1
|
Huang X, Yi N, Zhu P, Gao J, Lv J. Sorafenib-induced macrophage extracellular traps via ARHGDIG/IL4/PADI4 axis confer drug resistance through inhibiting ferroptosis in hepatocellular carcinoma. Biol Direct 2024; 19:110. [PMID: 39529192 PMCID: PMC11555812 DOI: 10.1186/s13062-024-00560-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common as well as leading causes of mortality worldwide, and sorafenib is the first-line treatment in HCC patients. Unfortunately, drug resistance to sorafenib often develops. However, the underlying mechanism remains unclear. Here, we reveal the important role of macrophage extracellular traps (METs)-mediated crosstalk between macrophages and tumor cells in sorafenib resistance. METHODS METs in HCC tumor tissues were detected using immunofluorescence. The concentrations of MPO-DNA, elastase and cytokines were measured using ELISA. The mRNA expression levels of genes were confirmed by qRT-PCR. The siRNAs were conducted to knock ARHGDIG in Hepa1-6 and Hep3B cells. Western Blot assay was performed to determine protein expression of Rho GDP dissociation inhibitor gamma (ARHGDIG, or RHOGDI-3), PADI2, and PADI4. Cell viability and migration were evaluated by CCK-8 assay and transwell assay, respectively. Cell ferroptosis was assessed by measurement of Fe2+ concentration, flow cytometry assay of lipid ROS, and western blot assay of GPX4. The functions of sorafenib, DNase I, IL4 neutralization antibody and GPX4 in tumor growth were explored through in vivo experiments. RESULTS Sorafenib induced MET formation in M2 macrophages rather than M1 macrophages derived from both human and mice. In Hepa1-6 HCC mice, METs clearance by DNase I improved response to sorafenib therapy, detected by tumor weight, tumor growth curve, tumor volume, and survival. By screening candidate cytokines that affect macrophage function, we found that sorafenib-promoting IL4 secretion by HCC cells plays a crucial role in sorafenib-induced MET formation. Understanding the critical role of IL4 in sorafenib-induced MET formation led us to find that IL4 neutralization significantly improved the efficiency of sorafenib in HCC models. Mechanistically, we discovered that sorafenib increased the expression of ARHGDIG in HCC cells, which led to the release of IL4. In M2 macrophages, IL4 triggered MET formation by elevating the mRNA and protein expression of peptidyl arginine deiminase 4 (PADI4) rather than PADI2. In HCC models, GSK484 inhibition of PADI4 could consistently weaken sorafenib resistance and improve sorafenib efficiency. Importantly, we discovered that METs contribute to sorafenib resistance by inhibiting the ferroptosis of HCC cells. Meanwhile, PADI4 inhibition or DNase I could reverse the sorafenib resistance caused by METs-inhibiting ferroptosis of HCC cells. CONCLUSION Our study concludes that sorafenib-induced METs inhibit the ferroptosis of tumor cells, suggesting that targeting the IL4/PADI4/METs axis in HCC could reduce or prevent sorafenib resistance.
Collapse
Affiliation(s)
- Xiangbo Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Key Clinical Laboratory of Henan Province, Zhengzhou, 450052, People's Republic of China
| | - Nan Yi
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Key Clinical Laboratory of Henan Province, Zhengzhou, 450052, People's Republic of China
| | - Pengfei Zhu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Key Clinical Laboratory of Henan Province, Zhengzhou, 450052, People's Republic of China
| | - Jian Gao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, People's Republic of China.
| | - Jun Lv
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
| |
Collapse
|
2
|
Tunçer Çağlayan S, Elibol B, Severcan F, Basar Gursoy E, Tiftikcioglu BI, Gungordu Dalar Z, Celik C, Dai AS, Karaçam S. Insights from CD71 presentation and serum lipid peroxidation in myasthenia gravis - A small cohort study. Int Immunopharmacol 2024; 140:112787. [PMID: 39088914 DOI: 10.1016/j.intimp.2024.112787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/15/2024] [Accepted: 07/23/2024] [Indexed: 08/03/2024]
Abstract
Myasthenia gravis (MG) is a multifaceted autoimmune disorder affecting the postsynaptic neuromuscular junction. In this study, we examined CD4+ and CD8+ T lymphocyte levels and ratios within peripheral blood mononuclear cells (PBMCs) in MG patients. Additionally, we assessed lymphocytes for the expression of CD71, which functions as a transferrin receptor mediating the uptake of iron into the cells. Building on recent discussions regarding CD20 depletion treatments in MG, we also scrutinized lymphocytes for CD20 expression. Comparative analyses were conducted among healthy controls, newly diagnosed MG patients, those undergoing pyridostigmine treatment alone, and MG patients receiving combination therapies. In the patients, the ratio of CD3+CD4+ T lymphocytes to CD3+ T lymphocytes was found to be decreased compared to the healthy controls, while the ratio of CD3+CD8+ cells to CD3+CD4+ cells increased. An increase in the percentage of CD71-expressing lymphocytes was observed in MG patients compared to the healthy control group, while CD20+ lymphocytes exhibited no statistical changes. Moreover, heightened serum lipid peroxidation levels were found in MG patients. These results suggest a possible relationship between iron metabolism, levels of CD71-expressing cells, and lipid peroxidation in MG. Conversely, pyridostigmine treatment reduced the levels of CD71-expressing cells and lipid peroxidation, suggesting potential immunomodulatory and antioxidant impacts of pyridostigmine in MG, either directly or indirectly.
