PMC11104443 DOI: 10.2147/jir.s457414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024] Open
Abstract
Objective Osteomyelitis is a challenging disease in the field of bone infections, with its immune and molecular regulatory mechanisms still poorly understood. The aim of this study is to explore the value and potential mechanisms of cuproptosis-related genes (CRGs) in Staphylococcus aureus (S. aureus)-infected osteomyelitis from an immunological perspective. Methods Initially, three transcriptomic datasets from public databases were integrated and analyzed, and consistent expression of CRGs in S. aureus-infected osteomyelitis was identified. Subsequently, immune infiltration analysis was performed, and M2 macrophage-related CRGs (M2R-CRGs) were further identified. Their potential molecular mechanisms were evaluated using Gene Set Variation Analysis (GSVA) and Gene Set Enrichment Analysis (GSEA). Finally, distinct osteomyelitis subtypes and diagnostic models based on characteristic M2R-CRGs were constructed. Results Through correlation analysis with immune cell infiltration, three characteristic M2R-CRGs (SLC31A1, DLD, and MTF1) were identified. Further analysis using unsupervised clustering and immune microenvironment analysis indicated that cluster 1 might activate pro-inflammatory responses, while cluster 2 was shown to exhibit anti-inflammatory effects in osteomyelitis. Compared to Cluster A, Cluster B demonstrated higher levels and a greater diversity of immune cell infiltrations in CRG-related molecular patterns, suggesting a potential anti-inflammatory role in osteomyelitis. A diagnostic model for S. aureus-infected osteomyelitis, based on the three M2R-CRGs, was constructed, exhibiting excellent diagnostic performance and validated with an independent dataset. Significant upregulation in mRNA and protein expression levels of the three M2R-CRGs was observed in rat models of S. aureus-infected osteomyelitis, aligning with bioinformatic results. Conclusion The M2R-CRGs (SLC31A1, DLD, and MTF1) may be considered characteristic genes for early diagnosis and personalized immune therapy in patients with S. aureus-infected osteomyelitis.
Collapse
Affiliation(s)
- Xiangwen Shi
- Graduate School, Kunming Medical University, Kunming, People’s Republic of China
- Laboratory of Yunnan Traumatology and Orthopedics Clinical Medical Center, Yunnan Orthopedics and Sports Rehabilitation Clinical Medical Research Center, Department of Orthopedic Surgery, 920th Hospital of Joint Logistics Support Force of PLA, Kunming, People’s Republic of China
| | - Haonan Ni
- First People’s Hospital of Huzhou, the First affiliated Hospital of Huzhou University, Huzhou, People’s Republic of China
| | - Linmeng Tang
- Department of Radiology, the Second Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Mingjun Li
- Laboratory of Yunnan Traumatology and Orthopedics Clinical Medical Center, Yunnan Orthopedics and Sports Rehabilitation Clinical Medical Research Center, Department of Orthopedic Surgery, 920th Hospital of Joint Logistics Support Force of PLA, Kunming, People’s Republic of China
| | - Yipeng Wu
- Laboratory of Yunnan Traumatology and Orthopedics Clinical Medical Center, Yunnan Orthopedics and Sports Rehabilitation Clinical Medical Research Center, Department of Orthopedic Surgery, 920th Hospital of Joint Logistics Support Force of PLA, Kunming, People’s Republic of China
| | - Yongqing Xu
- First People’s Hospital of Huzhou, the First affiliated Hospital of Huzhou University, Huzhou, People’s Republic of China
| |
Collapse
|
14
|
Feng Y, Yang Z, Wang J, Zhao H. Cuproptosis: unveiling a new frontier in cancer biology and therapeutics. Cell Commun Signal 2024; 22:249. [PMID: 38693584 PMCID: PMC11064406 DOI: 10.1186/s12964-024-01625-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/21/2024] [Indexed: 05/03/2024] Open
Abstract
Copper plays vital roles in numerous cellular processes and its imbalance can lead to oxidative stress and dysfunction. Recent research has unveiled a unique form of copper-induced cell death, termed cuproptosis, which differs from known cell death mechanisms. This process involves the interaction of copper with lipoylated tricarboxylic acid cycle enzymes, causing protein aggregation and cell death. Recently, a growing number of studies have explored the link between cuproptosis and cancer development. This review comprehensively examines the systemic and cellular metabolism of copper, including tumor-related signaling pathways influenced by copper. It delves into the discovery and mechanisms of cuproptosis and its connection to various cancers. Additionally, the review suggests potential cancer treatments using copper ionophores that induce cuproptosis, in combination with small molecule drugs, for precision therapy in specific cancer types.
Collapse
Affiliation(s)
- Ying Feng
- Department of Emergency, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266005, Shandong, China
| | - Zhibo Yang
- Department of Neurosurgery, 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong, 723000, Shaanxi, China
| | - Jianpeng Wang
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266005, Shandong, China
| | - Hai Zhao
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266005, Shandong, China.
| |
Collapse
|
15
|
Ma Y, Zong H, Pan P, Shang H, Yang X. The CREB1/WNK1 axis promotes the tumorigenesis of ovarian cancer via regulating HIF-1. Exp Cell Res 2024; 438:114006. [PMID: 38599542 DOI: 10.1016/j.yexcr.2024.114006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/07/2024] [Accepted: 03/15/2024] [Indexed: 04/12/2024]
Abstract
The aim of this study was to explore the functions and molecular mechanisms of the WNK lysine deficient protein kinase 1 (WNK1) in the development of ovarian cancer. Firstly, loss- and gain-of-function assays were carried out and subsequently cell proliferation, apoptosis, invasion and migration were detected. Furthermore, WNK1 action on glucose uptake, lactate production and adenosine triphosphate (ATP) level were assessed. The roles of WNK1 on cisplatin resistance were explored using CCK-8, colony formation, and flow cytometry in vitro. Immunohistochemistry, Western blot and qRT-PCR were conducted to determine the protein and mRNA expression. Additionally, tumor growth in vivo was also monitored. We found that the overexpression of WNK1 predicted a bad prognosis of ovarian cancer patients. WNK1 enhanced the malignant behavior and facilitated glycolysis of ovarian cancer cells. Moreover, WNK1 increased cisplatin resistance in ovarian cancer cells. Mechanistically, we found that WNK1 expression was promoted by CREB1 at the transcriptional level. And CREB1 could facilitate ovarian cancer cells malignant behavior through target upregulating WNK1. Besides, we also showed that WNK1 facilitated the malignant behavior by accelerating HIF-1 expression. In xenograft tumor tissues, the downregulation of WNK1 significantly reduced HIF-1α expression. These data demonstrated that the CREB1/WNK1 axis could promote the tumorigenesis of ovarian cancer via accelerating HIF-1 expression, suggesting that the CREB1/WNK1 axis could be a potential target during the therapy of ovarian cancer.
