1
|
Bean DJ, Liang YM, Sagar M. Recent Endemic Coronavirus Infection Associates With Higher SARS-CoV-2 Cross-Reactive Fc Receptor Binding Antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619886. [PMID: 39484477 PMCID: PMC11527020 DOI: 10.1101/2024.10.23.619886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Recent documented infection with an endemic coronavirus (eCoV) associates with less severe coronavirus disease 2019 (COVID-19), yet the immune mechanism behind this protection has not been fully explored. We measured both antibody and T cell responses against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in SARS-CoV-2 naïve individuals classified into two groups, either with or without presumed recent eCoV infections. There was no difference in neutralizing antibodies and T cell responses against SARS-CoV-2 antigens between the two groups. SARS-CoV-2 naïve individuals with recent presumed eCoV infection, however, had higher levels of Fc receptor (FcR) binding antibodies against eCoV spikes (S) and SARS-CoV-2 S2. There was also a significant correlation between eCoV and SARS-CoV-2 FcR binding antibodies. Recent eCoV infection boosts cross-reactive antibodies that can mediate Fc effector functions, and this may play a role in the observed heterotypic immune protection against severe COVID-19.
Collapse
Affiliation(s)
- David J. Bean
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine; Boston, MA
| | - Yan Mei Liang
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine; Boston, MA
| | - Manish Sagar
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine; Boston, MA
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine; Boston, MA
| |
Collapse
|
2
|
Nadat F, Clark B. Forming a new perspective: Post-structural approaches to determination of donor compatibility and post-transplant assessment of allograft health. Int J Immunogenet 2024; 51:195-205. [PMID: 38711186 DOI: 10.1111/iji.12675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 05/08/2024]
Abstract
The purpose of this review is to encourage a new perspective on the question of donor-recipient compatibility and post-transplant assessment of graft health based on functional measures. The premise is that we should be better sighted on what (and how) the immune system responds toward rather than what is merely there. Continuance of the pursuit of further and better definition of antigens and antibodies is not however discouraged but seen as necessary to improved understanding of the structural correlates of functional immunity. There currently exists, in the opinion of the authors, an opportunity for histocompatibility and immunogenetics laboratories to develop and widen their scope of involvement into these new areas of laboratory activity in support and to the benefit of the transplant programmes they serve.
Collapse
Affiliation(s)
- Fatima Nadat
- Functional Assessment of Transplant Immunology Group, St James's University Hospital, Leeds, UK
| | - Brendan Clark
- Functional Assessment of Transplant Immunology Group, St James's University Hospital, Leeds, UK
| |
Collapse
|
3
|
Falck D, Wuhrer M. GlYcoLISA: antigen-specific and subclass-specific IgG Fc glycosylation analysis based on an immunosorbent assay with an LC-MS readout. Nat Protoc 2024; 19:1887-1909. [PMID: 38383719 DOI: 10.1038/s41596-024-00963-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/14/2023] [Indexed: 02/23/2024]
Abstract
Immunoglobulin G (IgG) fragment crystallizable (Fc) glycosylation modulates effector functions such as antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity. Consequently, assessing IgG Fc glycosylation is important for understanding the role of antibodies in infectious, alloimmune and autoimmune diseases. GlYcoLISA determines the Fc glycosylation of antigen-specific IgG by an immunosorbent assay with a liquid chromatography-mass spectrometry (LC-MS) readout. Detection of antigen-specific IgG glycosylation in a subclass- and site-specific manner is realized by LC-MS-based glycopeptide analysis after proteolytic cleavage. GlYcoLISA addresses challenges related to the low abundance of specific IgG and the high background of total IgG by using well-established immunosorbent assays for purifying antibodies of the desired specificity using immobilized antigen. Alternative methods with sufficient glycan resolution lack these important specificities. GlYcoLISA is performed in a 96-well plate format, and the analysis of 160 samples takes ~5 d, with 1 d for sample preparation, 2 d of LC-MS measurement and 2 d for partially automated data processing. GlYcoLISA requires expertise in LC-MS operation and data processing.