Collapse
Affiliation(s)
- Sinem Tunçer Çağlayan
- Bilecik Şeyh Edebali University, Vocational School of Health Services, Department of Medical Services and Techniques, Bilecik, Turkey.
| | - Birsen Elibol
- Istanbul Medeniyet University, Faculty of Medicine, Department of Medical Biology, Istanbul, Turkey
| | - Feride Severcan
- Altınbaş University, Faculty of Medicine, Department of Biophysics, Istanbul, Turkey
| | - Esra Basar Gursoy
- Bezmialem Vakıf University, Faculty of Medicine, Department of Neurology, Istanbul, Turkey
| | | | - Zeynep Gungordu Dalar
- Altınbaş University, Faculty of Medicine, Department of Medical Microbiology, Istanbul, Turkey
| | - Ceren Celik
- Altınbaş University, Institute of Graduate Studies, Biomedical Sciences Graduate Program, Istanbul, Turkey
| | - Ayse Suna Dai
- Istanbul University, Faculty of Science, Department of Biology, Istanbul, Turkey
| | - Sevinç Karaçam
- Bilecik Şeyh Edebali University, Department of Biotechnology, Bilecik, Turkey
| |
Collapse
|
3
|
Zheng X, Zhang Y, Zhang L, Yang T, Zhang F, Wang X, Zhu SJ, Cui N, Lv H, Zhang X, Li H, Liu W. Taurolithocholic acid protects against viral haemorrhagic fever via inhibition of ferroptosis. Nat Microbiol 2024; 9:2583-2599. [PMID: 39294459 DOI: 10.1038/s41564-024-01801-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 07/31/2024] [Indexed: 09/20/2024]
Abstract
Bile acids are microbial metabolites that can impact infection of enteric and hepatitis viruses, but their functions during systemic viral infection remain unclear. Here we show that elevated levels of the secondary bile acid taurolithocholic acid (TLCA) are associated with reduced fatality rates and suppressed viraemia in patients infected with severe fever with thrombocytopenia syndrome virus (SFTSV), an emerging tick-borne haemorrhagic fever virus. TLCA inhibits viral replication and mitigates host inflammation during SFTSV infection in vitro, and indirectly suppresses SFTSV-mediated induction of ferroptosis by upregulating fatty acid desaturase 2 via the TGR5-PI3K/AKT-SREBP2 axis. High iron and ferritin serum levels during early infection were correlated with decreased TLCA levels and fatal outcomes in SFTSV-infected patients, indicating potential biomarkers. Furthermore, treatment with either ferroptosis inhibitors or TLCA protected mice from lethal SFTSV infection. Our findings highlight the therapeutic potential of bile acids to treat haemorrhagic fever viral infection.
Collapse
Affiliation(s)
- Xiaojie Zheng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Yunfa Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Lingyu Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Tong Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Faxue Zhang
- School of Public Health, Wuhan University, Wuhan, People's Republic of China
| | - Xi Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
- Graduate School of Anhui Medical University, Hefei, People's Republic of China
| | - Shu Jeffrey Zhu
- Key Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Ning Cui
- The 154th Hospital, Xinyang, People's Republic of China
| | - Hongdi Lv
- The 154th Hospital, Xinyang, People's Republic of China
| | - Xiaoai Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China.
- School of Public Health, Wuhan University, Wuhan, People's Republic of China.
- Graduate School of Anhui Medical University, Hefei, People's Republic of China.
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China.
- School of Public Health, Wuhan University, Wuhan, People's Republic of China.
- Graduate School of Anhui Medical University, Hefei, People's Republic of China.
| |
Collapse
|
4
|
Santiago MJ, Chinnapaiyan S, Panda K, Rahman MS, Ghorai S, Rahman I, Black SM, Liu Y, Unwalla HJ. Altered Host microRNAomics in HIV Infections: Therapeutic Potentials and Limitations. Int J Mol Sci 2024; 25:8809. [PMID: 39201495 PMCID: PMC11354509 DOI: 10.3390/ijms25168809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
microRNAs have emerged as essential regulators of health and disease, attracting significant attention from researchers across diverse disciplines. Following their identification as noncoding oligonucleotides intricately involved in post-transcriptional regulation of protein expression, extensive efforts were devoted to elucidating and validating their roles in fundamental metabolic pathways and multiple pathologies. Viral infections are significant modifiers of the host microRNAome. Specifically, the Human Immunodeficiency Virus (HIV), which affects approximately 39 million people worldwide and has no definitive cure, was reported to induce significant changes in host cell miRNA profiles. Identifying and understanding the effects of the aberrant microRNAome holds potential for early detection and therapeutic designs. This review presents a comprehensive overview of the impact of HIV on host microRNAome. We aim to review the cause-and-effect relationship between the HIV-induced aberrant microRNAome that underscores miRNA's therapeutic potential and acknowledge its limitations.
Collapse
Affiliation(s)
- Maria J. Santiago
- Department of Chemistry and Biochemistry, Biochemistry Ph.D. Program, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (M.J.S.); (Y.L.)
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.C.); (K.P.); (M.S.R.); (S.G.); (S.M.B.)
| | - Srinivasan Chinnapaiyan
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.C.); (K.P.); (M.S.R.); (S.G.); (S.M.B.)
| | - Kingshuk Panda
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.C.); (K.P.); (M.S.R.); (S.G.); (S.M.B.)
| | - Md. Sohanur Rahman
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.C.); (K.P.); (M.S.R.); (S.G.); (S.M.B.)
| | - Suvankar Ghorai
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.C.); (K.P.); (M.S.R.); (S.G.); (S.M.B.)
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave., Rochester, NY 14642, USA;
| | - Stephen M. Black
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.C.); (K.P.); (M.S.R.); (S.G.); (S.M.B.)
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL 34987, USA
| | - Yuan Liu
- Department of Chemistry and Biochemistry, Biochemistry Ph.D. Program, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (M.J.S.); (Y.L.)
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Hoshang J. Unwalla
- Department of Chemistry and Biochemistry, Biochemistry Ph.D. Program, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (M.J.S.); (Y.L.)
