1
|
De Coster T, David K, Breckpot J, Decallonne B. Management of autosomal dominant hypocalcemia type 1: Literature review and clinical practice recommendations. J Endocrinol Invest 2024:10.1007/s40618-024-02496-y. [PMID: 39607645 DOI: 10.1007/s40618-024-02496-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024]
Abstract
PURPOSE Autosomal Dominant Hypocalcemia type 1 (ADH1), caused by gain-of-function variants in the calcium-sensing receptor (CASR), is characterized by a variable degree of hypocalcemia and hypercalciuria with inappropriately low PTH. The clinical spectrum is broad, ranging from being asymptomatic to presenting with severe clinical features of hypocalcemia and end-organ damage such as nephrolithiasis and intracerebral calcifications. Although the underlying pathophysiology is different, ADH1 patients are often managed as patients with 'classical' primary hypoparathyroidism, possibly leading to (exacerbation of) hypercalciuria. New treatments such as PTH analogues and calcilytics directly targeting the CASR are in the pipeline. Specific clinical guidance for treatment and monitoring of ADH1 patients is lacking. The purpose of this study is to provide a literature review on management of ADH1, including new therapies, and to formulate practice recommendations. METHODS We searched for articles and ongoing clinical trials regarding management of ADH1. RESULTS Forty articles were included. First we review the conventional treatment of ADH1, focusing on active vitamin D, calcium supplements, thiazide diuretics, phosphorus binders and dietary recommendations. In a second part we give an overview of studies with emerging treatments in ADH1: PTH analogues (PTH1-34, rhPTH1-84, TransCon PTH and others) and calcilytics (preclinical studies and clinical trials). In a third part we discuss literature findings regarding monitoring of ADH1 patients. Finally, we formulate clinical practice recommendations. CONCLUSION We provide an overview of conventional and new treatments for ADH1 patients. Based on these data, we propose practical recommendations to assist clinicians in the management of ADH1 patients.
Collapse
Affiliation(s)
- Thomas De Coster
- General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Karel David
- Endocrinology, University Hospitals Leuven, Leuven, Herestraat 49, 3000, Belgium
| | - Jeroen Breckpot
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Brigitte Decallonne
- Endocrinology, University Hospitals Leuven, Leuven, Herestraat 49, 3000, Belgium.
| |
Collapse
|
2
|
Staruschenko A, Alexander RT, Caplan MJ, Ilatovskaya DV. Calcium signalling and transport in the kidney. Nat Rev Nephrol 2024; 20:541-555. [PMID: 38641658 DOI: 10.1038/s41581-024-00835-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 04/21/2024]
Abstract
The kidney plays a pivotal role in regulating calcium levels within the body. Approximately 98% of the filtered calcium is reabsorbed in the nephron, and this process is tightly controlled to maintain calcium homeostasis, which is required to facilitate optimal bone mineralization, preserve serum calcium levels within a narrow range, and support intracellular signalling mechanisms. The maintenance of these functions is attributed to a delicate balance achieved by various calcium channels, transporters, and calcium-binding proteins in renal cells. Perturbation of this balance due to deficiency or dysfunction of calcium channels and calcium-binding proteins can lead to severe complications. For example, polycystic kidney disease is linked to aberrant calcium transport and signalling. Furthermore, dysregulation of calcium levels can promote the formation of kidney stones. This Review provides an updated description of the key aspects of calcium handling in the kidney, focusing on the function of various calcium channels and the physiological stimuli that control these channels or are communicated through them. A discussion of the role of calcium as an intracellular second messenger and the pathophysiology of renal calcium dysregulation, as well as a summary of gaps in knowledge and future prospects, are also included.
Collapse
Affiliation(s)
- Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA.
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL, USA.
- James A. Haley Veterans Hospital, Tampa, FL, USA.
| | - R Todd Alexander
- Department of Paediatrics, University of Alberta, Edmonton, AB, Canada
- Women's and Children's Health Institute, Edmonton, AB, Canada
| | - Michael J Caplan
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Daria V Ilatovskaya
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
3
|
Poulsen SB, Murali SK, Thomas L, Assmus A, Rosenbæk LL, Nielsen R, Dimke H, Rieg T, Fenton RA. Genetic deletion of the kidney sodium/proton exchanger-3 (NHE3) does not alter calcium and phosphate balance due to compensatory responses. Kidney Int 2024:S0085-2538(24)00533-7. [PMID: 39089578 DOI: 10.1016/j.kint.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 06/10/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024]
Abstract
The sodium/proton exchanger-3 (NHE3) plays a major role in acid-base and extracellular volume regulation and is also implicated in calcium homeostasis. As calcium and phosphate balances are closely linked, we hypothesized that there was a functional link between kidney NHE3 activity, calcium, and phosphate balance. Therefore, we examined calcium and phosphate homeostasis in kidney tubule-specific NHE3 knockout mice (NHE3loxloxPax8 mice). Compared to controls, these knockout mice were normocalcemic with no significant difference in urinary calcium excretion or parathyroid hormone levels. Thiazide-induced hypocalciuria was less pronounced in the knockout mice, in line with impaired proximal tubule calcium transport. Knockout mice had greater furosemide-induced calciuresis and distal tubule calcium transport pathways were enhanced. Despite lower levels of the sodium/phosphate cotransporters (NaPi)-2a and -2c, knockout mice had normal plasma phosphate, sodium-dependent 32Phosphate uptake in proximal tubule membrane vesicles and urinary phosphate excretion. Intestinal phosphate uptake was unchanged. Low dietary phosphate reduced parathyroid hormone levels and increased NaPi-2a and -2c abundances in both genotypes, but NaPi-2c levels remained lower in the knockout mice. Gene expression profiling suggested proximal tubule remodeling in the knockout mice. Acutely, indirect NHE3 inhibition using the SGLT2 inhibitor empagliflozin did not affect urinary calcium and phosphate excretion. No differences in femoral bone density or architecture were detectable in the knockout mice. Thus, a role for kidney NHE3 in calcium homeostasis can be unraveled by diuretics, but NHE3 deletion in the kidneys has no major effects on overall calcium and phosphate homeostasis due, at least in part, to compensating mechanisms.