Collapse
Affiliation(s)
- David Falck
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, the Netherlands.
| | - Manfred Wuhrer
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, the Netherlands.
| |
Collapse
|
4
|
Dijkstra DJ, van de Bovenkamp FS, Abendstein L, Zuijderduijn R, Pool J, Kramer CSM, Slot LM, Drijfhout JW, de Vor L, Gelderman KA, Rooijakkers SHM, Zaldumbide A, Vidarsson G, Sharp TH, Parren PWHI, Trouw LA. Human anti-C1q autoantibodies bind specifically to solid-phase C1q and enhance phagocytosis but not complement activation. Proc Natl Acad Sci U S A 2023; 120:e2310666120. [PMID: 38048459 PMCID: PMC10723154 DOI: 10.1073/pnas.2310666120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/27/2023] [Indexed: 12/06/2023] Open
Abstract
Autoantibodies directed against complement component C1q are commonly associated with autoimmune diseases, especially systemic lupus erythematosus. Importantly, these anti-C1q autoantibodies are specific for ligand-bound, solid-phase C1q and do not bind to fluid-phase C1q. In patients with anti-C1q, C1q levels are in the normal range, and the autoantibodies are thus not depleting. To study these human anti-C1q autoantibodies at the molecular level, we isolated C1q-reactive B cells and recombinantly produced nine monoclonal antibodies (mAbs) from four different healthy individuals. The isolated mAbs were of the IgG isotype, contained extensively mutated variable domains, and showed high affinity to the collagen-like region of C1q. The anti-C1q mAbs exclusively bound solid-phase C1q in complex with its natural ligands, including immobilized or antigen-bound IgG, IgM or CRP, and necrotic cells. Competition experiments reveal that at least 2 epitopes, also targeted by anti-C1q antibodies in sera from SLE patients, are recognized. Electron microscopy with hexameric IgG-C1q immune complexes demonstrated that multiple mAbs can interact with a single C1q molecule and identified the region of C1q targeted by these mAbs. The opsonization of immune complexes with anti-C1q greatly enhanced Fc-receptor-mediated phagocytosis but did not increase complement activation. We conclude that human anti-C1q autoantibodies specifically bind neo-epitopes on solid-phase C1q, which results in an increase in Fc-receptor-mediated effector functions that may potentially contribute to autoimmune disease immunopathology.
Collapse
Affiliation(s)
- Douwe J. Dijkstra
- Department of Immunology, Leiden University Medical Center, Leiden2300 RC, The Netherlands
| | - Fleur S. van de Bovenkamp
- Department of Immunology, Leiden University Medical Center, Leiden2300 RC, The Netherlands
- Lava Therapeutics, Utrecht3584 CM, The Netherlands
| | - Leoni Abendstein
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden2300 RC, The Netherlands
| | - Rob Zuijderduijn
- Department of Immunology, Leiden University Medical Center, Leiden2300 RC, The Netherlands
| | - Jos Pool
- Department of Immunology, Leiden University Medical Center, Leiden2300 RC, The Netherlands
| | - Cynthia S. M. Kramer
- Department of Immunology, Leiden University Medical Center, Leiden2300 RC, The Netherlands
| | - Linda M. Slot
- Department of Rheumatology, Leiden University Medical Center, Leiden2300 RC, The Netherlands
| | - Jan W. Drijfhout
- Department of Immunology, Leiden University Medical Center, Leiden2300 RC, The Netherlands
| | - Lisanne de Vor
- Department of Medical Microbiology, University Medical Center, Utrecht3584 CX, The Netherlands