Collapse
Affiliation(s)
- Yifei Ma
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, PR China; Department of Obstetrics and Gynecology, Jinan Central Hospital, Jinan, 250013, Shandong, PR China
| | - Hui Zong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, PR China
| | - Pan Pan
- Department of Pathology, Jinan Central Hospital, Jinan, 250013, Shandong, PR China
| | - Hui Shang
- Department of Obstetrics and Gynecology, Jinan Central Hospital, Jinan, 250013, Shandong, PR China
| | - Xingsheng Yang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, PR China.
| |
Collapse
|
16
|
Rua AJ, Alexandrescu AT. Formerly degenerate seventh zinc finger domain from transcription factor ZNF711 rehabilitated by experimental NMR structure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.06.588434. [PMID: 38645208 PMCID: PMC11030341 DOI: 10.1101/2024.04.06.588434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Domain Z7 of nuclear transcription factor ZNF711 has the consensus last metal-ligand H23 found in odd-numbered zinc-fingers of this protein replaced by a phenylalanine. Ever since the discovery of ZNF711 it has been thought that Z7 is probably non-functional because of the H23F substitution. The presence of H26 three positions downstream prompted us to examine if this histidine could substitute as the last metal ligand. The Z7 domain adopts a stable tertiary structure upon metal binding. The NMR structure of Zn2+-bound Z7 shows the classical ββα-fold of CCHH zinc fingers. Mutagenesis and pH titration experiments indicate that H26 is not involved in metal binding and that Z7 has a tridentate metal-binding site comprised of only residues C3, C6, and H19. By contrast, an F23H mutation that introduces a histidine in the consensus position forms a tetradentate ligand. The structure of the WT Z7 is stable causing restricted ring-flipping of phenyalanines 10 and 23. Dynamics are increased with either the H26A or F23H substitutions and aromatic ring rotation is no longer hindered in the two mutants. The mutations have only small effects on the Kd values for Zn2+ and Co2+ and retain the high thermal stability of the WT domain above 80 °C. Like two previously reported designed zinc fingers with the last ligand replaced by water, the WT Z7 domain is catalytically active, hydrolyzing 4-nitophenyl acetate. We discuss the implications of naturally occurring tridentate zinc fingers for cancer mutations and drug targeting of notoriously undruggable transcription factors. Our findings that Z7 can fold with only a subset of three metal ligands suggests the recent view that most everything about protein structure can be predicted through homology modeling might be premature for at least the resilient and versatile zinc-finger motif.
Collapse
Affiliation(s)
- Antonio J Rua
- Department of Molecular and Cellular Biology, University of Connecticut
| | | |
Collapse
|
17
|
Kou X, Yang X, Zhao Z, Li L. HSPA8-mediated stability of the CLPP protein regulates mitochondrial autophagy in cisplatin-resistant ovarian cancer cells. Acta Biochim Biophys Sin (Shanghai) 2024; 56:356-365. [PMID: 38419499 PMCID: PMC10984867 DOI: 10.3724/abbs.2023246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/07/2023] [Indexed: 03/02/2024] Open
Abstract
Currently, platinum agents remain the mainstay of chemotherapy for ovarian cancer (OC). However, cisplatin (DDP) resistance is a major reason for chemotherapy failure. Thus, it is extremely important to elucidate the mechanism of resistance to DDP. Here, we establish two DDP-resistant ovarian cancer cell lines and find that caseinolytic protease P (CLPP) level is significantly downregulated in DDP-resistant cell lines compared to wild-type ovarian cancer cell lines (SK-OV-3 and OVcar3). Next, we investigate the functions of CLPP in DDP-resistant and wild-type ovarian cancer cells using various assays, including cell counting kit-8 assay, western blot analysis, immunofluorescence staining, and detection of reactive oxygen species (ROS) and apoptosis. Our results show that CLPP knockdown significantly increases the half maximal inhibitory concentration (IC 50) and mitophagy of wild-type SK-OV-3 and OVcar3 cells, while CLPP overexpression reduces the IC 50 values and mitophagy of DDP-resistant SK-OV-3 and OVcar3 cells. Next, we perform database predictions and confirmation experiments, which show that heat shock protein family A member 8 (HSPA8) regulates CLPP protein stability. The dynamic effects of the HSPA8/CLPP axis in ovarian cancer cells are also examined. HSPA8 increases mitophagy and the IC 50 values of SK-OV-3 and OVcar3 cells but inhibits their ROS production and apoptosis. In addition, CLPP partly reverses the effects induced by HSPA8 in SK-OV-3 and OVcar3 cells. In conclusion, CLPP increases DDP resistance in ovarian cancer by inhibiting mitophagy and promoting cellular stress. Meanwhile, HSPA8 promotes the degradation of CLPP protein by regulating its stability.
Collapse
Affiliation(s)
- Xinxin Kou
- />Department of GynecologyCancer Hospital Affiliated to Zhengzhou UniversityZhengzhou450008China
| | - Xiaoxia Yang
- />Department of GynecologyCancer Hospital Affiliated to Zhengzhou UniversityZhengzhou450008China
| | - Zheng Zhao
- />Department of GynecologyCancer Hospital Affiliated to Zhengzhou UniversityZhengzhou450008China
| | - Lei Li
- />Department of GynecologyCancer Hospital Affiliated to Zhengzhou UniversityZhengzhou450008China
| |
Collapse
|
18
|
Liu WQ, Lin WR, Yan L, Xu WH, Yang J. Copper homeostasis and cuproptosis in cancer immunity and therapy. Immunol Rev 2024; 321:211-227. [PMID: 37715546 DOI: 10.1111/imr.13276] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/17/2023]
Abstract
Copper is an essential nutrient for maintaining enzyme activity and transcription factor function. Excess copper results in the aggregation of lipoylated dihydrolipoamide S-acetyltransferase (DLAT), which correlates to the mitochondrial tricarboxylic acid (TCA) cycle, resulting in proteotoxic stress and eliciting a novel cell death modality: cuproptosis. Cuproptosis exerts an indispensable role in cancer progression, which is considered a promising strategy for cancer therapy. Cancer immunotherapy has gained extensive attention owing to breakthroughs in immune checkpoint blockade; furthermore, cuproptosis is strongly connected to the modulation of antitumor immunity. Thus, a thorough recognition concerning the mechanisms involved in the modulation of copper metabolism and cuproptosis may facilitate improvement in cancer management. This review outlines the cellular and molecular mechanisms and characteristics of cuproptosis and the links of the novel regulated cell death modality with human cancers. We also review the current knowledge on the complex effects of cuproptosis on antitumor immunity and immune response. Furthermore, potential agents that elicit cuproptosis pathways are summarized. Lastly, we discuss the influence of cuproptosis induction on the tumor microenvironment as well as the challenges of adding cuproptosis regulators to therapeutic strategies beyond traditional therapy.
Collapse
Affiliation(s)
- Wei-Qing Liu
- Department of Internal Medicine-Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wan-Rong Lin
- Department of Surgical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li Yan
- Department of Internal Medicine-Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wen-Hao Xu
- Department of Internal Medicine-Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jun Yang
- Department of Surgical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
19
|
Wang M, Xu X, Li J, Gao Z, Ding Y, Chen X, Xiang Q, Shen L. Integrated bioinformatics and experiment revealed that cuproptosis is the potential common pathogenesis of three kinds of primary cardiomyopathy. Aging (Albany NY) 2023; 15:14210-14241. [PMID: 38085668 PMCID: PMC10756114 DOI: 10.18632/aging.205298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/06/2023] [Indexed: 12/21/2023]
Abstract
Cuproptosis is a recently reported new mode of programmed cell death which might be a potential co-pathogenesis of three kinds of primary cardiomyopathy. However, no investigation has reported a clear relevance between primary cardiomyopathy and cuproptosis. In this study, the differential cuproptosis-related genes (CRGs) shared by three kinds of primary cardiomyopathy were identified in training sets. As a result, four CRGs shared by three kinds of primary cardiomyopathy were acquired and they were mainly related to biological processes such as cell death and immuno-inflammatory response through differential analysis, correlation analysis, GSEA, GSVA and immune cell infiltration analysis. Then, three key CRGs (K-CRGs) with high diagnostic value were identified by LASSO regression. The results of nomogram, machine learning, ROC analysis, calibration curve and decision curve indicated that the K-CRGs exhibited outstanding performance in the diagnosis of three kinds of primary cardiomyopathy. After that, in each disease, two molecular subtypes clusters were distinguished. There were many differences between different clusters in the biological processes associated with cell death and immunoinflammation and K-CRGs had excellent molecular subtype identification efficacy. Eventually, results from validation datasets and in vitro experiments verified the role of K-CRGs in diagnosis of primary cardiomyopathy, identification of primary cardiomyopathic molecular subtypes and pathogenesis of cuproptosis. In conclusion, this study found that cuproptosis might be the potential common pathogenesis of three kinds of primary cardiomyopathy and K-CRGs might be promising biomarkers for the diagnosis and molecular subtypes identification of primary cardiomyopathy.