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.C.); (K.P.); (M.S.R.); (S.G.); (S.M.B.)
| |
Collapse
|
5
|
Letafati A, Taghiabadi Z, Ardekani OS, Abbasi S, Najafabadi AQ, Jazi NN, Soheili R, Rodrigo R, Yavarian J, Saso L. Unveiling the intersection: ferroptosis in influenza virus infection. Virol J 2024; 21:185. [PMID: 39135112 PMCID: PMC11321227 DOI: 10.1186/s12985-024-02462-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
The influenza virus (IFV) imposes a considerable health and economic burden globally, requiring a comprehensive understanding of its pathogenic mechanisms. Ferroptosis, an iron-dependent lipid peroxidation cell death pathway, holds unique implications for the antioxidant defense system, with possible contributions to inflammation. This exploration focuses on the dynamic interplay between ferroptosis and the host defense against viruses, emphasizing the influence of IFV infections on the activation of the ferroptosis pathway. IFV causes different types of cell death, including apoptosis, necrosis, and ferroptosis. IFV-induced ferroptotic cell death is mediated by alterations in iron homeostasis, intensifying the accumulation of reactive oxygen species and promoting lipid peroxidation. A comprehensive investigation into the mechanism of ferroptosis in viral infections, specifically IFV, has great potential to identify therapeutic strategies. This understanding may pave the way for the development of drugs using ferroptosis inhibitors, presenting an effective approach to suppress viral infections.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Taghiabadi
- Department of Microbiology and Virology of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Omid Salahi Ardekani
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Simin Abbasi
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Qaraee Najafabadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Negar Nayerain Jazi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Roben Soheili
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Jila Yavarian
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University, Rome, Italy.
| |
Collapse
|
6
|
Xiao Q, Zhai L, Zhang X, Liu Y, Li J, Xie X, Xu G, He S, Fu H, Tang Y, Zhang F, Liu Y. How can we establish animal models of HIV-associated lymphoma? Animal Model Exp Med 2024; 7:484-496. [PMID: 38567763 PMCID: PMC11369037 DOI: 10.1002/ame2.12409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/27/2024] [Indexed: 09/04/2024] Open
Abstract
Human immunodeficiency virus (HIV) infection is strongly associated with a heightened incidence of lymphomas. To mirror the natural course of human HIV infection, animal models have been developed. These models serve as valuable tools to investigate disease pathobiology, assess antiretroviral and immunomodulatory drugs, explore viral reservoirs, and develop eradication strategies. However, there are currently no validated in vivo models of HIV-associated lymphoma (HAL), hampering progress in this crucial domain, and scant attention has been given to developing animal models dedicated to studying HAL, despite their pivotal role in advancing knowledge. This review provides a comprehensive overview of the existing animal models of HAL, which may enhance our understanding of the underlying pathogenesis and approaches for malignancies linked to HIV infection.
Collapse
Affiliation(s)
- Qing Xiao
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Liuyue Zhai
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Xiaomei Zhang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Yi Liu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Jun Li
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Xiaoqing Xie
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Guofa Xu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Sanxiu He
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Huihui Fu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Yifeng Tang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Fujie Zhang
- Beijing Ditan HospitalCapital Medical UniversityBeijingChina
| | - Yao Liu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology‐OncologyChongqing University Cancer HospitalChongqingChina
| |
Collapse
|
7
|
Xie L, Hao X, Xie J, Mo J, Yuan C, Chen W. Acetylated pelargonidin-3- O-glucoside alleviates hepatocyte lipid deposition through activating the AMPK-mediated lysosome-autophagy pathway and redox state. Food Funct 2024; 15:6929-6942. [PMID: 38659316 DOI: 10.1039/d4fo00185k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a worldwide public health issue, but a widely accepted therapy is still lacking until now. Anthocyanins are natural flavonoid compounds that possess various bioactivities, but their applications are limited due to their low bioavailability and stability. Acylated anthocyanins are reported to show higher stability, whereas their effects on NAFLD are still unclear. Herein, pelargonidin-3-O-(6''-acetyl)-glucoside (Ace Pg3G) was found to dose-dependently reduce intracellular lipid droplets and triglycerides, and improve cellular oxidative stress that accompanied lipid deposition. Besides, Ace Pg3G was proved to activate AMPK phosphorylation, thus stimulating AMPK-mediated lysosome-autophagy pathway to eliminate overloaded lipid. Further study unveiled that Ace Pg3G regulated genes related to lipid metabolism downstream of AMPK to inhibit lipid synthesis and accelerate lipid oxidation. Overall, this study provided the first evidence, to our best knowledge, that Ace Pg3G ameliorated free fatty acid-induced lipid deposition in hepatocytes through regulating AMPK-mediated autophagy pathways and redox state.
Collapse
Affiliation(s)
- Lianghua Xie
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Xin Hao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jiahong Xie
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jianling Mo
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| | - Changzheng Yuan
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Wei Chen
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
8
|
Abdel-Mohsen M, Deeks S, Giron L, Hong KY, Goldman A, Zhang L, Huang SSY, Verrill D, Guo S, Selzer L, de Vries CR, Vendrame E, SenGupta D, Wallin JJ, Cai Y. Circulating immune and plasma biomarkers of time to HIV rebound in HIV controllers treated with vesatolimod. Front Immunol 2024; 15:1405348. [PMID: 38979421 PMCID: PMC11229794 DOI: 10.3389/fimmu.2024.1405348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
Background Antiretroviral therapy (ART) for HIV-1 treatment has improved lifespan but requires lifelong adherence for people living with HIV (PLWH), highlighting the need for a cure. Evaluation of potential cure strategies requires analytic treatment interruption (ATI) with close monitoring of viral rebound. Predictive biomarkers for HIV-1 rebound and/or duration of control during ATI will facilitate these HIV cure trials while minimizing risks. Available evidence suggests that host immune, glycomic, lipid, and metabolic markers of inflammation may be associated with HIV-1 persistence in PLWH who are treated during chronic HIV-1 infection. Methods We conducted post-hoc analysis of HIV controllers who could maintain low levels of plasma HIV-1 without ART in a phase 1b vesatolimod trial. Baseline and pre-ATI levels of immune, glycomic, lipidomic, and metabolomic markers were tested for association with ATI outcomes (time of HIV-1 rebound to 200 copies/mL and 1,000 copies/mL, duration of HIV-1 RNA ≤400 copies/mL and change in intact proviral HIV-1 DNA during ATI) using Spearman's correlation and Cox proportional hazards model. Results Higher levels of CD69+CD8+ T-cells were consistently associated with shorter time to HIV-1 rebound at baseline and pre-ATI. With few exceptions, baseline fucosylated, non-galactosylated, non-sialylated, bisecting IgG N-glycans were associated with shorter time to HIV rebound and duration of control as with previous studies. Baseline plasma MPA and HPA binding glycans and non-galactosylated/non-sialylated glycans were associated with longer time to HIV rebound, while baseline multiply-galactosylated glycans and sialylated glycans, GNA-binding glycans, NPA-binding glycans, WGA-binding glycans, and bisecting GlcNAc glycans were associated with shorter time to HIV rebound and duration of control. Fourteen bioactive lipids had significant baseline associations with longer time to rebound and duration of control, and larger intact proviral HIV-1 DNA changes; additionally, three baseline bioactive lipids were associated with shorter time to first rebound and duration of control. Conclusion Consistent with studies in HIV non-controllers, proinflammatory glycans, lipids, and metabolites were generally associated with shorter duration of HIV-1 control. Notable differences were observed between HIV controllers vs. non-controllers in some specific markers. For the first time, exploratory biomarkers of ATI viral outcomes in HIV-controllers were investigated but require further validation.