| | | | - Suzan H. M. Rooijakkers
- Department of Medical Microbiology, University Medical Center, Utrecht3584 CX, The Netherlands
| | - Arnaud Zaldumbide
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden2300 RC, The Netherlands
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam1066 CX, The Netherlands
| | - Thomas H. Sharp
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden2300 RC, The Netherlands
| | - Paul W. H. I. Parren
- Department of Immunology, Leiden University Medical Center, Leiden2300 RC, The Netherlands
- Gyes BV, Naarden1411 DC, The Netherlands
| | - Leendert A. Trouw
- Department of Immunology, Leiden University Medical Center, Leiden2300 RC, The Netherlands
| |
Collapse
|
5
|
Szittner Z, Bentlage AEH, Temming AR, Schmidt DE, Visser R, Lissenberg-Thunnissen S, Mok JY, van Esch WJE, Sonneveld ME, de Graaf EL, Wuhrer M, Porcelijn L, de Haas M, van der Schoot CE, Vidarsson G. Cellular surface plasmon resonance-based detection of anti-HPA-1a antibody glycosylation in fetal and neonatal alloimmune thrombocytopenia. Front Immunol 2023; 14:1225603. [PMID: 37868955 PMCID: PMC10585714 DOI: 10.3389/fimmu.2023.1225603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/06/2023] [Indexed: 10/24/2023] Open
Abstract
Fetal and neonatal alloimmune thrombocytopenia (FNAIT) can occur due to maternal IgG antibodies targeting platelet antigens, causing life-threatening bleeding in the neonate. However, the disease manifests itself in only a fraction of pregnancies, most commonly with anti-HPA-1a antibodies. We found that in particular, the core fucosylation in the IgG-Fc tail is highly variable in anti-HPA-1a IgG, which strongly influences the binding to leukocyte IgG-Fc receptors IIIa/b (FcγRIIIa/b). Currently, gold-standard IgG-glycoanalytics rely on complicated methods (e.g., mass spectrometry (MS)) that are not suited for diagnostic purposes. Our aim was to provide a simplified method to quantify the biological activity of IgG antibodies targeting cells. We developed a cellular surface plasmon resonance imaging (cSPRi) technique based on FcγRIII-binding to IgG-opsonized cells and compared the results with MS. The strength of platelet binding to FcγR was monitored under flow using both WT FcγRIIIa (sensitive to Fc glycosylation status) and mutant FcγRIIIa-N162A (insensitive to Fc glycosylation status). The quality of the anti-HPA-1a glycosylation was monitored as the ratio of binding signals from the WT versus FcγRIIIa-N162A, using glycoengineered recombinant anti-platelet HPA-1a as a standard. The method was validated with 143 plasma samples with anti-HPA-1a antibodies analyzed by MS with known clinical outcomes and tested for validation of the method. The ratio of patient signal from the WT versus FcγRIIIa-N162A correlated with the fucosylation of the HPA-1a antibodies measured by MS (r=-0.52). Significantly, FNAIT disease severity based on Buchanan bleeding score was similarly discriminated against by MS and cSPRi. In conclusion, the use of IgG receptors, in this case, FcγRIIIa, on SPR chips can yield quantitative and qualitative information on platelet-bound anti-HPA-1a antibodies. Using opsonized cells in this manner circumvents the need for purification of specific antibodies and laborious MS analysis to obtain qualitative antibody traits such as IgG fucosylation, for which no clinical test is currently available.