Collapse
Affiliation(s)
- Mengxi Wang
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaozhuo Xu
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jianghong Li
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ziwei Gao
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuhan Ding
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaohu Chen
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Qian Xiang
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Le Shen
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| |
Collapse
|
20
|
Yang X, Deng L, Diao X, Yang S, Zou L, Yang Q, Li J, Nie J, Zhao L, Jiao B. Targeting cuproptosis by zinc pyrithione in triple-negative breast cancer. iScience 2023; 26:108218. [PMID: 37953954 PMCID: PMC10637938 DOI: 10.1016/j.isci.2023.108218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/07/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023] Open
Abstract
Triple-negative breast cancer (TNBC) poses a considerable challenge due to its aggressive nature. Notably, metal ion-induced cell death, such as ferroptosis, has garnered significant attention and demonstrated potential implications for cancer. Recently, cuproptosis, a potent cell death pathway reliant on copper, has been identified. However, whether cuproptosis can be targeted for cancer treatment remains uncertain. Here, we screened the US Food and Drug Administration (FDA)-approved drug library and identified zinc pyrithione (ZnPT) as a compound that significantly inhibited TNBC progression. RNA sequencing revealed that ZnPT disrupted copper homeostasis. Furthermore, ZnPT facilitated the oligomerization of dihydrolipoamide S-acetyltransferase, a landmark molecule of cuproptosis. Clinically, high expression levels of cuproptosis-related proteins were significantly correlated with poor prognosis in TNBC patients. Collectively, these findings indicate that ZnPT can induce cell death by targeting and disrupting copper homeostasis, providing a potential experimental foundation for exploring cuproptosis as a target in drug discovery for TNBC patients.
Collapse
Affiliation(s)
- Xu Yang
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650201, China
| | - Li Deng
- Department of Breast Cancer, Third Affiliated Hospital, Kunming Medical University, 519 Kunzhou Road, Kunming, Yunnan 650118, China
| | - Xianhong Diao
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650201, China
| | - Siyuan Yang
- Department of Breast Cancer, Third Affiliated Hospital, Kunming Medical University, 519 Kunzhou Road, Kunming, Yunnan 650118, China
| | - Li Zou
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Qin Yang
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jian Li
- Institutional Center for Shared Technologies and Facilities, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jianyun Nie
- Department of Breast Cancer, Third Affiliated Hospital, Kunming Medical University, 519 Kunzhou Road, Kunming, Yunnan 650118, China
| | - Lina Zhao
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Baowei Jiao
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650203, China
| |
Collapse
|
21
|
Wu JH, Cheng TC, Zhu B, Gao HY, Zheng L, Chen WX. Identification of cuproptosis-related gene SLC31A1 and upstream LncRNA-miRNA regulatory axis in breast cancer. Sci Rep 2023; 13:18390. [PMID: 37884650 PMCID: PMC10603161 DOI: 10.1038/s41598-023-45761-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023] Open
Abstract
Mounting evidence indicate that cuproptosis, a novel form of programmed cell death, contributes to cancer development and progression. However, a comprehensive analysis regarding the expressions, functions, and regulatory network of cuproptosis-related genes is still lacking. In the present work, cuproptosis-related genes, upstream miRNAs and lncRNAs, and clinical data of breast cancer from TCGA database were analyzed by R language including Cox regression analysis, correlation calculation, ROC curve construction, and survival evaluation, and were further verified by public-available databases. Chemosensitivity and immune infiltration were also evaluated by online tools. SLC31A1 was significantly increased in breast cancer samples than those in normal tissues. SLC31A1 was negatively related to a favorable outcome in breast cancer, and the AUC value increased with the prolongation of follow-up time. LINC01614 and miR-204-5p were potential upstream regulators of SLC31A1. Moreover, SLC31A1 was significantly positively correlated with different immune cells infiltration, immune cell biomarkers, and immune checkpoints in breast cancer. SLC31A1 was a potential cuproptosis-related gene in breast cancer, which was significantly upregulated and was able to predict diagnosis, prognosis, chemosensitivity, and immune infiltration. LINC01640/miR-204-5p/SLC31A1 might be a significant and promising axis during cuproptosis in breast cancer.
Collapse
Affiliation(s)
- Jia-Hao Wu
- Department of Breast Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, 29 Xinglongxiang, Changzhou, 213000, Jiangsu Province, China
- Graduate School, Dalian Medical University, Dalian, 116000, Liaoning Province, China
| | - Tian-Cheng Cheng
- Department of Breast Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, 29 Xinglongxiang, Changzhou, 213000, Jiangsu Province, China
- Graduate School, Bengbu Medical College, Bengbu, 233000, Anhui Province, China
| | - Bei Zhu
- Department of Breast Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, 29 Xinglongxiang, Changzhou, 213000, Jiangsu Province, China
| | - Hai-Yan Gao
- Department of Breast Surgery, The Affiliated Changzhou Tumor Hospital of Soochow University, Changzhou, 213000, Jiangsu Province, China
| | - Lin Zheng
- Department of Breast Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, 29 Xinglongxiang, Changzhou, 213000, Jiangsu Province, China
| | - Wei-Xian Chen
- Department of Breast Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, 29 Xinglongxiang, Changzhou, 213000, Jiangsu Province, China.
- Post-doctoral Working Station, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213000, Jiangsu Province, China.
| |
Collapse
|
22
|
Qi Y, Yao Q, Li X, Li X, Zhang W, Qu P. Cuproptosis-related gene SLC31A1: prognosis values and potential biological functions in cancer. Sci Rep 2023; 13:17790. [PMID: 37853210 PMCID: PMC10584849 DOI: 10.1038/s41598-023-44681-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023] Open
Abstract
Cuproptosis is a unique type of cell death that may influence tumour formation by targeting lipoylated tricarboxylic acid cycle proteins. Solute carrier family 31 member 1 (SLC31A1), an important copper transporter, influences dietary copper absorption in the cell membrane. However, various SLC31A1 properties in pan-cancer profiles remain unknown. This study investigated the role of SLC31A1 in human malignancies and analysed its prognostic value. Raw data were obtained from The Cancer Genome Atlas database and processed using numerous internet databases, including UALCAN, GEPIA, cBioPortal, TIMER2.0, and Human Protein Atlas. SLC31A1 expression was found to be elevated in cervical, endometrial, and breast cancers compared to that in normal tissues, but reduced in clear cell renal cell carcinoma, liver hepatocellular carcinoma, and lung adenocarcinoma. Furthermore, SLC31A1 expression was strongly associated with overall survival and disease-free survival in several cancers. SLC31A1 gene mutations and methylations were identified in 33 cancers. SLC31A1 expression was positively correlated with immune cells in immune infiltration data. Single-cell sequencing revealed that SLC31A1 may play key roles in DNA repair, DNA damage, and proliferation. These findings may lead to better understanding of SLC31A1 in pan-cancer profiles and suggest that SLC31A1 could be a viable predictive biomarker, particularly in gynaecological cancers.
