1
|
Jang E, Hoxha K, Mozier D, Insana A, Farber E, Changolkar L, Zhang B, Chio TI, Crowe A, Chen R, Mercken M, Lee EB, Luk KC, Brunden KR, Lee VMY, Xu H. Targeting Endogenous Tau in Seeded Tauopathy Models Inhibits Tau Spread. J Neurosci 2024; 44:e0877242024. [PMID: 39500576 PMCID: PMC11604146 DOI: 10.1523/jneurosci.0877-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 11/29/2024] Open
Abstract
The transmission of tau pathology has been proposed as one of the major mechanisms for the spatiotemporal spreading of tau pathology in neurodegenerative diseases. Over the last decade, studies have demonstrated that targeting total or pathological tau using tau antibodies can mitigate the development of tau pathology in tauopathy or Alzheimer's disease (AD) mouse models, and multiple tau immunotherapy agents have progressed to clinical trials. Tau antibodies are believed to inhibit the internalization of pathologic seeds and/or block seed elongation after seed internalization. To further address the mechanism of tau antibody inhibition of pathological spread, we conducted immunotherapy studies in mouse primary neurons and wild-type mice (females) seeded with AD patient-derived tau to induce the formation and spreading of tau pathology. Notably, we evaluated the effect of a mouse tau-specific antibody (mTau8) which does not interact with AD-tau seeds in these models. Our results show that mTau8 crosses the blood-brain barrier at levels similar to other antibodies and effectively decreases AD-tau-seeded tau pathology in vitro and in vivo. Importantly, our data suggest that mTau8 binds to endogenous intraneuronal mouse tau, thereby inhibiting the elongation of internalized tau seeds. These findings provide valuable insights into the possible mechanism underlying antibody-based therapies for treating tauopathies.
Collapse
Affiliation(s)
- Elliot Jang
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Kevt'her Hoxha
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Damian Mozier
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Abigail Insana
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Ethan Farber
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Lakshmi Changolkar
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Bin Zhang
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Tak-Ian Chio
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Alex Crowe
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Richard Chen
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Marc Mercken
- Janssen Pharmaceutica NV, Neuroscience Discovery, Beerse 23403, Belgium
| | - Edward B Lee
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Kurt R Brunden
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Virginia M-Y Lee
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Hong Xu
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
2
|
McArthur N, Squire JD, Onyeachonam OJ, Bhatt NN, Jerez C, Holberton AL, Tessier PM, Wood LB, Kayed R, Kane RS. Generation of nanobodies with conformational specificity for tau oligomers that recognize tau aggregates from human Alzheimer's disease samples. Biomater Sci 2024; 12:6033-6046. [PMID: 39434503 PMCID: PMC11585960 DOI: 10.1039/d4bm00707g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/30/2024] [Indexed: 10/23/2024]
Abstract
Tauopathies are neurodegenerative diseases that involve tau misfolding and aggregation in the brain. These diseases, including Alzheimer's disease (AD), are some of the least understood and most difficult to treat neurodegenerative disorders. Antibodies and antibody fragments that target tau oligomers, which are especially toxic forms of tau, are promising options for immunotherapies and diagnostic tools for tauopathies. In this study, we have developed conformational, tau oligomer-specific nanobodies, or single-domain antibodies. We demonstrate that these nanobodies, OT2.4 and OT2.6, are highly specific for tau oligomers relative to tau monomers and fibrils. We used epitope mapping to verify that these nanobodies bind to discontinuous epitopes on tau and to support the idea that they interact with a conformation present in the oligomeric, and not monomeric or fibrillar, forms of tau. We show that these nanobodies interact with tau oligomers in brain samples from AD patients and from healthy older adults with primary age-related tauopathy. Our results demonstrate the potential of these nanobodies as tau oligomer-specific binding reagents and future tauopathy therapeutics and diagnostics.