Collapse
Affiliation(s)
- Søren B Poulsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Sathish K Murali
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Linto Thomas
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA
| | - Adrienne Assmus
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Lena L Rosenbæk
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Rikke Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Timo Rieg
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA; James A. Haley Veterans' Hospital, Tampa, Florida, USA.
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
4
|
Dimke H. New insights into renal calcium-sensing receptor activation. Curr Opin Nephrol Hypertens 2024; 33:433-440. [PMID: 38690798 DOI: 10.1097/mnh.0000000000000998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
PURPOSE OF REVIEW Activation of the calcium-sensing receptor (CASR) in the parathyroid gland suppresses the release of parathyroid hormone (PTH). Furthermore, activation of the renal CASR directly increases the urinary excretion of calcium, by inhibiting transepithelial calcium transport in the nephron. Gain-of-function mutations in the CASR gene lead to autosomal dominant hypocalcemia 1 (ADH1), with inappropriately low PTH levels and hypocalcemia, indicative of excessive activation of the parathyroid CASR. However, hypercalciuria is not always observed. The reason why the manifestation of hypercalciuria is not uniform among ADH1 patients is not well understood. RECENT FINDINGS Direct activation of the CASR in the kidney has been cumbersome to study, and an indirect measure to effectively estimate the degree of CASR activation following chronic hypercalcemia or genetic gain-of-function CASR activation has been lacking. Studies have shown that expression of the pore-blocking claudin-14 is strongly stimulated by the CASR in a dose-dependent manner. This stimulatory effect is abolished after renal Casr ablation in hypercalcemic mice, suggesting that claudin-14 abundance may gauge renal CASR activation. Using this marker has led to unexpected discoveries regarding renal CASR activation. SUMMARY These new studies have informed on renal CASR activation thresholds and the downstream CASR-regulated calcium transport mechanisms.
Collapse
Affiliation(s)
- Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
5
|
Kudryavtseva O, Lyngsø KS, Jensen BL, Dimke H. Nitric oxide, endothelium-derived hyperpolarizing factor, and smooth muscle-dependent mechanisms contribute to magnesium-dependent vascular relaxation in mouse arteries. Acta Physiol (Oxf) 2024; 240:e14096. [PMID: 38258597 DOI: 10.1111/apha.14096] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/27/2023] [Accepted: 01/01/2024] [Indexed: 01/24/2024]
Abstract
AIM Magnesium (Mg2+ ) is a vasorelaxant. The underlying physiological mechanisms driving this vasorelaxation remain unclear. Studies were designed to test the hypothesis that multiple signaling pathways including nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF) in endothelial cells as well as Ca2+ antagonization and TRPM7 channels in vascular smooth muscle cells mediate Mg2+ -dependent vessel relaxation. METHODS To uncover these mechanisms, force development was measured ex vivo in aorta rings from mice using isometric wire myography. Concentration responses to Mg2+ were studied in intact and endothelium-denuded aortas. Key findings were confirmed in second-order mesenteric resistance arteries perfused ex vivo using pressure myography. Effects of Mg2+ on NO formation were measured in Chinese Hamster Ovary (CHO) cells, isolated mesenteric vessels, and mouse urine. RESULTS Mg2+ caused a significant concentration-dependent relaxation of aorta rings. This relaxation was attenuated significantly in endothelium-denuded aortas. The endothelium-dependent portion was inhibited by NO and cGMP blockade but not by cyclooxygenase inhibition. Mg2+ stimulated local NO formation in CHO cells and isolated mesenteric vessels without changing urinary NOx levels. High extracellular Mg2+ augmented acetylcholine-induced relaxation. SKCa and IKCa channel blockers apamin and TRAM34 inhibited Mg2+ -dependent relaxation. The endothelium-independent relaxation in aorta rings was inhibited by high extracellular Ca2+ . Combined blockade of NO, SKCa , and IKCa channels significantly reduced Mg2+ -dependent dilatation in mesenteric resistance vessels. CONCLUSIONS In mouse conductance and resistance arteries Mg2+ -induced relaxation is contributed by endothelial NO formation, EDHF pathways, antagonism of Ca2+ in smooth muscle cells, and additional unidentified mechanisms.