Collapse
Affiliation(s)
- Yue Qi
- Clinical School of Obstetrics and Gynecology Center, Tianjin Medical University, Tianjin, China
- Department of Gynecological Oncology, Tianjin Central Hospital Gynecology Obstetrics, No. 156, Nansanma Road, Nankai District, Tianjin, 300000, China
| | - Qingqing Yao
- Department of Gynecological Oncology, Tianjin Central Hospital Gynecology Obstetrics, No. 156, Nansanma Road, Nankai District, Tianjin, 300000, China
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Xuanyan Li
- Department of Gynecological Oncology, Tianjin Central Hospital Gynecology Obstetrics, No. 156, Nansanma Road, Nankai District, Tianjin, 300000, China
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Xinyu Li
- Clinical School of Obstetrics and Gynecology Center, Tianjin Medical University, Tianjin, China
- Department of Gynecological Oncology, Tianjin Central Hospital Gynecology Obstetrics, No. 156, Nansanma Road, Nankai District, Tianjin, 300000, China
| | - Wenwen Zhang
- Department of Gynecological Oncology, Tianjin Central Hospital Gynecology Obstetrics, No. 156, Nansanma Road, Nankai District, Tianjin, 300000, China.
| | - Pengpeng Qu
- Clinical School of Obstetrics and Gynecology Center, Tianjin Medical University, Tianjin, China.
- Department of Gynecological Oncology, Tianjin Central Hospital Gynecology Obstetrics, No. 156, Nansanma Road, Nankai District, Tianjin, 300000, China.
- Nankai University School of Medicine, Nankai University, Tianjin, China.
| |
Collapse
|
23
|
Mi J, Luo J, Zeng H, Zhang H, Jamil M, Abdel-Maksoud MA, Zakri AM, Alfuraydi AA, Zhang N, Xiao M. Elucidating cuproptosis-related gene SLC31A1 diagnostic and prognostic values in cancer. Am J Transl Res 2023; 15:6026-6041. [PMID: 37969191 PMCID: PMC10641336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/28/2023] [Indexed: 11/17/2023]
Abstract
OBJECTIVES Cancer remains a global health challenge, necessitating the identification of novel biomarkers and therapeutic targets. Cuproptosis, a recently recognized form of cell death linked to copper metabolism, presents a promising avenue for anticancer strategies. We investigated the clinical significance of SLC31A1, a key regulator of cuproptosis, in multiple cancer types, aiming to elucidate its potential as a diagnostic biomarker, prognostic, indicator and therapeutic target. METHODS We conducted a pan-cancer analysis through TIMER2.0, evaluating SLC31A1 expression across multiple cancer types. Survival analysis was performed using KM plotter. Expression validation was carried out using UALCAN and Human Protein Atlas (HPA) databases. Methylation analysis was conducted with the help of ULACAN and OncoDB. Mutational analysis was performed using cBioPortal database. Immune infiltration analysis via the TIMER2.0 and gene enrichment analysis via the Metascape were performed to gain insights into the potential mechanisms underlying SLC31A1's role in cancer. Finally, Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was employed to confirm SLC31A1 expression in clinical samples. RESULTS Out of analyzed cancer, SLC31A1 exhibited significant up-regulation and correlation with worse overall survival (OS) across Breast Cancer (BRCA), Cervical Squamous Cell Carcinoma (CESC), Head and Neck Squamous Cell Carcinoma (HNSC), and Esophageal Carcinoma (ESCA). Mutational and promoter methylation analyses further revealed that hypomethylation is the major cause of SLC31A1 overexpression among BRCA, CESC, HNSC, and ESCA. Immune infiltration analysis showed significant associations between SLC31A1 expression and the presence of CD8+ T cells, CD4+ T cells, and macrophages in the tumor microenvironment. Gene enrichment analysis provided valuable insights into potential molecular pathways in context to BRCA, CESC, HNSC, and ESCA. Furthermore, when SLC31A1 was analyzed using clinical samples through RT-qPCR, this gene showed promising diagnostic potential, reflected by high Area Under the Curve (AUC) values. CONCLUSION Our pan-cancer study highlights the up-regulation of SLC31A1 and its correlation with worse OS in BRCA, CESC, HNSC, and ESCA. In sum, outcomes of this study showed that SLC31A1 could be a potential biomarker and novel therapeutic target of BRCA, CESC, HNSC, and ESCA.
Collapse
Affiliation(s)
- Jiaoping Mi
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510080, Guangdong, PR China
- Department of Otolaryngology Head and Neck Surgery, The Fifth Affiliated Hospital of Sun Yat-sen UniversityZhuhai 519000, Guangdong, PR China
| | - Juncong Luo
- Department of Oncology, The Fifth Affiliated Hospital of Sun Yat-sen UniversityZhuhai 519000, Guangdong, PR China
| | - Huanwen Zeng
- Department of Oncology, The Fifth Affiliated Hospital of Sun Yat-sen UniversityZhuhai 519000, Guangdong, PR China
| | - Hongyu Zhang
- Department of Oncology, The Fifth Affiliated Hospital of Sun Yat-sen UniversityZhuhai 519000, Guangdong, PR China
| | - Muhammad Jamil
- PARC Arid Zone Research CenterDera Ismail Khan 29050, Pakistan
| | - Mostafa A Abdel-Maksoud
- Department of Botany and Microbiology, College of Science, King Saud UniversityP.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Adel M Zakri
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud UniversityP.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Akram A Alfuraydi
- Department of Botany and Microbiology, College of Science, King Saud UniversityP.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ning Zhang
- Internal Medicine Oncology, Minhang Brunch Fudan University Shanghai Cancer CenterShanghai 200240, PR China
| | - Mei Xiao
- Department of Oncology, The Fifth Affiliated Hospital of Sun Yat-sen UniversityZhuhai 519000, Guangdong, PR China
| |
Collapse
|
24
|
Liu Y, Wang Y, Li C, Feng H, Liu Y, Ma L. An effective prognostic model in colon adenocarcinoma composed of cuproptosis-related epigenetic regulators. Front Pharmacol 2023; 14:1254918. [PMID: 37701039 PMCID: PMC10494936 DOI: 10.3389/fphar.2023.1254918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/16/2023] [Indexed: 09/14/2023] Open
Abstract
Background: Colorectal adenocarcinoma (COAD) is a common malignant tumor with little effective prognostic markers. Cuproptosis is a newly discovered mode of cell death that may be related to epigenetic regulators. This study aimed to explore the association between epigenetic regulators and cuproptosis, and to establish a prognostic prediction model for COAD based on epigenetic regulators associated with cuproptosis (EACs). Methods: RNA sequencing data and clinical data of 524 COAD patients were obtained from the TCGA-COAD database, cuproptosis-related genes were from the FerrDb database, and epigenetic-related genes were from databases such as GO and EpiFactors. LASSO regression analysis and other methods were used to screen out epigenetic regulators associated with cuproptosis and prognosis. The risk score of each patient was calculated and the patients were divided into high-risk group and low-risk group. Next, the survival difference, functional enrichment analyses, tumor mutation burden, chemotherapy drug sensitivity and other indicators between the two groups were compared and analyzed. Results: We found 716 epigenetic regulators closely related to cuproptosis, among which 35 genes were related to prognosis of COAD. We further screened out 7 EACs from the 35 EACs to construct a prognostic prediction model. We calculated the risk score of each patient based on these 7 genes, and divided the patients into high-risk group and low-risk group. We found that the overall survival rate and progression-free survival rate of the high-risk group were significantly lower than those of the low-risk group. This model showed good predictive ability in the training set, test set and overall data set. We also constructed a prognostic prediction model based on risk score and other clinical features, and drew the corresponding Nomogram. In addition, we found significant differences between the high-risk group and the low-risk group in tumor mutation burden, chemotherapy drug sensitivity and other clinical aspects. Conclusion: We established an effective predictive prediction model for COAD based on EACs, revealing the association between epigenetic regulators and cuproptosis in COAD. We hope that this model can not only facilitate the treatment decision of COAD patients, but also promote the research progress in the field of cuproptosis.