Collapse
Affiliation(s)
- Nikki McArthur
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Jay D Squire
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Ogechukwu J Onyeachonam
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Nemil N Bhatt
- Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch, Galveston, Texas 77555, USA
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Cynthia Jerez
- Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch, Galveston, Texas 77555, USA
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Abigail L Holberton
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Peter M Tessier
- Department of Chemical Engineering, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Levi B Wood
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch, Galveston, Texas 77555, USA
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Ravi S Kane
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
3
|
Ji C, Yang X, Eleish M, Jiang Y, Tetlow AM, Song SC, Martín-Ávila A, Wu Q, Zhou Y, Gan W, Lin Y, Sigurdsson EM. Neuronal hypofunction and network dysfunction in a mouse model at an early stage of tauopathy. Alzheimers Dement 2024; 20:7954-7970. [PMID: 39368113 PMCID: PMC11567809 DOI: 10.1002/alz.14273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 10/07/2024]
Abstract
INTRODUCTION It is unclear how early neuronal deficits occur in tauopathies, if these are associated with changes in neuronal network activity, and if they can be alleviated with therapies. METHODS To address this, we performed in vivo two-photon Ca2+ imaging in tauopathy mice at 6 versus 12 months, compared to controls, and treated the younger animals with a tau antibody. RESULTS Neuronal function was impaired at 6 months but did not deteriorate further at 12 months, presumably because cortical tau burden was comparable at these ages. At 6 months, neurons were mostly hypoactive, with enhanced neuronal synchrony, and had dysregulated responses to stimulus. Ex vivo, electrophysiology revealed altered synaptic transmission and enhanced excitability of motor cortical neurons, which likely explains the altered network activity. Acute tau antibody treatment reduced pathological tau and gliosis and partially restored neuronal function. DISCUSSION Tauopathies are associated with early neuronal deficits that can be attenuated with tau antibody therapy. HIGHLIGHTS Neuronal hypofunction in awake and behaving mice in early stages of tauopathy. Altered network activity disrupted local circuitry engagement in tauopathy mice. Enhanced neuronal excitability and altered synaptic transmission in tauopathy mice. Tau antibody acutely reduced soluble phospho-tau and improved neuronal function.
Collapse
Affiliation(s)
- Changyi Ji
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, USA
| | - Xiaofeng Yang
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, USA
| | - Mohamed Eleish
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, USA
| | - Yixiang Jiang
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, USA
| | - Amber M Tetlow
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, USA
| | - Soomin C Song
- Department of Pathology, New York University Grossman School of Medicine, New York, USA
- IonLab, New York University Grossman School of Medicine, New York, USA
| | - Alejandro Martín-Ávila
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, USA
| | - Qian Wu
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, USA
| | - Yanmei Zhou
- Skirball Institute, New York University Grossman School of Medicine, New York, USA
| | - Wenbiao Gan
- Skirball Institute, New York University Grossman School of Medicine, New York, USA
| | - Yan Lin
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, USA
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, USA
| |
Collapse
|
4
|
McArthur N, Kang B, Rivera Moctezuma FG, Shaikh AT, Loeffler K, Bhatt NN, Kidd M, Zupancic JM, Desai AA, Djeddar N, Bryksin A, Tessier PM, Kayed R, Wood LB, Kane RS. Development of a pan-tau multivalent nanobody that binds tau aggregation motifs and recognizes pathological tau aggregates. Biotechnol Prog 2024; 40:e3463. [PMID: 38568030 PMCID: PMC11447142 DOI: 10.1002/btpr.3463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/29/2024] [Accepted: 03/21/2024] [Indexed: 08/16/2024]
Abstract
Alzheimer's disease and other tauopathies are characterized by the misfolding and aggregation of the tau protein into oligomeric and fibrillar structures. Antibodies against tau play an increasingly important role in studying these neurodegenerative diseases and the generation of tools to diagnose and treat them. The development of antibodies that recognize tau protein aggregates, however, is hindered by complex immunization and antibody selection strategies and limitations to antigen presentation. Here, we have taken a facile approach to identify single-domain antibodies, or nanobodies, that bind to many forms of tau by screening a synthetic yeast surface display nanobody library against monomeric tau and creating multivalent versions of our lead nanobody, MT3.1, to increase its avidity for tau aggregates. We demonstrate that MT3.1 binds to tau monomer, oligomers, and fibrils, as well as pathogenic tau from a tauopathy mouse model, despite being identified through screens against monomeric tau. Through epitope mapping, we discovered binding epitopes of MT3.1 contain the key motif VQIXXK which drives tau aggregation. We show that our bivalent and tetravalent versions of MT3.1 have greatly improved binding ability to tau oligomers and fibrils compared to monovalent MT3.1. Our results demonstrate the utility of our nanobody screening and multivalent design approach in developing nanobodies that bind amyloidogenic protein aggregates. This approach can be extended to the generation of multivalent nanobodies that target other amyloid proteins and has the potential to advance the research and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Nikki McArthur