Collapse
Affiliation(s)
- Olga Kudryavtseva
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| | - Kristina S Lyngsø
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| | - Boye L Jensen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
6
|
Beggs MR, Young K, Plain A, O'Neill DD, Raza A, Flockerzi V, Dimke H, Alexander RT. Maternal Epidermal Growth Factor Promotes Neonatal Claudin-2 Dependent Increases in Small Intestinal Calcium Permeability. FUNCTION 2023; 4:zqad033. [PMID: 37575484 PMCID: PMC10413934 DOI: 10.1093/function/zqad033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 08/15/2023] Open
Abstract
A higher concentration of calcium in breast milk than blood favors paracellular calcium absorption enabling growth during postnatal development. We aimed to determine whether suckling animals have greater intestinal calcium permeability to maximize absorption and to identify the underlying molecular mechanism. We examined intestinal claudin expression at different ages in mice and in human intestinal epithelial (Caco-2) cells in response to hormones or human milk. We also measured intestinal calcium permeability in wildtype, Cldn2 and Cldn12 KO mice and Caco-2 cells in response to hormones or human milk. Bone mineralization in mice was assessed by μCT. Calcium permeability across the jejunum and ileum of mice were 2-fold greater at 2 wk than 2 mo postnatal age. At 2 wk, Cldn2 and Cldn12 expression were greater, but only Cldn2 KO mice had decreased calcium permeability compared to wildtype. This translated to decreased bone volume, cross-sectional thickness, and tissue mineral density of femurs. Weaning from breast milk led to a 50% decrease in Cldn2 expression in the jejunum and ileum. Epidermal growth factor (EGF) in breast milk specifically increased only CLDN2 expression and calcium permeability in Caco-2 cells. These data support intestinal permeability to calcium, conferred by claudin-2, being greater in suckling mice and being driven by EGF in breast milk. Loss of the CLDN2 pathway leads to suboptimal bone mineralization at 2 wk of life. Overall, EGF-mediated control of intestinal claudin-2 expression contributes to maximal intestinal calcium absorption in suckling animals.
Collapse
Affiliation(s)
- Megan R Beggs
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
- The Women's & Children's Health Research Institute, Edmonton, AB T6G 1C9, Canada
| | - Kennedi Young
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Allen Plain
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Debbie D O'Neill
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ahsan Raza
- Experimentelle und Klinische Pharmakologie und Toxikologie, Saarland University, 66421 Homburg, Germany
| | - Veit Flockerzi
- Experimentelle und Klinische Pharmakologie und Toxikologie, Saarland University, 66421 Homburg, Germany
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C DK-5000, Demark
- Department of Nephrology, Odense University Hospital, 5000 Odense C, Denmark
| | - R Todd Alexander
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
- The Women's & Children's Health Research Institute, Edmonton, AB T6G 1C9, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada
| |
Collapse
|
7
|
Alexander RT, Dimke H. Molecular mechanisms underlying paracellular calcium and magnesium reabsorption in the proximal tubule and thick ascending limb. Ann N Y Acad Sci 2022; 1518:69-83. [PMID: 36200584 DOI: 10.1111/nyas.14909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Calcium and magnesium are the most abundant divalent cations in the body. The plasma level is controlled by coordinated interaction between intestinal absorption, reabsorption in the kidney, and, for calcium at least, bone storage and exchange. The kidney adjusts urinary excretion of these ions in response to alterations in their systemic concentration. Free ionized and anion-complexed calcium and magnesium are filtered at the glomerulus. The majority (i.e., >85%) of filtered divalent cations are reabsorbed via paracellular pathways from the proximal tubule and thick ascending limb (TAL) of the loop of Henle. Interestingly, the largest fraction of filtered calcium is reabsorbed from the proximal tubule (65%), while the largest fraction of filtered magnesium is reclaimed from the TAL (60%). The paracellular pathways mediating these fluxes are composed of tight junctional pores formed by claudins. In the proximal tubule, claudin-2 and claudin-12 confer calcium permeability, while the exact identity of the magnesium pore remains to be determined. Claudin-16 and claudin-19 contribute to the calcium and magnesium permeable pathway in the TAL. In this review, we discuss the data supporting these conclusions and speculate as to why there is greater fractional calcium reabsorption from the proximal tubule and greater fractional magnesium reabsorption from the TAL.
Collapse
Affiliation(s)
- R Todd Alexander
- Departments of Physiology & Pediatrics, University of Alberta, Edmonton, Alberta, Canada.,Women's and Children's Health Institute, Edmonton, Alberta, Canada
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Demark.,Department of Nephrology, Odense University Hospital, Odense, Denmark
| |
Collapse
|