Collapse
Affiliation(s)
- Yang Liu
- Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yizhao Wang
- Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chang Li
- Department of VIP Unit, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Huijin Feng
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Yanqing Liu
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Lianjun Ma
- Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
25
|
Kong FS, Ren CY, Jia R, Zhou Y, Chen JH, Ma Y. Systematic pan-cancer analysis identifies SLC31A1 as a biomarker in multiple tumor types. BMC Med Genomics 2023; 16:61. [PMID: 36973786 PMCID: PMC10041742 DOI: 10.1186/s12920-023-01489-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Solute Carrier Family 31 Member 1 (SLC31A1) has recently been identified as a cuproptosis-regulatory gene. Recent studies have indicated that SLC31A1 may play a role in colorectal and lung cancer tumorigenesis. However, the role of SLC31A1 and its cuproptosis-regulatory functions in multiple tumor types remains to be further elucidated. METHODS Online websites and datasets such as HPA, TIMER2, GEPIA, OncoVar, and cProSite were used to extract data on SLC31A1 in multiple cancers. DAVID and BioGRID were used to conduct functional analysis and construct the protein-protein interaction (PPI) network, respectively. The protein expression data of SLC31A1 was obtained from the cProSite database. RESULTS The Cancer Genome Atlas (TCGA) datasets showed increased SLC31A1 expression in tumor tissues compared with non-tumor tissues in most tumor types. In patients with tumor types including adrenocortical carcinoma, low-grade glioma, or mesothelioma, higher SLC31A1 expression was associated with shorter overall survival and disease-free survival. S105Y was the most prevalent point mutation in SLC31A1 in TCGA pan-cancer datasets. Moreover, SLC31A1 expression was positively correlated with the infiltration of immune cells such as macrophages and neutrophils in tumor tissues in several tumor types. Functional enrichment analysis showed that SLC31A1 co-expressed genes were involved in protein binding, integral components of the membrane, metabolic pathways, protein processing, and endoplasmic reticulum. Copper Chaperone For Superoxide Dismutase, Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha and Solute Carrier Family 31 Member 2 were copper homeostasis-regulated genes shown in the PPI network, and their expression was positively correlated with SLC31A1. Analysis showed there was a correlation between SLC31A1 protein and mRNA in various tumors. CONCLUSIONS These findings demonstrated that SLC31A1 is associated with multiple tumor types and disease prognosis. SLC31A1 may be a potential key biomarker and therapeutic target in cancers.
Collapse
Affiliation(s)
- Fan-Sheng Kong
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu, China
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Chun-Yan Ren
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Ruofan Jia
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu, China
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yuan Zhou
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu, China
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China.
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China.
| | - Yaping Ma
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu, China.
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
26
|
Xie J, Yang Y, Gao Y, He J. Cuproptosis: mechanisms and links with cancers. Mol Cancer 2023; 22:46. [PMID: 36882769 PMCID: PMC9990368 DOI: 10.1186/s12943-023-01732-y] [Citation(s) in RCA: 235] [Impact Index Per Article: 235.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/25/2023] [Indexed: 03/09/2023] Open
Abstract
Cuproptosis was a copper-dependent and unique kind of cell death that was separate from existing other forms of cell death. The last decade has witnessed a considerable increase in investigations of programmed cell death, and whether copper induced cell death was an independent form of cell death has long been argued until mechanism of cuproptosis has been revealed. After that, increasing number of researchers attempted to identify the relationship between cuproptosis and the process of cancer. Thus, in this review, we systematically detailed the systemic and cellular metabolic processes of copper and the copper-related tumor signaling pathways. Moreover, we not only focus on the discovery process of cuproptosis and its mechanism, but also outline the association between cuproptosis and cancers. Finally, we further highlight the possible therapeutic direction of employing copper ion ionophores with cuproptosis-inducing functions in combination with small molecule drugs for targeted therapy to treat specific cancers.
Collapse
Affiliation(s)
- Jiaming Xie
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.,State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yannan Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.,State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yibo Gao
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China. .,Laboratory of Translational Medicine, National Cancer Center/National, Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 101399, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China. .,State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China. .,Laboratory of Translational Medicine, National Cancer Center/National, Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 101399, China.
| |
Collapse
|
27
|
Huang J, Shi J, Wu P, Sun W, Zhang D, Wang Z, Ji X, Lv C, Zhang T, Zhang P, Zhang H. Identification of a Novel Cuproptosis-Related Gene Signature and Integrative Analyses in Thyroid Cancer. J Clin Med 2023; 12:jcm12052014. [PMID: 36902801 PMCID: PMC10004009 DOI: 10.3390/jcm12052014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023] Open
Abstract
Cuproptosis is a novel programmed cell death that depends on copper. The role and potential mechanism of cuproptosis-related genes (CRGs) in thyroid cancer (THCA) are still unclear. In our study, we randomly divided THCA patients from the TCGA database into a training set and a testing set. A cuproptosis-related signature consisting of six genes (SLC31A1, LIAS, DLD, MTF1, CDKN2A, and GCSH) was constructed using the training set to predict the prognosis of THCA and was verified with the testing set. All patients were classified into low- and high-risk groups according to risk score. Patients in the high-risk group had a poorer overall survival (OS) than those in the low-risk group. The area under the curve (AUC) values for 5 years, 8 years, and 10 years were 0.845, 0.885, and 0.898, respectively. The tumor immune cell infiltration and immune status were significantly higher in the low-risk group, which indicated a better response to immune checkpoint inhibitors (ICIs). The expression of six cuproptosis-related genes in our prognostic signature were verified by qRT-PCR in our THCA tissues, and the results were consistent with TCGA database. In summary, our cuproptosis-related risk signature has a good predictive ability regarding the prognosis of THCA patients. Targeting cuproptosis may be a better alternative for THCA patients.
Collapse
|
28
|
Liao Q, Yang J, Ge S, Chai P, Fan J, Jia R. Novel insights into histone lysine methyltransferases in cancer therapy: From epigenetic regulation to selective drugs. J Pharm Anal 2023; 13:127-141. [PMID: 36908859 PMCID: PMC9999304 DOI: 10.1016/j.jpha.2022.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
The reversible and precise temporal and spatial regulation of histone lysine methyltransferases (KMTs) is essential for epigenome homeostasis. The dysregulation of KMTs is associated with tumor initiation, metastasis, chemoresistance, invasiveness, and the immune microenvironment. Therapeutically, their promising effects are being evaluated in diversified preclinical and clinical trials, demonstrating encouraging outcomes in multiple malignancies. In this review, we have updated recent understandings of KMTs' functions and the development of their targeted inhibitors. First, we provide an updated overview of the regulatory roles of several KMT activities in oncogenesis, tumor suppression, and immune regulation. In addition, we summarize the current targeting strategies in different cancer types and multiple ongoing clinical trials of combination therapies with KMT inhibitors. In summary, we endeavor to depict the regulation of KMT-mediated epigenetic landscape and provide potential epigenetic targets in the treatment of cancers.
Collapse
Affiliation(s)
- Qili Liao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Jie Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Jiayan Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| |
Collapse
|
29
|
Yue P, Han B, Zhao Y. Focus on the molecular mechanisms of cisplatin resistance based on multi-omics approaches. Mol Omics 2023; 19:297-307. [PMID: 36723121 DOI: 10.1039/d2mo00220e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cisplatin is commonly used in combination with other cytotoxic agents as a standard treatment regimen for a variety of solid tumors, such as lung, ovarian, testicular, and head and neck cancers. However, the effectiveness of cisplatin is accompanied by toxic side effects, for instance, nephrotoxicity and neurotoxicity. The response of tumors to cisplatin treatment involves multiple physiological processes, and the efficacy of chemotherapy is limited by the intrinsic and acquired resistance of tumor cells. Although enormous efforts have been made toward molecular mechanisms of cisplatin resistance, the development of omics provides new insights into the understanding of cisplatin resistance at genome, transcriptome, proteome, metabolome and epigenome levels. Mechanism studies using different omics approaches revealed the necessity of multi-omics applications, which provide information at different cellular function levels and expand our recognition of the peculiar genetic and phenotypic heterogeneity of cancer. The present work systematically describes the underlying mechanisms of cisplatin resistance in different tumor types using multi-omics approaches. In addition to the classical mechanisms such as enhanced drug efflux, increased DNA damage repair and changes in the cell cycle and apoptotic pathways, other changes like increased protein damage clearance, increased protein glycosylation, enhanced glycolytic process, dysregulation of the oxidative phosphorylation pathway, ferroptosis suppression and mRNA m6A methylation modification can also induce cisplatin resistance. Therefore, utilizing the integrated omics to identify key signaling pathways, target genes and biomarkers that regulate chemoresistance are essential for the development of new drugs or strategies to restore tumor sensitivity to cisplatin.