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Bokyung Kang
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Felix G. Rivera Moctezuma
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Akber T. Shaikh
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Kathryn Loeffler
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Nemil N. Bhatt
- Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch, Galveston, Texas 77555, USA
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Madison Kidd
- Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch, Galveston, Texas 77555, USA
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Jennifer M. Zupancic
- Department of Chemical Engineering, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alec A. Desai
- Department of Chemical Engineering, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Naima Djeddar
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Anton Bryksin
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Peter M. Tessier
- Department of Chemical Engineering, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch, Galveston, Texas 77555, USA
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Levi B. Wood
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Ravi S. Kane
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
5
|
Nair S, Jiang Y, Marchal IS, Chernobelsky E, Huang HW, Suh S, Pan R, Kong XP, Ryoo HD, Sigurdsson EM. Anti-tau single domain antibodies clear pathological tau and attenuate its toxicity and related functional defects. Cell Death Dis 2024; 15:543. [PMID: 39079958 PMCID: PMC11289317 DOI: 10.1038/s41419-024-06927-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024]
Abstract
Tauopathies are a group of neurodegenerative diseases characterized by the presence of tau inclusions. We have developed over fifty anti-tau single-domain antibodies (sdAbs) derived from phage display libraries of a llama immunized with recombinant and pathological tau immunogens. We examined the therapeutic potential of four of these sdAbs in a Drosophila tauopathy model following their transgenic expression either in all neurons or neuronal subtypes. Three of these sdAbs showed therapeutic potential in various assays, effectively clearing pathological tau and attenuating or preventing tau-induced phenotypes that typically manifest as defects in neuronal axonal transport, neurodegeneration, functional impairments, and shortened lifespan. Of these three, one sdAb was superior in every assay, which may at least in part be attributed to its tau-binding epitope. These findings support its development as a gene therapy for tauopathies.
Collapse
Affiliation(s)
- Sudershana Nair
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Yixiang Jiang
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Isabella S Marchal
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Elizabeth Chernobelsky
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Huai-Wei Huang
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Sarah Suh
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ruimin Pan
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Hyung Don Ryoo
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA.
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
6
|
Jiang Y, Lin Y, Tetlow AM, Pan R, Ji C, Kong XP, Congdon EE, Sigurdsson EM. Single-domain antibody-based protein degrader for synucleinopathies. Mol Neurodegener 2024; 19:44. [PMID: 38816762 PMCID: PMC11140919 DOI: 10.1186/s13024-024-00730-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/06/2024] [Indexed: 06/01/2024] Open
Abstract
Synucleinopathies are a group of neurodegenerative diseases characterized by the accumulation of α-synuclein (α-syn) in the brain, leading to motor and neuropsychiatric symptoms. Currently, there are no known cures for synucleinopathies, and treatments mainly focus on symptom management. In this study, we developed a single-domain antibody (sdAb)-based protein degrader with features designed to enhance proteasomal degradation of α-syn. This sdAb derivative targets both α-syn and Cereblon (CRBN), a substrate-receptor for the E3-ubiquitin ligase CRL4CRBN, and thereby induces α-syn ubiquitination and proteasomal degradation. Our results indicate that this therapeutic candidate enhances proteasomal degradation of α-syn, in addition to the endogenous lysosomal degradation machinery. By promoting proteasomal degradation of α-syn, we improved clearance of α-syn in primary culture and mouse models of synucleinopathy. These findings indicate that our sdAb-based protein degrader is a promising therapeutic candidate for synucleinopathies. Considering that only a small percentage of antibodies enter the brain, more potent sdAbs with greater brain entry than whole antibodies could enhance clinical benefits of antibody-based therapies.