Collapse
Affiliation(s)
- Mohamed Abdel-Mohsen
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Steven Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Leila Giron
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Kai Ying Hong
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Aaron Goldman
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, United States
| | - Liao Zhang
- Clinical Bioinformatics and Exploratory Analytics, Gilead Sciences, Inc., Foster City, CA, United States
| | - Susie S. Y. Huang
- Clinical Bioinformatics and Exploratory Analytics, Gilead Sciences, Inc., Foster City, CA, United States
| | - Donovan Verrill
- Statistical Programming, Gilead Sciences, Inc., Foster City, CA, United States
| | - Susan Guo
- Biostatistics, Gilead Sciences, Inc., Foster City, CA, United States
| | - Lisa Selzer
- Clinical Virology, Gilead Sciences, Inc., Foster City, CA, United States
| | | | - Elena Vendrame
- Clinical Development, Gilead Sciences, Inc., Foster City, CA, United States
| | - Devi SenGupta
- Clinical Development, Gilead Sciences, Inc., Foster City, CA, United States
| | - Jeffrey J. Wallin
- Biomarker Sciences and Diagnostics, Gilead Sciences, Inc., Foster City, CA, United States
| | - Yanhui Cai
- Biomarker Sciences and Diagnostics, Gilead Sciences, Inc., Foster City, CA, United States
| |
Collapse
|
9
|
Liu J, Ding C, Shi Y, Wang Y, Zhang X, Huang L, Fang Q, Shuai C, Gao Y, Wu J. Advances in Mechanism of HIV-1 Immune Reconstitution Failure: Understanding Lymphocyte Subpopulations and Interventions for Immunological Nonresponders. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1609-1620. [PMID: 38768409 DOI: 10.4049/jimmunol.2300777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/08/2024] [Indexed: 05/22/2024]
Abstract
In individuals diagnosed with AIDS, the primary method of sustained suppression of HIV-1 replication is antiretroviral therapy, which systematically increases CD4+ T cell levels and restores immune function. However, there is still a subset of 10-40% of people living with HIV who not only fail to reach normal CD4+ T cell counts but also experience severe immune dysfunction. These individuals are referred to as immunological nonresponders (INRs). INRs have a higher susceptibility to opportunistic infections and non-AIDS-related illnesses, resulting in increased morbidity and mortality rates. Therefore, it is crucial to gain new insights into the primary mechanisms of immune reconstitution failure to enable early and effective treatment for individuals at risk. This review provides an overview of the dynamics of key lymphocyte subpopulations, the main molecular mechanisms of INRs, clinical diagnosis, and intervention strategies during immune reconstitution failure, primarily from a multiomics perspective.
Collapse
Affiliation(s)
- Jiamin Liu
- School of Public Health, Anhui Medical University, Hefei, China
| | - Chengchao Ding
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yu Shi
- School of Public Health, Anhui Medical University, Hefei, China
| | - Yiyu Wang
- School of Public Health, Anhui Medical University, Hefei, China
| | - Xiangyu Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lina Huang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qin Fang
- Central Laboratory of HIV Molecular and Immunology, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Chenxi Shuai
- Central Laboratory of HIV Molecular and Immunology, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Yong Gao
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jianjun Wu
- School of Public Health, Anhui Medical University, Hefei, China
- Central Laboratory of HIV Molecular and Immunology, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| |
Collapse
|
10
|
Zhao X, Zhang Y, Luo B. Ferroptosis, from the virus point of view: opportunities and challenges. Crit Rev Microbiol 2024:1-18. [PMID: 38588443 DOI: 10.1080/1040841x.2024.2340643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/01/2024] [Indexed: 04/10/2024]
Abstract
Ferroptosis is a new type of cell death, which is mainly dependent on the formation and accumulation of reactive oxygen species and lipid peroxides mediated by iron. It is distinct from other forms of regulation of cell death in morphology, immunology, biochemistry, and molecular biology. Various cell death mechanisms have been observed in many viral infections, and virus-induced cell death has long been considered as a double-edged sword that can inhibit or aggravate viral infections. However, understanding of the role of ferroptosis in various viral infections is limited. Special attention will be paid to the mechanisms of ferroptosis in mediating viral infection and antiviral treatment associated with ferroptosis. In this paper, we outlined the mechanism of ferroptosis. Additionally, this paper also review research on ferroptosis from the perspective of the virus, discussed the research status of ferroptosis in virus infection and classified and summarized research on the interaction between viral infections and ferroptosis.