Collapse
Affiliation(s)
- Ping Yue
- Department of Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China. .,Academy of Medical Science, Henan Medical College of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Bingjie Han
- Department of Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Yi Zhao
- Department of Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| |
Collapse
|
30
|
Lin Q, Zhu J, Chen J, Jia S, Nie S. Significance of cuproptosis- related genes in the diagnosis and classification of psoriasis. Front Mol Biosci 2023; 10:1115091. [PMID: 37091865 PMCID: PMC10119406 DOI: 10.3389/fmolb.2023.1115091] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Cuproptosis is a novel form of cell death linked to mitochondrial metabolism and is mediated by protein lipoylation. The mechanism of cuproptosis in many diseases, such as psoriasis, remains unclear. In this study, signature diagnostic markers of cuproptosis were screened by differential analysis between psoriatic and non-psoriatic patients. The differentially expressed cuproptosis-related genes (CRGs) for patients with psoriasis were screened using the GSE178197 dataset from the gene expression omnibus database. The biological roles of CRGs were identified by GO and KEGG enrichment analyses, and the candidates of cuproptosis-related regulators were selected from a nomogram model. The consensus clustering approach was used to classify psoriasis into clusters and the principal component analysis algorithms were constructed to calculate the cuproptosis score. Finally, latent diagnostic markers and drug sensitivity were analyzed using the pRRophetic R package. The differential analysis revealed that CRGs (MTF1, ATP7B, and SLC31A1) are significantly expressed in psoriatic patients. GO and KEGG enrichment analyses showed that the biological functions of CRGs were mainly related to acetyl-CoA metabolic processes, the mitochondrial matrix, and acyltransferase activity. Compared to the machine learning method used, the random forest model has higher accuracy in the occurrence of cuproptosis. However, the decision curve of the candidate cuproptosis regulators analysis showed that patients can benefit from the nomogram model. The consensus clustering analysis showed that psoriasis can be grouped into three patterns of cuproptosis (clusterA, clusterB, and clusterC) based on selected important regulators of cuproptosis. In advance, we analyzed the immune characteristics of patients and found that clusterA was associated with T cells, clusterB with neutrophil cells, and clusterC predominantly with B cells. Drug sensitivity analysis showed that three cuproptosis regulators (ATP7B, SLC31A1, and MTF1) were associated with the drug sensitivity. This study provides insight into the specific biological functions and related mechanisms of CRGs in the development of psoriasis and indicates that cuproptosis plays a non-negligible role. These results may help guide future treatment strategies for psoriasis.
Collapse
Affiliation(s)
- Qingyuan Lin
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Department of Pathology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinchao Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Department of Pathology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Shouqiang Jia
- Department of Imaging, Jinan People’s Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- *Correspondence: Shouqiang Jia, ; Shengdong Nie,
| | - Shengdong Nie
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- *Correspondence: Shouqiang Jia, ; Shengdong Nie,
| |
Collapse
|
31
|
Liu H, Tang T. Pan-cancer genetic analysis of cuproptosis and copper metabolism-related gene set. Front Oncol 2022; 12:952290. [PMID: 36276096 PMCID: PMC9582932 DOI: 10.3389/fonc.2022.952290] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundA recent paper has revealed a novel cell death pathway, cuproptosis, a programmed cell death based on copper. This study aimed to evaluate the pan-cancer genomics and clinical association of cuproptosis and copper metabolism-related cell death genes, including SLC25A3, SLC25A37, SLC31A1, FDX1, DLAT, LIAS, ATP7A, ATP7B, COX17, SCO1, SCO2, COX11, and COX19.MethodsBy mining multi-omics profiling data, we performed a comprehensive and systematic characterization of cuproptosis genes across more than 9,000 samples of over 30 types of cancer.ResultsATP7B and ATP7A were the two most frequently mutated copper cell death genes in cancer. UCEC and SKCM were the two cancer types that have the highest mutation rates while the mutation of LIAS was associated with worse survival of BRCA. Brain cancer was potentially affected by copper cell death because of the difference in copper cell death gene expression among subtypes and stages. On the contrary, KIRC might have a lower cuproptosis activity because of the decrease in copper cell death gene expression. In lung cancer and kidney cancer, most of the cancer–noncancer expression patterns of copper cell death genes were consistent between mRNA and protein levels. Some of the cuproptosis gene expression was associated with the survival of LGG, KIRC, and ACC. The top five expression-copy numbers correlating cancer types were BRCA, OV, LUSC, HNSC, BLCA, and LUAD. Generally, the copy number variations of these genes in KIRC, UCEC, and LGG were associated with survival. The expression of DLAT, LIAS, and ATP7B was negatively correlated with the methylation in most of the cancer types. The copper cell death genes regulating miRNA and pathway regulation networks were constructed. The copper cell death genes were correlated with immune cell infiltration levels of multiple immune cells. These genes were correlated with the sensitivity of cancer cells to multiple drugs.ConclusionCopper cell death genes are potentially involved in many cancer types and can be developed as candidates for cancer diagnosis, prognosis, and therapeutic biomarkers.
Collapse
Affiliation(s)
| | - Tao Tang
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- *Correspondence: Tao Tang,
| |
Collapse
|
32
|
Li J, Wu F, Li C, Sun S, Feng C, Wu H, Chen X, Wang W, Zhang Y, Liu M, Liu X, Cai Y, Jia Y, Qiao H, Zhang Y, Zhang S. The cuproptosis-related signature predicts prognosis and indicates immune microenvironment in breast cancer. Front Genet 2022; 13:977322. [PMID: 36226193 PMCID: PMC9548612 DOI: 10.3389/fgene.2022.977322] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/06/2022] [Indexed: 11/20/2022] Open
Abstract
Breast cancer (BC) is the most diagnosed cancer in women. Cuproptosis is new regulated cell death, distinct from known death mechanisms and dependent on copper and mitochondrial respiration. However, the comprehensive relationship between cuproptosis and BC is still blank until now. In the present study, we acquired 13 cuproptosis-related regulators (CRRs) from the previous research and downloaded the RNA sequencing data of TCGA-BRCA from the UCSC XENA database. The 13 CRRs were all differently expressed between BC and normal samples. Using consensus clustering based on the five prognostic CRRs, BC patients were classified into two cuproptosis-clusters (C1 and C2). C2 had a significant survival advantage and higher immune infiltration levels than C1. According to the Cox and LASSO regression analyses, a novel cuproptosis-related prognostic signature was developed to predict the prognosis of BC effectively. The high- and low-risk groups were divided based on the risk scores. Kaplan-Meier survival analysis indicated that the high-risk group had shorter overall survival (OS) than the low-risk group in the training, test and entire cohorts. GSEA indicated that the immune-related pathways were significantly enriched in the low-risk group. According to the CIBERSORT and ESTIMATE analyses, patients in the high-risk group had higher infiltrating levels of antitumor lymphocyte cell subpopulations and higher immune score than the low-risk group. The typical immune checkpoints were all elevated in the high-risk group. Furthermore, the high-risk group showed a better immunotherapy response than the low-risk group based on the Tumor Immune Dysfunction and Exclusion (TIDE) and Immunophenoscore (IPS). In conclusion, we identified two cuproptosis-clusters with different prognoses using consensus clustering in BC. We also developed a cuproptosis-related prognostic signature and nomogram, which could indicate the outcome, the tumor immune microenvironment, as well as the response to immunotherapy.