Collapse
Affiliation(s)
- Zoltán Szittner
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Arthur E. H. Bentlage
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - A. Robin Temming
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - David E. Schmidt
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Remco Visser
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Suzanne Lissenberg-Thunnissen
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | | | | | - Myrthe E. Sonneveld
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Erik L. de Graaf
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Leendert Porcelijn
- Department of Immunohematology Diagnostics, Sanquin, Amsterdam, Netherlands
| | - Masja de Haas
- Department of Immunohematology Diagnostics, Sanquin, Amsterdam, Netherlands
- Translational Immunohematology, Research, Amsterdam, Netherlands
- Department of Hematology, Leiden University Medical Centre, Leiden, Netherlands
| | - C. Ellen van der Schoot
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Gestur Vidarsson
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
6
|
Van Coillie J, Pongracz T, Šuštić T, Wang W, Nouta J, Le Gars M, Keijzer S, Linty F, Cristianawati O, Keijser JB, Visser R, van Vught LA, Slim MA, van Mourik N, Smit MJ, Sander A, Schmidt DE, Steenhuis M, Rispens T, Nielsen MA, Mordmüller BG, Vlaar AP, Ellen van der Schoot C, Roozendaal R, Wuhrer M, Vidarsson G. Comparative analysis of spike-specific IgG Fc glycoprofiles elicited by adenoviral, mRNA, and protein-based SARS-CoV-2 vaccines. iScience 2023; 26:107619. [PMID: 37670790 PMCID: PMC10475480 DOI: 10.1016/j.isci.2023.107619] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/06/2023] [Accepted: 08/09/2023] [Indexed: 09/07/2023] Open
Abstract
IgG antibodies are important mediators of vaccine-induced immunity through complement- and Fc receptor-dependent effector functions. Both are influenced by the composition of the conserved N-linked glycan located in the IgG Fc domain. Here, we compared the anti-Spike (S) IgG1 Fc glycosylation profiles in response to mRNA, adenoviral, and protein-based COVID-19 vaccines by mass spectrometry (MS). All vaccines induced a transient increase of antigen-specific IgG1 Fc galactosylation and sialylation. An initial, transient increase of afucosylated IgG was induced by membrane-encoding S protein formulations. A fucose-sensitive ELISA for antigen-specific IgG (FEASI) exploiting FcγRIIIa affinity for afucosylated IgG was used as an orthogonal method to confirm the LC-MS-based afucosylation readout. Our data suggest that vaccine-induced anti-S IgG glycosylation is dynamic, and although variation is seen between different vaccine platforms and individuals, the evolution of glycosylation patterns display marked overlaps.
Collapse
Affiliation(s)
- Julie Van Coillie
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Tamas Pongracz
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Tonći Šuštić
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Wenjun Wang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Jan Nouta
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Sofie Keijzer
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands
| | - Federica Linty
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Olvi Cristianawati
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands
| | - Jim B.D. Keijser
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands
| | - Remco Visser
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Lonneke A. van Vught
- Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands
- Department of Intensive Care, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Marleen A. Slim
- Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands
- Department of Intensive Care, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Niels van Mourik
- Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands
- Department of Intensive Care, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Merel J. Smit
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Adam Sander
- Centre for Medical Parasitology, Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- AdaptVac Aps, Copenhagen, Denmark
| | - David E. Schmidt
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands
| | - Maurice Steenhuis
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands
| | - Morten A. Nielsen
- Centre for Medical Parasitology, Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Benjamin G. Mordmüller
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alexander P.J. Vlaar
- Department of Intensive Care, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Laboratory of Experimental Intensive Care and Anaesthesiology, L.E.I.C.A., Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | | | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
7
|
Cruz Amaya J, Walcheck B, Smith-Gagen J, Lombardi VC, Hudig D. Detection of Antibody-Dependent Cell-Mediated Cytotoxicity-Supporting Antibodies by NK-92-CD16A Cell Externalization of CD107a: Recognition of Antibody Afucosylation and Assay Optimization. Antibodies (Basel) 2023; 12:44. [PMID: 37489366 PMCID: PMC10366760 DOI: 10.3390/antib12030044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/26/2023] Open
Abstract
Antibody-dependent cell-mediated cytotoxicity (ADCC) by natural killer (NK) lymphocytes eliminates cells infected with viruses. Anti-viral ADCC requires three components: (1) antibody; (2) effector lymphocytes with the Fc-IgG receptor CD16A; and (3) viral proteins in infected cell membranes. Fc-afucosylated antibodies bind with greater affinity to CD16A than fucosylated antibodies; individuals' variation in afucosylation contributes to differences in ADCC. Current assays for afucosylated antibodies involve expensive methods. We report an improved bioassay for antibodies that supports ADCC, which encompasses afucosylation. This assay utilizes the externalization of CD107a by NK-92-CD16A cells after antibody recognition. We used anti-CD20 monoclonal antibodies, GA101 WT or glycoengineered (GE), 10% or ~50% afucosylated, and CD20-positive Raji target cells. CD107a increased detection 7-fold compared to flow cytometry to detect Raji-bound antibodies. WT and GE antibody effective concentrations (EC50s) for CD107a externalization differed by 20-fold, with afucosylated GA101-GE more detectable. The EC50s for CD107a externalization vs. 51Cr cell death were similar for NK-92-CD16A and blood NK cells. Notably, the % CD107a-positive cells were negatively correlated with dead Raji cells and were nearly undetectable at high NK:Raji ratios required for cytotoxicity. This bioassay is very sensitive and adaptable to assess anti-viral antibodies but unsuitable as a surrogate assay to monitor cell death after ADCC.