Collapse
Affiliation(s)
- Xia Zhao
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, China
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Furment MM, Perl A. Immmunometabolism of systemic lupus erythematosus. Clin Immunol 2024; 261:109939. [PMID: 38382658 DOI: 10.1016/j.clim.2024.109939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/26/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Systemic lupus erythematosus (SLE) is a potentially fatal chronic autoimmune disease which is underlain by complex dysfunction of the innate and adaptive immune systems. Although a series of well-defined genetic and environmental factors have been implicated in disease etiology, neither the development nor the persistence of SLE is well understood. Given that several disease susceptibility genes and environmental factors interact and influence inflammatory lineage specification through metabolism, the field of immunometabolism has become a forefront of cutting edge research. Along these lines, metabolic checkpoints of pathogenesis have been identified as targets of effective therapeutic interventions in mouse models and validated in clinical trials. Ongoing studies focus on mitochondrial oxidative stress, activation of the mechanistic target of rapamycin, calcium signaling, glucose utilization, tryptophan degradation, and metabolic cross-talk between gut microbiota and the host immune system.
Collapse
Affiliation(s)
- Marlene Marte Furment
- Departments of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York 13210, United States of America
| | - Andras Perl
- Departments of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York 13210, United States of America; Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York 13210, United States of America; Microbiology and Immunology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York 13210, United States of America.
| |
Collapse
|
12
|
Ding L. Ferroptosis in viral infection: a potential therapeutic target. Future Microbiol 2024; 19:519-524. [PMID: 38411103 PMCID: PMC11216501 DOI: 10.2217/fmb-2023-0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/16/2023] [Indexed: 02/28/2024] Open
Abstract
Ferroptosis, known as a type of programmed cell death that is iron dependent, is characterized by intracellular iron accumulation, glutathione depletion, glutathione peroxidase inactivation and lipid peroxidation. More and more research in recent years has demonstrated the tight connection between viral infections and ferroptosis. This article reviews the potential role and mechanism of ferroptosis in viral infection, and these findings will help in the prevention and treatment of the virus.
Collapse
Affiliation(s)
- Liqiong Ding
- Department of Pharmaceutics, School of Pharmacy, Hubei University of Science & Technology, Xianning, China
| |
Collapse
|
13
|
Du R, Huang J. Machine Learning Revealed a Novel Ferroptosis-Based Classification for Diagnosis in Antiretroviral Therapy-Treated HIV Patients with Defective Immune Recovery. AIDS Res Hum Retroviruses 2024; 40:90-100. [PMID: 37031354 DOI: 10.1089/aid.2022.0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2023] Open
Abstract
Despite virological suppression, the CD4+ T lymphocytes are not restored in some HIV-infected patients after antiretroviral therapy. These individuals are known as immune non-responders (INRs). INRs are at high risk of developing AIDS and non-AIDS-related events and have a shorter life expectancy. Hence, it is vital to identify INRs early and prevent their complications, but there are still no specific diagnostic indicators or models. Ferroptosis has lately been reported as a type of programmed cell death, which plays an indispensable part in diverse diseases. However, its particular regulatory mechanisms remain unclear and its function in the pathogenic process of defective immunological recovery is still unknown. Blood is mainly used for rapid diagnosis because it enables quick testing. To investigate the role of ferroptosis-related genes (FRGs) in early detection of INRs, we scrutinized Gene Expression Omnibus datasets of peripheral blood samples to estimate their effectiveness. To our knowledge, for the first time, gene expression data were utilized in this study to discover six FRGs that were explicitly expressed in peripheral blood from INRs. Later on, multiple machine-supervised learning algorithms were employed, and a superlative diagnostic model for INRs was built with the random forest algorithm, which displayed satisfactory diagnostic efficiency in the training cohort (area under the curve [AUC] = 0.99) and one external validation cohort (AUC = 0.727). Our findings suggest that FRGs are implicated in the development of defective immune recovery, presenting a potential route for early detection and potential biological targets for the most effective treatment of defective immune recovery.
Collapse
Affiliation(s)
- Ruoyang Du
- Department of Urology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Jianfeng Huang
- Department of Urology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| |
Collapse
|
14
|
Yu F, Ma C, Jin X, Zhao H, Xiao J, Li L, Song S, Xie X, Yang S, Tang Y, Wang L, Zhang F. Mitochondrial disturbance related to increased caspase-1 of CD4 +T cells in HIV-1 infection. BMC Infect Dis 2024; 24:129. [PMID: 38267841 PMCID: PMC10809604 DOI: 10.1186/s12879-023-08485-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/26/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND In HIV-1 infection, more than 95% of CD4+T cells die of caspase-1 mediated pyroptosis. What governs the increased susceptibility of CD4+T cells to pyroptosis is poorly understood. METHODS Blood samples were obtained from 31 untreated HIV-infected patients (UNT), 29 antiretroviral therapy treated HIV-infected patients (ART), and 21 healthy control donors (HD). Plasma levels of IL-18 and IL-1β, caspase-1 expression, mitochondrial mass (MM) and mitochondrial fusion/fisson genes of CD4+T subsets were measured. RESULTS A significantly higher IL-18 level in plasma and MM level of CD4+T cells were found in HIV-infected patients (UNT and ART) compared to HD, and the MMhigh phenotype was manifested, related to increased caspase-1 expression. Moreover, the increased MM was more pronounced in the early differentiated and inactivated CD4+T cells. However, higher MM was not intrinsically linked to T cell differentiation disorder or excessive activation of the CD4+T cells. Mechanistically, the increased MM was significantly correlated with an elevated level of expression of the mitochondrial fusion gene mitofusin1. CONCLUSION An increase in MM was associated with heightened sensitivity of CD4+T cells to pyroptosis, even in early differentiated and inactivated CD4+T cells, in patients with HIV-1 infection, regardless of whether patients were on antiretroviral therapy or not. These new revelations have uncovered a previously unappreciated challenge to immune reconstitution with antiretroviral therapy.
Collapse
Affiliation(s)
- Fengting Yu
- Medical School, University of Chinese Academy of Sciences, Beijing, 101400, China
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Chengjie Ma
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Xia Jin
- Human Viral Diseases and Vaccine Translation Research Unit, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Hongxin Zhao
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Jiang Xiao
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Li Li
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Shujing Song
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaohui Xie
- Department of Infectious Diseases, Peking University Ditan Teaching, Hospital, Beijing, China
| | - Siyuan Yang
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Yunxia Tang
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Linghang Wang
- Beijing Ditan Hospital, Capital Medical University, Beijing, China.