Collapse
Affiliation(s)
- Yixiang Jiang
- Department of Neuroscience and Physiology, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Yan Lin
- Department of Neuroscience and Physiology, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Amber M Tetlow
- Department of Neuroscience and Physiology, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Ruimin Pan
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Changyi Ji
- Department of Neuroscience and Physiology, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Erin E Congdon
- Department of Neuroscience and Physiology, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
7
|
Song Z, Wang KW, Hagar HTC, Chen HR, Kuan CY, Zhang K, Kuo MH. Hyperphosphorylated Tau Inflicts Intracellular Stress Responses that Are Mitigated by Apomorphine. Mol Neurobiol 2024; 61:2653-2671. [PMID: 37919601 PMCID: PMC11043184 DOI: 10.1007/s12035-023-03689-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/30/2023] [Indexed: 11/04/2023]
Abstract
Abnormal phosphorylation of the microtubule-binding protein tau in the brain is a key pathological marker for Alzheimer's disease and additional neurodegenerative tauopathies. However, how hyperphosphorylated tau causes cellular dysfunction or death that underlies neurodegeneration remains an unsolved question critical for the understanding of disease mechanism and the design of efficacious drugs. Using a recombinant hyperphosphorylated tau protein (p-tau) synthesized by the PIMAX approach, we examined how cells responded to the cytotoxic tau and explored means to enhance cellular resistance to tau attack. Upon p-tau uptake, the intracellular calcium levels rose promptly. Gene expression analyses revealed that p-tau potently triggered endoplasmic reticulum (ER) stress, unfolded protein response (UPR), ER stress-associated apoptosis, and pro-inflammation in cells. Proteomics studies showed that p-tau diminished heme oxygenase-1 (HO-1), an ER stress-associated anti-inflammation and anti-oxidative stress regulator, while stimulated the accumulation of MIOS and other proteins. p-Tau-induced ER stress-associated apoptosis and pro-inflammation are ameliorated by apomorphine, a brain-permeable prescription drug widely used to treat Parkinson's disease symptoms, and by overexpression of HO-1. Our results reveal probable cellular functions targeted by hyperphosphorylated tau. Some of these dysfunctions and stress responses have been linked to neurodegeneration in Alzheimer's disease. The observations that the ill effects of p-tau can be mitigated by a small compound and by overexpressing HO-1 that is otherwise diminished in the treated cells inform new directions of Alzheimer's disease drug discovery.
Collapse
Affiliation(s)
- Zhenfeng Song
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Kuang-Wei Wang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Hsiao-Tien Chien Hagar
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Hong-Ru Chen
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA, 22903, USA
- Present address: Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan, 112304
| | - Chia-Yi Kuan
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA, 22903, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| | - Min-Hao Kuo
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
8
|
Jiang Y, Lin Y, Tetlow AM, Pan R, Ji C, Kong XP, Congdon EE, Sigurdsson EM. Single-Domain Antibody-Based Protein Degrader for Synucleinopathies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584473. [PMID: 38558982 PMCID: PMC10979981 DOI: 10.1101/2024.03.11.584473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Synucleinopathies are a group of neurodegenerative diseases characterized by the accumulation of α-synuclein (α-syn) in the brain, leading to motor and neuropsychiatric symptoms. Currently, there are no known cures for synucleinopathies, and treatments mainly focus on symptom management. In this study, we developed a single-domain antibody (sdAb)-based protein degrader with features designed to enhance proteasomal degradation of α-syn. This sdAb derivative targets both α-syn and Cereblon (CRBN), a substrate-receptor for the E3-ubiquitin ligase CRL4CRBN, and thereby induces α-syn ubiquitination and proteasomal degradation. Our results indicate that this therapeutic candidate enhances proteasomal degradation of α-syn, in addition to the endogenous lysosomal degradation machinery. By promoting proteasomal degradation of α-syn, we improved clearance of α-syn in primary culture and mouse models of synucleinopathy. These findings indicate that our sdAb-based protein degrader is a promising therapeutic candidate for synucleinopathies. Considering that only a small percentage of antibodies enter the brain, more potent sdAbs with greater brain entry than whole antibodies could enhance clinical benefits of antibody-based therapies.
Collapse
Affiliation(s)
- Yixiang Jiang
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30 Street, New York NY 10016, USA
| | - Yan Lin
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30 Street, New York NY 10016, USA
| | - Amber M Tetlow
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30 Street, New York NY 10016, USA
| | - Ruimin Pan
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, 435 East 30 Street, New York NY 10016, USA
| | - Changyi Ji
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30 Street, New York NY 10016, USA
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, 435 East 30 Street, New York NY 10016, USA
| | - Erin E Congdon
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30 Street, New York NY 10016, USA
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30 Street, New York NY 10016, USA
- Department of Psychiatry, New York University Grossman School of Medicine, 435 East 30 Street, New York NY 10016, USA
| |
Collapse
|
9
|
Sigurdsson EM. Tau Immunotherapies for Alzheimer's Disease and Related Tauopathies: Status of Trials and Insights from Preclinical Studies. J Alzheimers Dis 2024; 101:S129-S140. [PMID: 38427486 PMCID: PMC11587787 DOI: 10.3233/jad-231238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
The tau protein undergoes pathological changes in Alzheimer's disease and other tauopathies that eventually lead to functional impairments. Over the years, several therapeutic approaches have been examined to slow or halt the progression of tau pathology but have yet to lead to an approved disease-modifying treatment. Of the drugs in clinical trials that directly target tau, immunotherapies are the largest category and mostly consist of antibodies in different stages of development. There is a reasonable optimism that at least some of these compounds will have a clinically meaningful efficacy. This view is based on the significant although modest efficacy of some antibodies targeting amyloid-β in Alzheimer's disease and the fact that tau pathology correlates much better with the degree of dementia than amyloid-β lesions. In Alzheimer's disease, clearing pathological tau may therefore improve function later in the disease process than when removing amyloid-β. This review provides a brief update on the active and passive clinical tau immunization trials with insight from preclinical studies. Various epitopes are being targeted and some of the antibodies are said to target extracellular tau but because almost all of pathological tau is found intracellularly, the most efficacious antibodies should be able to enter the cell.