Collapse
Affiliation(s)
- Judith Cruz Amaya
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N. Virginia St., Reno, NV 89557, USA
| | - Bruce Walcheck
- Department of Veterinary and Biological Sciences, Center for Immunology and Masonic Cancer Center, University of Minnesota, 295J AS/VM Building, 1988 Fitch Avenue, Saint Paul, MN 55108, USA
| | - Julie Smith-Gagen
- School of Community Health Sciences, University of Nevada, 1664 N. Virginia St., Reno, NV 89557, USA
| | - Vincent C. Lombardi
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N. Virginia St., Reno, NV 89557, USA
| | - Dorothy Hudig
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N. Virginia St., Reno, NV 89557, USA
| |
Collapse
|
8
|
Van Coillie J, Pongracz T, Rahmöller J, Chen HJ, Geyer CE, van Vught LA, Buhre JS, Šuštić T, van Osch TLJ, Steenhuis M, Hoepel W, Wang W, Lixenfeld AS, Nouta J, Keijzer S, Linty F, Visser R, Larsen MD, Martin EL, Künsting I, Lehrian S, von Kopylow V, Kern C, Lunding HB, de Winther M, van Mourik N, Rispens T, Graf T, Slim MA, Minnaar RP, Bomers MK, Sikkens JJ, Vlaar AP, van der Schoot CE, den Dunnen J, Wuhrer M, Ehlers M, Vidarsson G. The BNT162b2 mRNA SARS-CoV-2 vaccine induces transient afucosylated IgG1 in naive but not in antigen-experienced vaccinees. EBioMedicine 2022; 87:104408. [PMID: 36529104 PMCID: PMC9756879 DOI: 10.1016/j.ebiom.2022.104408] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Afucosylated IgG1 responses have only been found against membrane-embedded epitopes, including anti-S in SARS-CoV-2 infections. These responses, intrinsically protective through enhanced FcγRIIIa binding, can also trigger exacerbated pro-inflammatory responses in severe COVID-19. We investigated if the BNT162b2 SARS-CoV-2 mRNA also induced afucosylated IgG responses. METHODS Blood from vaccinees during the first vaccination wave was collected. Liquid chromatography-Mass spectrometry (LC-MS) was used to study anti-S IgG1 Fc glycoprofiles. Responsiveness of alveolar-like macrophages to produce proinflammatory cytokines in presence of sera and antigen was tested. Antigen-specific B cells were characterized and glycosyltransferase levels were investigated by Fluorescence-Activated Cell Sorting (FACS). FINDINGS Initial transient afucosylated anti-S IgG1 responses were found in naive vaccinees, but not in antigen-experienced ones. All vaccinees had increased galactosylated and sialylated anti-S IgG1. Both naive and antigen-experienced vaccinees showed relatively low macrophage activation potential, as expected, due to the low antibody levels for naive individuals with afucosylated IgG1, and low afucosylation levels for antigen-experienced individuals with high levels of anti-S. Afucosylation levels correlated with FUT8 expression in antigen-specific plasma cells in naive individuals. Interestingly, low fucosylation of anti-S IgG1 upon seroconversion correlated with high anti-S IgG levels after the second dose. INTERPRETATION Here, we show that BNT162b2 mRNA vaccination induces transient afucosylated anti-S IgG1 responses in naive individuals. This observation warrants further studies to elucidate the clinical context in which potent afucosylated responses would be preferred. FUNDING LSBR1721, 1908; ZonMW10430012010021, 09150161910033, 10430012010008; DFG398859914, 400912066, 390884018; PMI; DOI4-Nr. 3; H2020-MSCA-ITN 721815.