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China.
| | - Fujie Zhang
- Medical School, University of Chinese Academy of Sciences, Beijing, 101400, China.
- Beijing Ditan Hospital, Capital Medical University, Beijing, China.
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China.
| |
Collapse
|
15
|
Zhang X, Li X, Xia R, Zhang HS. Ferroptosis resistance in cancer: recent advances and future perspectives. Biochem Pharmacol 2024; 219:115933. [PMID: 37995980 DOI: 10.1016/j.bcp.2023.115933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Ferroptosis is an iron-dependent, non-apoptotic form of regulated cell death and has been implicated in the occurrence and development of various diseases, including heart disease, nervous system diseases and cancer. Ferroptosis induction recently emerged as an attractive strategy for cancer therapy. Ferroptosis has become a potential target for intervention in these diseases or injuries in relevant preclinical models. This review summarizes recent progress on the mechanisms of ferroptosis resistance in cancer, highlights redox status and metabolism's role in it. Combination therapy for ferroptosis has great potential in cancer treatment, especially malignant tumors that are resistant to conventional therapies. This review will lead us to have a comprehensive understanding of the future exploration of ferroptosis and cancer therapy. A deeper understanding of the relationship between ferroptosis resistance and metabolism reprogramming may provide new strategies for tumor treatment and drug development based on ferroptosis.
Collapse
Affiliation(s)
- Xing Zhang
- Faculty of Environment and Life, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China
| | - Xiang Li
- Faculty of Environment and Life, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China
| | - Ran Xia
- Faculty of Environment and Life, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China
| | - Hong-Sheng Zhang
- Faculty of Environment and Life, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China.
| |
Collapse
|
16
|
Feng S, Tang D, Wang Y, Li X, Bao H, Tang C, Dong X, Li X, Yang Q, Yan Y, Yin Z, Shang T, Zheng K, Huang X, Wei Z, Wang K, Qi S. The mechanism of ferroptosis and its related diseases. MOLECULAR BIOMEDICINE 2023; 4:33. [PMID: 37840106 PMCID: PMC10577123 DOI: 10.1186/s43556-023-00142-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/23/2023] [Indexed: 10/17/2023] Open
Abstract
Ferroptosis, a regulated form of cellular death characterized by the iron-mediated accumulation of lipid peroxides, provides a novel avenue for delving into the intersection of cellular metabolism, oxidative stress, and disease pathology. We have witnessed a mounting fascination with ferroptosis, attributed to its pivotal roles across diverse physiological and pathological conditions including developmental processes, metabolic dynamics, oncogenic pathways, neurodegenerative cascades, and traumatic tissue injuries. By unraveling the intricate underpinnings of the molecular machinery, pivotal contributors, intricate signaling conduits, and regulatory networks governing ferroptosis, researchers aim to bridge the gap between the intricacies of this unique mode of cellular death and its multifaceted implications for health and disease. In light of the rapidly advancing landscape of ferroptosis research, we present a comprehensive review aiming at the extensive implications of ferroptosis in the origins and progress of human diseases. This review concludes with a careful analysis of potential treatment approaches carefully designed to either inhibit or promote ferroptosis. Additionally, we have succinctly summarized the potential therapeutic targets and compounds that hold promise in targeting ferroptosis within various diseases. This pivotal facet underscores the burgeoning possibilities for manipulating ferroptosis as a therapeutic strategy. In summary, this review enriched the insights of both investigators and practitioners, while fostering an elevated comprehension of ferroptosis and its latent translational utilities. By revealing the basic processes and investigating treatment possibilities, this review provides a crucial resource for scientists and medical practitioners, aiding in a deep understanding of ferroptosis and its effects in various disease situations.
Collapse
Affiliation(s)
- Shijian Feng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Dan Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yichang Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiang Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hui Bao
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Chengbing Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiuju Dong
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xinna Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Qinxue Yang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yun Yan
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhijie Yin
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Tiantian Shang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Kaixuan Zheng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiaofang Huang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zuheng Wei
- Chengdu Jinjiang Jiaxiang Foreign Languages High School, Chengdu, People's Republic of China
| | - Kunjie Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Shiqian Qi
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
17
|
Lu L, Yang Y, Yang Z, Wu Y, Liu X, Li X, Chen L, Han Y, Song X, Kong Z, Cao W, Li T. Altered plasma metabolites and inflammatory networks in HIV-1 infected patients with different immunological responses after long-term antiretroviral therapy. Front Immunol 2023; 14:1254155. [PMID: 37828979 PMCID: PMC10565217 DOI: 10.3389/fimmu.2023.1254155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/05/2023] [Indexed: 10/14/2023] Open
Abstract
Background Chronic metabolic changes relevant to human immunodeficiency virus type 1 (HIV-1) infection and in response to antiretroviral therapy (ART) remain undetermined. Moreover, links between metabolic dysfunction caused by HIV and immunological inflammation in long-term treated individuals have been poorly studied. Methods Untargeted metabolomics and inflammatory cytokine levels were assessed in 47 HIV-infected individuals including 22 immunological responders (IRs) and 25 non-responders (INRs) before and after ART. The IRs and INRs were matched by age, gender, baseline viral load, and baseline CD4+T cell counts. Another 25 age-matched uninfected healthy individuals were also included as controls. Results Among the 770 plasma compounds detected in the current study, significant changes were identified in lipids, nucleotides, and biogenic amino acids between HIV-infected patients and healthy controls. Principal Component Analysis (PCA) and the Random Forest (RF) model suggested that levels of selected metabolites could differentiate HIV-infected patients clearly from healthy controls. However, the metabolite profiles identified in our patients were similar, and only three metabolites, maltotetraose, N, N-dimethyl-5-aminovalerate, and decadienedioic acid (C10:2-DC), were different between IRs and INRs following long-term ART. The pathway enrichment analysis results revealed that disturbances in pyrimidine metabolism, sphingolipid metabolism, and purine metabolism after HIV infection and these changes did not recover to normal levels in healthy controls even with suppressive ART. Correlation analysis of the metabolism-immune network indicated that interleukin (IL)-10, D-dimer, vascular cell adhesion molecule-1 (VCAM-1), intercellular cell adhesion molecule-1 (ICAM-1), and TNF-RII were positively correlated with most of the significantly changed lipid and amino acid metabolites but negatively correlated with metabolites in nucleotide metabolism. Conclusions Significant changes in many metabolites were observed in HIV-infected individuals before and after ART regardless of their immunological recovery status. The disturbed metabolic profiles of lipids and nucleotides in HIV infection did not recover to normal levels even after long-term ART. These changes are correlated with modified cytokines and biomarkers of chronic non-AIDS events, warranting tryout of interventions other than ART.