Collapse
Affiliation(s)
- Einar M Sigurdsson
- Departments of Neuroscience and Physiology, and Psychiatry, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
10
|
Gaikwad S, Senapati S, Haque MA, Kayed R. Senescence, brain inflammation, and oligomeric tau drive cognitive decline in Alzheimer's disease: Evidence from clinical and preclinical studies. Alzheimers Dement 2024; 20:709-727. [PMID: 37814508 PMCID: PMC10841264 DOI: 10.1002/alz.13490] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 10/11/2023]
Abstract
Aging, tau pathology, and chronic inflammation in the brain play crucial roles in synaptic loss, neurodegeneration, and cognitive decline in tauopathies, including Alzheimer's disease. Senescent cells accumulate in the aging brain, accelerate the aging process, and promote tauopathy progression through their abnormal inflammatory secretome known as the senescence-associated secretory phenotype (SASP). Tau oligomers (TauO)-the most neurotoxic tau species-are known to induce senescence and the SASP, which subsequently promote neuropathology, inflammation, oxidative stress, synaptic dysfunction, neuronal death, and cognitive dysfunction. TauO, brain inflammation, and senescence are associated with heterogeneity in tauopathy progression and cognitive decline. However, the underlying mechanisms driving the disease heterogeneity remain largely unknown, impeding the development of therapies for tauopathies. Based on clinical and preclinical evidence, this review highlights the critical role of TauO and senescence in neurodegeneration. We discuss key knowledge gaps and potential strategies for targeting senescence and TauO to treat tauopathies. HIGHLIGHTS: Senescence, oligomeric Tau (TauO), and brain inflammation accelerate the aging process and promote the progression of tauopathies, including Alzheimer's disease. We discuss their role in contributing to heterogeneity in tauopathy and cognitive decline. We highlight strategies to target senescence and TauO to treat tauopathies while addressing key knowledge gaps.
Collapse
Affiliation(s)
- Sagar Gaikwad
- The Mitchell Center for Neurodegenerative Diseasesand Department of NeurologyUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Sudipta Senapati
- The Mitchell Center for Neurodegenerative Diseasesand Department of NeurologyUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Md. Anzarul Haque
- The Mitchell Center for Neurodegenerative Diseasesand Department of NeurologyUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Rakez Kayed
- The Mitchell Center for Neurodegenerative Diseasesand Department of NeurologyUniversity of Texas Medical BranchGalvestonTexasUSA
| |
Collapse
|
11
|
Min S, Mohallem R, Aryal UK, Kinzer-Ursem TL, Rochet JC. Effects of Neighboring Phosphorylation Events on the Affinities of pT181-Tau Antibodies. Anal Chem 2023; 95:18241-18248. [PMID: 38014879 DOI: 10.1021/acs.analchem.3c04081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
A tau variant phosphorylated on threonine 181 (pT181-tau) has been widely investigated as a potential Alzheimer's disease (AD) biomarker in cerebrospinal fluid (CSF) and blood. pT181-tau is present in neurofibrillary tangles (NFTs) of AD brains, and CSF levels of pT181-tau correlate with the overall NFT burden. Various immunobased analytical methods, including Western blotting and ELISA, have been used to quantify pT181-tau in human biofluids. The reliability of these methods is dependent on the affinity and binding specificity of the antibodies used to measure pT181-tau levels. Although both of these properties could, in principle, be affected by phosphorylation within or near the antibody's cognate antigen, such effects have not been extensively studied. Here, we developed a biolayer interferometry assay to determine the degree to which the affinity of pT181-tau antibodies is altered by the phosphorylation of serine or threonine residues near the target epitope. Our results revealed that phosphorylation near T181 negatively affected the binding of pT181-tau antibodies to their cognate antigen to varying degrees. In particular, two of three antibodies tested showed a complete loss of affinity for the pT181 target when S184 or S185 was phosphorylated. These findings highlight the importance of selecting antibodies that have been thoroughly characterized in terms of affinity and binding specificity, addressing the potential disruptive effects of post-translational modifications in the epitope region to ensure accurate biomarker quantitation.