Collapse
Affiliation(s)
- Jia Li
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Fei Wu
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Chaofan Li
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shiyu Sun
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Cong Feng
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Huizi Wu
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xi Chen
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Weiwei Wang
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yu Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Mengji Liu
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xuan Liu
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yifan Cai
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yiwei Jia
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Hao Qiao
- Department of Orthopedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yinbin Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Yinbin Zhang, ; Shuqun Zhang,
| | - Shuqun Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Yinbin Zhang, ; Shuqun Zhang,
| |
Collapse
|
33
|
Li H, Zu X, Hu J, Xiao Z, Cai Z, Gao N, Chen J. Cuproptosis depicts tumor microenvironment phenotypes and predicts precision immunotherapy and prognosis in bladder carcinoma. Front Immunol 2022; 13:964393. [PMID: 36211344 PMCID: PMC9540537 DOI: 10.3389/fimmu.2022.964393] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background Though immune checkpoint inhibitors (ICIs) exhibit durable efficacy in bladder carcinomas (BLCAs), there are still a large portion of patients insensitive to ICIs treatment. Methods We systematically evaluated the cuproptosis patterns in BLCA patients based on 46 cuproptosis related genes and correlated these cuproptosis patterns with tumor microenvironment (TME) phenotypes and immunotherapy efficacies. Then, for individual patient's evaluation, we constructed a cuproptosis risk score (CRS) for prognosis and a cuproptosis signature for precise TME phenotypes and immunotherapy efficacies predicting. Results Two distinct cuproptosis patterns were generated. These two patterns were consistent with inflamed and noninflamed TME phenotypes and had potential role for predicting immunotherapy efficacies. We constructed a CRS for predicting individual patient's prognosis with high accuracy in TCGA-BLCA. Importantly, this CRS could be well validated in external cohorts including GSE32894 and GSE13507. Then, we developed a cuproptosis signature and found it was significantly negative correlated with tumor-infiltrating lymphocytes (TILs) both in TCGA-BLCA and Xiangya cohorts. Moreover, we revealed that patients in the high cuproptosis signature group represented a noninflamed TME phenotype on the single cell level. As expected, patients in the high cuproptosis signature group showed less sensitive to immunotherapy. Finally, we found that the high and low cuproptosis signature groups were consistent with luminal and basal subtypes of BLCA respectively, which validated the role of signature in TME in terms of molecular subtypes. Conclusions Cuproptosis patterns depict different TME phenotypes in BLCA. Our CRS and cuproptosis signature have potential role for predicting prognosis and immunotherapy efficacy, which might guide precise medicine.
Collapse
Affiliation(s)
- Huihuang Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jiao Hu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zicheng Xiao
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhiyong Cai
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ning Gao
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China,Department of Urology, Xiangya Boai Hospital, Changsha, China,*Correspondence: Jinbo Chen, ; Ning Gao,
| | - Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Jinbo Chen, ; Ning Gao,
| |
Collapse
|
34
|
Construction of a Cuprotosis-Related Gene-Based Model to Improve the Prognostic Evaluation of Patients with Gastric Cancer. J Immunol Res 2022; 2022:8087622. [PMID: 36249422 PMCID: PMC9553444 DOI: 10.1155/2022/8087622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/31/2022] [Indexed: 12/24/2022] Open
Abstract
Background Gastric cancer (GC) is one of the most serious gastrointestinal malignancies with bad prognosis. The association between GC and cuprotosis-related genes has not been reported. Methods The clinical and RNA expression of patients with GC were downloaded from TCGA database. The CIBERSORT package was used to quantify the abundance of specific cell types. Using the Cox regression analysis, we conducted a prognostic nomogram model based on cuprotosis-related differential genes in GC. We evaluated the prognostic power of this model using the Kaplan-Meier (K-M) survival curve analysis, decision curve analysis (DCA), and receiver operating characteristic (ROC) curve analysis. Results The plasma cells, monocytes, and mast cells in GC tissue were significantly less than those in adjacent tissue (p < 0.05), while T cell CD4 memory activated macrophage M0, macrophage M1, and macrophages in GC tissue. The number of M2 was significantly more than that in the adjacent tissue (p < 0.05). Additionally, GC patients in the test group, the training group, and all the sample groups had shorter survival time with the increase of the risk factor (p < 0.05). The nomogram of GC based on cuprotosis prognosis-related genes was conducted. The AUC of the nomogram to predict 1-, 3-, and 5-year survival rate was 0.618, 0.618, and 0.625, respectively. Conclusion A novel cuprotosis-related gene signature impacts on the prognosis of GC. Our research provides new insights and potential targets for studying the link between GC and cuprotosis point, thereby providing new insights into understanding the molecular mechanism of GC.
Collapse
|
35
|
Li L, Li L, Sun Q. High expression of cuproptosis-related SLC31A1 gene in relation to unfavorable outcome and deregulated immune cell infiltration in breast cancer: an analysis based on public databases. BMC Bioinformatics 2022; 23:350. [PMID: 35996075 PMCID: PMC9394027 DOI: 10.1186/s12859-022-04894-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Cuproptosis induction represents a promising alternative for immunotherapies and targeted therapies in breast cancer. This study aimed to investigate the prognostic and biological significance of cuproptosis-related genes in breast cancer. In the current study, we examined the transcriptional and clinical data of 13 cuproptosis-related genes in patients with breast cancer from TCGA database. We found that genes DLAT, SLC31A1, ATP7A and ATP7B were significantly related to the overall survival (OS) of breast cancer patients in univariate Cox regression analysis. Unlike lung or kidney cancers, SLC31A1 expression was upregulated in breast cancer samples compared with normal tissues, and predicted poor prognosis. Univariate and multivariate Cox regression analyses indicated that high SLC31A1 level was an independent prognostic factor for shorter OS. A nomogram integrating SLC31A1, age, T-, N-stage and clinical stage was constructed, and the calibration curves of the 1-, 3-, 5-, 10-year OS fitted well with the ideal model. Furthermore, we found that high SLC31A1 expression was related to deregulated immune response and metabolic pathways. Low SLC31A1 level predicted sensitivity to CTLA4 inhibitors but poor response to paclitaxel. Our study may provide novel insights for copper homeostasis and cuproptosis in breast cancer.
Collapse
Affiliation(s)
- Linrong Li
- grid.506261.60000 0001 0706 7839Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Lin Li
- grid.284723.80000 0000 8877 7471Department of Joint and Orthopedics, Zhujiang Hospital, Second Clinical Medical College, Southern Medical University, Guangzhou, People’s Republic of China
| | - Qiang Sun
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.
| |
Collapse
|
36
|
Li X, Ma Z, Mei L. Cuproptosis-related gene SLC31A1 is a potential predictor for diagnosis, prognosis and therapeutic response of breast cancer. Am J Cancer Res 2022; 12:3561-3580. [PMID: 36119835 PMCID: PMC9442001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023] Open
Abstract
Cuproptosis is a recently reported novel way of cell death. A comprehensive study regarding expression, function and mechanism of cuproptosis-related genes in breast cancer is still absent. In this work, a series of in silico analyses were employed and SLC31A1 was selected as the most potential cuproptosis-related gene in breast cancer, which was statistically upregulated and possessed significant abilities to predict diagnosis, prognosis and drug response. Moreover, SLC31A1 was significantly positively correlated with different immune cell infiltration levels, immune cell biomarkers or immune checkpoints in breast cancer. Upstream G2E3-AS1/let-7a-5p and CDKN2B-AS1/let-7b-5p pathways were found to be responsible for SLC31A1 upregulation in breast cancer based on competing endogenous RNA mechanism. Furthermore, we found that SLC31A1 overexpression might be also induced by its high copy number level in breast cancer. Collectively, our current data elucidated that cuproptosis-related SLC31A1 might be a promising diagnostic/prognostic biomarker and drug responsive predictor in breast cancer.