Collapse
Affiliation(s)
- Lianfeng Lu
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yang Yang
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhangong Yang
- Calibra Lab at DIAN Diagnostics, Hangzhou, China
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Provinces, Hangzhou, China
| | - Yuanni Wu
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaosheng Liu
- School of Medicine, Tsinghua University, Beijing, China
| | - Xiaodi Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ling Chen
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yang Han
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaojing Song
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ziqing Kong
- Calibra Lab at DIAN Diagnostics, Hangzhou, China
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Provinces, Hangzhou, China
| | - Wei Cao
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Taisheng Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
18
|
Chen J, Fu J, Zhao S, Zhang X, Chao Y, Pan Q, Sun H, Zhang J, Li B, Xue T, Li J, Liu C. Free Radical and Viral Infection: A Review from the Perspective of Ferroptosis. Vet Sci 2023; 10:456. [PMID: 37505861 PMCID: PMC10384322 DOI: 10.3390/vetsci10070456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023] Open
Abstract
Free radicals, including reactive oxygen species (ROS) and reactive nitrogen species (RNS), play critical roles in various physiological activities such as cell differentiation, apoptosis, and vascular tension when existing in cells at low levels. However, excessive amounts of free radicals are harmful, causing DNA damage, lipid peroxidation, protein degeneration, and abnormal cell death. Certain viral infections induce cells to produce excessive free radicals, which in multiple ways help the virus to replicate, mature, and exit. Iron is a necessary element for many intracellular enzymes, involved in both cellular activities and viral replication. Ferroptosis, a programmed cell death mode distinct from apoptosis, necrosis, and pyroptosis, is characterized by lipid peroxide accumulation and damage to the antioxidant system, affecting many cellular processes. Viral infection commonly manifests as decreased glutathione (GSH) content and down-regulated glutathione peroxidase 4 (GPX4) activity, similar to ferroptosis. Recent studies have suggested a possible relationship among free radicals, viral infections and ferroptosis. This review aims to elucidate the molecular mechanism linking free radicals and ferroptosis during viral infections and provide a new theoretical basis for studying viral pathogenesis and control.
Collapse
Affiliation(s)
- Jun Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Jinping Fu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
- Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Sha Zhao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
- Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiaoxi Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
- Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yuyang Chao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
- Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Qunxing Pan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
- Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Huawei Sun
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
- Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jingfeng Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
- Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
- Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Tao Xue
- College of Medicine, Linyi University, Linyi 276000, China
| | - Jingui Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Chuanmin Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
- Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- College of Medicine, Linyi University, Linyi 276000, China
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
19
|
Liu B, Li K, Li S, Zhao R, Zhang Q. The association between the CD4/CD8 ratio and surgical site infection risk among HIV-positive adults: insights from a China hospital. Front Immunol 2023; 14:1135725. [PMID: 37497209 PMCID: PMC10366603 DOI: 10.3389/fimmu.2023.1135725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 06/20/2023] [Indexed: 07/28/2023] Open
Abstract
Purpose It is well known that the CD4/CD8 ratio is a special immune-inflammation marker. We aimed to explore the relationship between the CD4/CD8 ratio and the risk of surgical site infections (SSI) among human immunodeficiency virus (HIV)-positive adults undergoing orthopedic surgery. Methods We collected and analyzed data from 216 HIV-positive patients diagnosed with fractures at the department of orthopedics, Beijing Ditan Hospital between 2011 and 2019. The demographic, surgical, and hematological data for all patients were collected in this retrospective cohort study. We explored the risk factors for SSI using univariate and multivariate logistic regression analysis. Then, the clinical correlation between the CD4 count, CD4/CD8 ratio, and SSI was studied using multivariate logistic regression models after adjusting for potential confounders. Furthermore, the association between the CD4/CD8 ratio and SSI was evaluated on a continuous scale with restricted cubic spline (RCS) curves based on logistic regression models. Results A total of 23 (10.65%) patients developed SSI during the perioperative period. Patients with hepatopathy (OR=6.10, 95%CI=1.46-28.9), HIV viral load (OR=8.68, 95%CI=1.42-70.2; OR=19.4, 95%CI=3.09-179), operation time (OR=7.84, 95%CI=1.35-77.9), and CD4 count (OR=0.05, 95%CI=0.01-0.23) were risk factors for SSI (P-value < 0.05). Our study demonstrated that a linear relationship between CD4 count and surgical site infection risk. In other words, patients with lower CD4 counts had a higher risk of developing SSI. Furthermore, the relationship between CD4/CD8 ratio and SSI risk was non-linear, inverse 'S' shaped. The risk of SSI increased substantially when the ratio was below 0.913; above 0.913, the risk of SSI was almost unchanged. And there is a 'threshold-saturation' effect between them. Conclusion Our research shows the CD4/CD8 ratio could be a useful predictor and immune-inflammation marker of the risk of SSI in HIV-positive fracture patients. These results, from a Chinese hospital, support the beneficial role of immune reconstitution in HIV-positive patients prior to orthopedic surgery.