Collapse
Affiliation(s)
- Sehong Min
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana 47907, United States
| | - Rodrigo Mohallem
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Uma K Aryal
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tamara L Kinzer-Ursem
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jean-Christophe Rochet
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
12
|
Li X, Quan M, Wei Y, Wang W, Xu L, Wang Q, Jia J. Critical thinking of Alzheimer's transgenic mouse model: current research and future perspective. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2711-2754. [PMID: 37480469 DOI: 10.1007/s11427-022-2357-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/23/2023] [Indexed: 07/24/2023]
Abstract
Transgenic models are useful tools for studying the pathogenesis of and drug development for Alzheimer's Disease (AD). AD models are constructed usually using overexpression or knock-in of multiple pathogenic gene mutations from familial AD. Each transgenic model has its unique behavioral and pathological features. This review summarizes the research progress of transgenic mouse models, and their progress in the unique mechanism of amyloid-β oligomers, including the first transgenic mouse model built in China based on a single gene mutation (PSEN1 V97L) found in Chinese familial AD. We further summarized the preclinical findings of drugs using the models, and their future application in exploring the upstream mechanisms and multitarget drug development in AD.
Collapse
Affiliation(s)
- Xinyue Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Meina Quan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Yiping Wei
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Wei Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Lingzhi Xu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Qi Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China.
- Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, 100053, China.
- Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, 100053, China.
- Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100053, China.
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China.
| |
Collapse
|
13
|
Congdon EE, Ji C, Tetlow AM, Jiang Y, Sigurdsson EM. Tau-targeting therapies for Alzheimer disease: current status and future directions. Nat Rev Neurol 2023; 19:715-736. [PMID: 37875627 PMCID: PMC10965012 DOI: 10.1038/s41582-023-00883-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/26/2023]
Abstract
Alzheimer disease (AD) is the most common cause of dementia in older individuals. AD is characterized pathologically by amyloid-β (Aβ) plaques and tau neurofibrillary tangles in the brain, with associated loss of synapses and neurons, which eventually results in dementia. Many of the early attempts to develop treatments for AD focused on Aβ, but a lack of efficacy of these treatments in terms of slowing disease progression led to a change of strategy towards targeting of tau pathology. Given that tau shows a stronger correlation with symptom severity than does Aβ, targeting of tau is more likely to be efficacious once cognitive decline begins. Anti-tau therapies initially focused on post-translational modifications, inhibition of tau aggregation and stabilization of microtubules. However, trials of many potential drugs were discontinued because of toxicity and/or lack of efficacy. Currently, the majority of tau-targeting agents in clinical trials are immunotherapies. In this Review, we provide an update on the results from the initial immunotherapy trials and an overview of new therapeutic candidates that are in clinical development, as well as considering future directions for tau-targeting therapies.
Collapse
Affiliation(s)
- Erin E Congdon
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Changyi Ji
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Amber M Tetlow
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Yixiang Jiang
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA.
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
14
|
Zupancic JM, Smith MD, Trzeciakiewicz H, Skinner ME, Ferris SP, Makowski EK, Lucas MJ, McArthur N, Kane RS, Paulson HL, Tessier PM. Quantitative flow cytometric selection of tau conformational nanobodies specific for pathological aggregates. Front Immunol 2023; 14:1164080. [PMID: 37622125 PMCID: PMC10445546 DOI: 10.3389/fimmu.2023.1164080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/15/2023] [Indexed: 08/26/2023] Open
Abstract
Single-domain antibodies, also known as nanobodies, are broadly important for studying the structure and conformational states of several classes of proteins, including membrane proteins, enzymes, and amyloidogenic proteins. Conformational nanobodies specific for aggregated conformations of amyloidogenic proteins are particularly needed to better target and study aggregates associated with a growing class of associated diseases, especially neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. However, there are few reported nanobodies with both conformational and sequence specificity for amyloid aggregates, especially for large and complex proteins such as the tau protein associated with Alzheimer's disease, due to difficulties in selecting nanobodies that bind to complex aggregated proteins. Here, we report the selection of conformational nanobodies that selectively recognize aggregated (fibrillar) tau relative to soluble (monomeric) tau. Notably, we demonstrate that these nanobodies can be directly isolated from immune libraries using quantitative flow cytometric sorting of yeast-displayed libraries against tau aggregates conjugated to quantum dots, and this process eliminates the need for secondary nanobody screening. The isolated nanobodies demonstrate conformational specificity for tau aggregates in brain samples from both a transgenic mouse model and human tauopathies. We expect that our facile approach will be broadly useful for isolating conformational nanobodies against diverse amyloid aggregates and other complex antigens.