Collapse
Affiliation(s)
- Julie Van Coillie
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands,Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Tamas Pongracz
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Johann Rahmöller
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany,Department of Anesthesiology and Intensive Care, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany
| | - Hung-Jen Chen
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Chiara Elisabeth Geyer
- Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands
| | - Lonneke A. van Vught
- Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands,Department of Intensive Care, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Jana Sophia Buhre
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany
| | - Tonći Šuštić
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands,Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Thijs Luc Junior van Osch
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands,Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Maurice Steenhuis
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands,Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands
| | - Willianne Hoepel
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands,Department of Rheumatology and Clinical Immunology, Amsterdam UMC, Amsterdam Rheumatology and Immunology Center, Amsterdam, the Netherlands
| | - Wenjun Wang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Anne Sophie Lixenfeld
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany
| | - Jan Nouta
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Sofie Keijzer
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands,Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands
| | - Federica Linty
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands,Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Remco Visser
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands,Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Mads Delbo Larsen
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands,Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Emily Lara Martin
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany
| | - Inga Künsting
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany
| | - Selina Lehrian
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany
| | - Vera von Kopylow
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany
| | - Carsten Kern
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany
| | - Hanna Bele Lunding
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany
| | - Menno de Winther
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Niels van Mourik
- Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands,Department of Intensive Care, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Theo Rispens
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands,Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands
| | - Tobias Graf
- Medical Department 2, University Heart Center of Schleswig-Holstein, Lübeck, Germany
| | - Marleen Adriana Slim
- Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands,Department of Intensive Care, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Marije Kristianne Bomers
- Department of Internal Medicine, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Jonne Jochum Sikkens
- Department of Internal Medicine, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Alexander P.J. Vlaar
- Department of Intensive Care, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - C. Ellen van der Schoot
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands,Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Jeroen den Dunnen
- Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands,Corresponding author.
| | - Marc Ehlers
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany,Airway Research Center North, University of Lübeck, German Center for Lung Research (DZL), Lübeck, Germany,Corresponding author.
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands,Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands,Corresponding author.
| | | | | |
Collapse
|
9
|
Oosterhoff JJ, Larsen MD, van der Schoot CE, Vidarsson G. Afucosylated IgG responses in humans - structural clues to the regulation of humoral immunity. Trends Immunol 2022; 43:800-814. [PMID: 36008258 PMCID: PMC9395167 DOI: 10.1016/j.it.2022.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022]
Abstract
Healthy immune responses require efficient protection without excessive inflammation. Recent discoveries on the degree of fucosylation of a human N-linked glycan at a conserved site in the immunoglobulin IgG-Fc domain might add an additional regulatory layer to adaptive humoral immunity. Specifically, afucosylation of IgG-Fc enhances the interaction of IgG with FcγRIII and thereby its activity. Although plasma IgG is generally fucosylated, afucosylated IgG is raised in responses to enveloped viruses and Plasmodium falciparum proteins expressed on infected erythrocytes, as well as during alloimmune responses. Moreover, while afucosylation can exacerbate some infectious diseases (e.g., COVID-19), it also correlates with traits of protective immunity against malaria and HIV-1. Herein we discuss the implications of IgG afucosylation for health and disease, as well as for vaccination.
Collapse
Affiliation(s)
- Janita J Oosterhoff
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands; Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Mads Delbo Larsen
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands; Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - C Ellen van der Schoot
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands; Landsteiner Laboratory, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Gestur Vidarsson
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands; Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|