Collapse
Affiliation(s)
- Xiao Li
- Emergency Department, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical UniversityTaizhou 317000, Zhejiang, China
| | - Zhaosheng Ma
- Department of Oncological Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical UniversityTaizhou 317000, Zhejiang, China
| | - Linhang Mei
- Department of Oncological Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical UniversityTaizhou 317000, Zhejiang, China
| |
Collapse
|
37
|
Yun Y, Wang Y, Yang E, Jing X. Cuproptosis-Related Gene - SLC31A1, FDX1 and ATP7B - Polymorphisms are Associated with Risk of Lung Cancer. Pharmgenomics Pers Med 2022; 15:733-742. [PMID: 35923305 PMCID: PMC9342429 DOI: 10.2147/pgpm.s372824] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/14/2022] [Indexed: 12/22/2022] Open
Abstract
Background Cuproptosis is a novel copper-dependent cell death, and the copper level was increased in lung cancer patients. However, few studies evaluated the association between single-nucleotide polymorphisms (SNPs) in cuproptosis-related genes and lung cancer risk. Methods Six SNPs of the SLC31A1, FDX1 and ATP7B genes were genotyped in a case-control cohort including 650 lung cancer cases and 650 controls using the MassARRAY platform. Results The minor alleles of SLC31A1-rs10981694 and FDX1-rs10488764 were associated with an increased risk of lung cancer (rs10981694: OR=1.455, 95% CI: 1.201-1.763, p<0.001; rs10488764: OR=1.483, 95% CI: 1.244-1.768, p<0.001). In contrast, the minor alleles of rs9535826 and rs9535828 in ATP7B were related to a decreased risk of the disease (rs9535826: OR=0.714, 95% CI: 0.608-0.838 p<0.001; rs9535828: OR=0.679, 95% CI: 0.579-0.796, p<0.001). The frequencies of rs10981694-TG/GG and rs10488764-GA/AA genotypes were significantly higher in lung cancer cases than that in controls, making them risk genotypes for the disease (p < 0.001); while the rs9535826-TG/GG and rs9535828-GA/AA genotypes were protective genotypes and associated with a reduced risk of the disease (p<0.001). Genetic model evaluation revealed that SLC31A1-rs10981694 and FDX1-rs10488764 were associated with a growing risk of lung cancer in dominant, recessive and log-additive models (p<0.001). Moreover, rs9535826 and rs9535828 in ATP7B were related to a declining risk of the disease in three genetic models (p<0.001). In addition, stratification analysis showed that FDX1-rs10488764 was risk variant for lung cancer in both smokers and nonsmokers, and was associated with risk of each pathological type of lung cancer (p<0.008). Conclusion The results shed new light on the correlation between cuproptosis-related genes and risk of lung cancer.
Collapse
Affiliation(s)
- Yuhui Yun
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Yun Wang
- Department of Medical Oncology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Ende Yang
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Xin Jing
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710038, People's Republic of China
| |
Collapse
|
38
|
Synergistic Antitumoral Effect of Epigenetic Inhibitors and Gemcitabine in Pancreatic Cancer Cells. Pharmaceuticals (Basel) 2022; 15:ph15070824. [PMID: 35890123 PMCID: PMC9323654 DOI: 10.3390/ph15070824] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/30/2022] Open
Abstract
Epigenetic modifications could drive some of the molecular events implicated in proliferation, drug resistance and metastasis of pancreatic ductal adenocarcinoma (PDAC). Thus, epigenetic enzyme inhibitors could be the key to revert those events and transform PDAC into a drug-sensitive tumor. We performed a systematic study with five different epigenetic enzyme inhibitors (1, UVI5008, MS275, psammaplin A, and BIX01294) targeting either Histone Deacetylase (HDAC) 1 or 1/4, DNA methyltransferase 3a (DNMT3a), Euchromatic histone lysine methyltransferase 2 (EHMT2), or Sirtuin 1 (SIRT1), as well as one drug that restores the p53 function (P53R3), in three different human PDAC cell lines (SKPC-1, MIA PaCa-2, and BxPC-3) using 2D and 3D cell cultures. The synergistic effect of these antitumoral drugs with gemcitabine was tested and the most efficient combinations were characterized by RNA-seq. The inhibition of HDAC1/4 (MS275), HDAC1/4/SIRT1/DNMT3a (UVI5008) or EHMT2 (BIX01294) induced a significant reduction on the cell viability, even in gemcitabine-resistance cells. The combination of UVI5008 or MS275 with gemcitabine induced a synergistic effect at low concentration and the RNA-Seq analysis revealed some synergy candidate genes as potential biomarkers. Reverting aberrant epigenetic modifications in combination with gemcitabine offers an alternative treatment for PDAC patients, with an important reduction of the therapeutic dose.
Collapse
|
39
|
Wang P, Hu Y, Qu P, Zhao Y, Liu J, Zhao J, Kong B. Protein tyrosine phosphatase receptor type Z1 inhibits the cisplatin resistance of ovarian cancer by regulating PI3K/AKT/mTOR signal pathway. Bioengineered 2022; 13:1931-1941. [PMID: 35001804 PMCID: PMC8805848 DOI: 10.1080/21655979.2021.2022268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/20/2021] [Indexed: 12/30/2022] Open
Abstract
Most patients with ovarian cancer (OC) get remission after undergoing cytoreductive surgery and platinum-based standard chemotherapy, but more than 50% of patients with advanced OC relapse within the first 5 years after treatment and develop resistance to standard chemotherapy. The production of medicinal properties is the main reason for the poor prognosis and high mortality of OC patients. Cisplatin (DDP) resistance is a major cause for poor prognosis of OC patients. PTPRZ1 can regulate the growth and apoptosis of ovarian cancer cells, while the molecular mechanism remains unknown. This study was designed to investigate the roles of PTPRZ1 in DDP-resistant OC cells and possible mechanism. PTPRZ1 expression in OC tissues and normal tissues was analyzed by GEPIA database and verified by Real-time Quantitative Reverse Transcription PCR (RT-PCR) assay. PTPRZ1 expression in normal ovarian cancer cells and DDP-resistant OC cells was also analyzed. Subsequently, RT-PCR, Western blot, MTT experiment and flow cytometry were used to assess the effects of PTPRZ1-PI3K/AKT/mTOR regulating axis on DDP resistance of OC. PTPRZ1 expression was abnormally low in OC tissues, and notably reduced in DDP-resistant OC cells. MTT experiment and flow cytometer indicated that overexpression of PTPRZ1 enhanced the DDP sensitivity of OC cells and promoted the cell apoptosis. Moreover, the results of our research showed that PTPRZ1 might exert its biological effects through blocking PI3K/AKT/mTOR pathway. PTPRZ1 overexpression inhibitied OC tumor growth and resistance to DDP in vivo. Overall, PTPRZ1 might suppress the DDP resistance of OC and induce the cytotoxicity by blocking PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Peng Wang
- Department of Gynecology Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Gynecology Oncology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Yuanjing Hu
- Department of Gynecology Oncology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Pengpeng Qu
- Department of Gynecology Oncology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Ying Zhao
- Department of Gynecology Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jing Liu
- Department of Gynecology Oncology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Jianguo Zhao
- Department of Gynecology Oncology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Beihua Kong
- Department of Gynecology Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|