Collapse
Affiliation(s)
- Jennifer M. Zupancic
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - Matthew D. Smith
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - Hanna Trzeciakiewicz
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, United States
| | - Mary E. Skinner
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Sean P. Ferris
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Emily K. Makowski
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Michael J. Lucas
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Nikki McArthur
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Ravi S. Kane
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Henry L. Paulson
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Protein Folding Disease Initiative, University of Michigan, Ann Arbor, MI, United States
- Michigan Alzheimer’s Disease Center, University of Michigan, Ann Arbor, MI, United States
| | - Peter M. Tessier
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, United States
- Protein Folding Disease Initiative, University of Michigan, Ann Arbor, MI, United States
- Michigan Alzheimer’s Disease Center, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
15
|
Patskovsky Y, Natarajan A, Patskovska L, Nyovanie S, Joshi B, Morin B, Brittsan C, Huber O, Gordon S, Michelet X, Schmitzberger F, Stein RB, Findeis MA, Hurwitz A, Van Dijk M, Chantzoura E, Yague AS, Pollack Smith D, Buell JS, Underwood D, Krogsgaard M. Molecular mechanism of phosphopeptide neoantigen immunogenicity. Nat Commun 2023; 14:3763. [PMID: 37353482 PMCID: PMC10290117 DOI: 10.1038/s41467-023-39425-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/12/2023] [Indexed: 06/25/2023] Open
Abstract
Altered protein phosphorylation in cancer cells often leads to surface presentation of phosphopeptide neoantigens. However, their role in cancer immunogenicity remains unclear. Here we describe a mechanism by which an HLA-B*0702-specific acute myeloid leukemia phosphoneoantigen, pMLL747-755 (EPR(pS)PSHSM), is recognized by a cognate T cell receptor named TCR27, a candidate for cancer immunotherapy. We show that the replacement of phosphoserine P4 with serine or phosphomimetics does not affect pMHC conformation or peptide-MHC affinity but abrogates TCR27-dependent T cell activation and weakens binding between TCR27 and pMHC. Here we describe the crystal structures for TCR27 and cognate pMHC, map of the interface produced by nuclear magnetic resonance, and a ternary complex generated using information-driven protein docking. Our data show that non-covalent interactions between the epitope phosphate group and TCR27 are crucial for TCR specificity. This study supports development of new treatment options for cancer patients through target expansion and TCR optimization.
Collapse
Grants
- P30 GM133893 NIGMS NIH HHS
- P30 CA016087 NCI NIH HHS
- U01 CA214354 NCI NIH HHS
- P50 CA225450 NCI NIH HHS
- R01 GM085586 NIGMS NIH HHS
- R01 GM124489 NIGMS NIH HHS
- R01 CA243486 NCI NIH HHS
- S10 OD016343 NIH HHS
- P41 GM118302 NIGMS NIH HHS
- U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
- This work was supported by the NIH grant NIGMS R01 GM124489 (to M.K.), NCI R01 CA243486 (to M.K) and a Sponsored Research Agreement from Agenus to M.K. Results shown in this report are partially derived from work performed at Argonne National Laboratory, Structural Biology Center at the Advanced Photon Source. SBC is operated by UChicago Argonne, LLC, for the U.S. Department of Energy, Office of Biological and Environmental Research under contract DE-AC02-06CH11357. Results in this report are partially derived from work performed at The Center for BioMolecular Structure (CBMS) primarily supported by the National Institutes of Health, National Institute of General Medical Sciences (NIGMS) through a Center Core P30 Grant (P30GM133893), and by the DOE Office of Biological and Environmental Research (KP1607011). As part of NSLS-II, a national user facility at Brookhaven National Laboratory, work performed at the CBMS is supported in part by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences Program under contract number and DE-SC0012704. The NMR spectrometers at the NYU Chemistry Shared Instrumentation Facility were supported by NYU and the NIH Grant 1S10-OD016343. The facilities at the NYSBC were supported by the NIH Grant P41GM118302.
Collapse
Affiliation(s)
- Yury Patskovsky
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, New York, NY, USA
| | - Aswin Natarajan
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, New York, NY, USA
| | - Larysa Patskovska
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, New York, NY, USA
| | - Samantha Nyovanie
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Michelle Krogsgaard
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA.
- Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, New York, NY, USA.
| |
Collapse
|
16
|
Song Z, Wang KW, Hagar HTC, Chen HR, Kuan CY, Zhang K, Kuo MH. Hyperphosphorylated tau Inflicts Intracellular Stress Responses That Are Mitigated by Apomorphine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.13.540661. [PMID: 37292976 PMCID: PMC10245566 DOI: 10.1101/2023.05.13.540661] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Background Abnormal phosphorylation of the microtubule-binding protein tau in the brain is a key pathological marker for Alzheimer's disease and additional neurodegenerative tauopathies. However, how hyperphosphorylated tau causes cellular dysfunction or death that underlie neurodegeneration remains an unsolved question critical for the understanding of disease mechanism and the design of efficacious drugs. Methods Using a recombinant hyperphosphorylated tau protein (p-tau) synthesized by the PIMAX approach, we examined how cells responded to the cytotoxic tau and explored means to enhance cellular resistance to tau attack. Results Upon p-tau uptake, the intracellular calcium levels rose promptly. Gene expression analyses revealed that p-tau potently triggered endoplasmic reticulum (ER) stress, Unfolded Protein Response (UPR), ER stress-associated apoptosis, and pro-inflammation in cells. Proteomics studies showed that p-tau diminished heme oxygenase-1 (HO-1), an ER stress associated anti-inflammation and anti-oxidative stress regulator, while stimulated the accumulation of MIOS and other proteins. P-tau-induced ER stress-associated apoptosis and pro-inflammation are ameliorated by apomorphine, a brain-permeable prescription drug widely used to treat Parkinson's disease symptoms, and by overexpression of HO-1. Conclusion Our results reveal probable cellular functions targeted by hyperphosphorylated tau. Some of these dysfunctions and stress responses have been linked to neurodegeneration in Alzheimer's disease. The observations that the ill effects of p-tau can be mitigated by a small compound and by overexpressing HO-1 that is otherwise diminished in the treated cells inform new directions of Alzheimer's disease drug discovery.
Collapse
|
17
|
Jiang Y, Lin Y, Krishnaswamy S, Pan R, Wu Q, Sandusky-Beltran LA, Liu M, Kuo MH, Kong XP, Congdon EE, Sigurdsson EM. Single-domain antibody-based noninvasive in vivo imaging of α-synuclein or tau pathology. SCIENCE ADVANCES 2023; 9:eadf3775. [PMID: 37163602 PMCID: PMC10171817 DOI: 10.1126/sciadv.adf3775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/11/2023] [Indexed: 05/12/2023]
Abstract
Intracellular deposition of α-synuclein and tau are hallmarks of synucleinopathies and tauopathies, respectively. Recently, several dye-based imaging probes with selectivity for tau aggregates have been developed, but suitable imaging biomarkers for synucleinopathies are still unavailable. Detection of both of these aggregates early in the disease process may allow for prophylactic therapies before functional impairments have manifested, highlighting the importance of developing specific imaging probes for these lesions. In contrast to the β sheet dyes, single-domain antibodies, found in camelids and a few other species, are highly specific, and their small size allows better brain entry and distribution than whole antibodies. Here, we have developed such imaging ligands via phage display libraries derived from llamas immunized with α-synuclein and tau preparations, respectively. These probes allow noninvasive and specific in vivo imaging of α-synuclein versus tau pathology in mice, with the brain signal correlating strongly with lesion burden. These small antibody derivatives have great potential for in vivo diagnosis of these diseases.
Collapse
Affiliation(s)
- Yixiang Jiang
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, USA
| | - Yan Lin
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, USA
| | - Senthilkumar Krishnaswamy
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, USA
| | - Ruimin Pan
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Qian Wu
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, USA
| | - Leslie A. Sandusky-Beltran
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, USA
| | - Mengyu Liu
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48824, USA
| | - Min-Hao Kuo
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48824, USA
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Erin E. Congdon
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, USA
| | - Einar M. Sigurdsson
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, USA
- Department of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, USA
| |
Collapse
|