Collapse
|
20
|
Premeaux TA, Ndhlovu LC. Decrypting biological hallmarks of aging in people with HIV. Curr Opin HIV AIDS 2023:01222929-990000000-00054. [PMID: 37421383 DOI: 10.1097/coh.0000000000000810] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
PURPOSE OF REVIEW HIV infection adds further complexity to the heterogenous process of aging. In this focused review, we examine and discuss recent advances to better elucidate mechanisms of biological aging perturbed and accelerated in the context of HIV, particularly among those with viral suppression through the benefits of antiretroviral therapy (ART). New hypotheses from these studies are poised to provide an improved understanding of multifaceted pathways that converge and likely form the basis for effective interventions toward successful aging. RECENT FINDINGS Evidence to date suggests multiple mechanisms of biological aging impact people living with HIV (PLWH). Recent literature delves and expands on how epigenetic alterations, telomere attrition, mitochondrial perturbations, and intercellular communications may underpin accelerated or accentuated aging phenotypes and the disproportionate prevalence of age-related complications among PLWH. Although most hallmarks of aging are likely exacerbated in the setting of HIV, ongoing research efforts are providing new insight on the collective impact these conserved pathways may have in the aging disease processes. SUMMARY New knowledge on underlying molecular disease mechanisms impacting people aging with HIV are reviewed. Also examined are studies that may facilitate the development and implementation of effective therapeutics and guidance on improving geriatric HIV clinical care.
Collapse
Affiliation(s)
- Thomas A Premeaux
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | | |
Collapse
|
21
|
Ren C, Tan P, Gao L, Zeng Y, Hu S, Chen C, Tang N, Chen Y, Zhang W, Qin Y, Zhang X, Du S. Melatonin reduces radiation-induced ferroptosis in hippocampal neurons by activating the PKM2/NRF2/GPX4 signaling pathway. Prog Neuropsychopharmacol Biol Psychiatry 2023; 126:110777. [PMID: 37100272 DOI: 10.1016/j.pnpbp.2023.110777] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 04/28/2023]
Abstract
Ferroptosis is a type of regulated cell death that is dependent on iron and reactive oxygen species (ROS). Melatonin (N-acetyl-5-methoxytryptamine) reduces hypoxic-ischemic brain damage via mechanisms that involve free radical scavenging. How melatonin regulates radiation-induced ferroptosis of hippocampal neurons is yet to be elucidated. In this study, the mouse hippocampal neuronal cell line HT-22 was treated with 20μM melatonin before being stimulated with a combination of irradiation and 100 μM FeCl3. Furthermore, in vivo experiments were performed in mice treated with melatonin via intraperitoneal injection, which was followed by radiation exposure. A series of functional assays, including CCK-8, DCFH-DA kit, flow cytometry, TUNEL staining, iron estimations, and transmission electron microscopy, were performed on cells as well as hippocampal tissues. The interactions between PKM2 and NRF2 proteins were detected using a coimmunoprecipitation (Co-IP) assay. Moreover, chromatin immunoprecipitation (ChIP), a luciferase reporter assay, and an electrophoretic mobility shift assay (EMSA) were performed to explore the mechanism by which PKM2 regulates the NRF2/GPX4 signaling pathway. The spatial memory of mice was evaluated using the Morris Water Maze test. Hematoxylin-eosin and Nissl staining were performed for histological examination. The results revealed that melatonin protected HT-22 neuronal cells from radiation-induced ferroptosis, as inferred from increased cell viability, decreased ROS production, reduced number of apoptotic cells, and less cristae, higher electron density in mitochondria. In addition, melatonin induced PKM2 nuclear transference, while PKM2 inhibition reversed the effects of melatonin. Further experiments demonstrated that PKM2 bound to and induced the nuclear translocation of NRF2, which regulated GPX4 transcription. Ferroptosis enhanced by PKM2 inhibition was also converted by NRF2 overexpression. In vivo experiments indicated that melatonin alleviated radiation-induced neurological dysfunction and injury in mice. In conclusion, melatonin suppressed ferroptosis to decrease radiation-induced hippocampal neuronal injury by activating the PKM2/NRF2/GPX4 signaling pathway.
Collapse
Affiliation(s)
- Chen Ren
- Department of Radiation Oncology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, Guangdong, China
| | - Peixin Tan
- Department of Radiation Oncology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, Guangdong, China
| | - Lianxuan Gao
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yingying Zeng
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Shushu Hu
- Department of Radiation Oncology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, Guangdong, China
| | - Chen Chen
- Department of Radiation Oncology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, Guangdong, China
| | - Nan Tang
- Department of Radiation Oncology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, Guangdong, China
| | - Yulei Chen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Wan Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yue Qin
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Xiaonan Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Shasha Du
- Department of Radiation Oncology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, Guangdong, China.
| |
Collapse
|
22
|
Yan L, Xu K, Xiao Q, Tuo L, Luo T, Wang S, Yang R, Zhang F, Yang X. Cellular and molecular insights into incomplete immune recovery in HIV/AIDS patients. Front Immunol 2023; 14:1152951. [PMID: 37205108 PMCID: PMC10185893 DOI: 10.3389/fimmu.2023.1152951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023] Open
Abstract
Highly active antiretroviral therapy (ART) can effectively inhibit virus replication and restore immune function in most people living with human immunodeficiency virus (HIV). However, an important proportion of patients fail to achieve a satisfactory increase in CD4+ T cell counts. This state is called incomplete immune reconstitution or immunological nonresponse (INR). Patients with INR have an increased risk of clinical progression and higher rates of mortality. Despite widespread attention to INR, the precise mechanisms remain unclear. In this review, we will discuss the alterations in the quantity and quality of CD4+ T as well as multiple immunocytes, changes in soluble molecules and cytokines, and their relationship with INR, aimed to provide cellular and molecular insights into incomplete immune reconstitution.
Collapse
Affiliation(s)
- Liting Yan
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- *Correspondence: Xingxiang Yang, ; Fujie Zhang, ; Liting Yan,
| | - Kaiju Xu
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Qing Xiao
- Clinical and Research Center for Infectious Diseases, Beijing Ditan Hospital, Beijing, China
| | - Lin Tuo
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Tingting Luo
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Shuqiang Wang
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Renguo Yang
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Fujie Zhang
- Clinical and Research Center for Infectious Diseases, Beijing Ditan Hospital, Beijing, China
- *Correspondence: Xingxiang Yang, ; Fujie Zhang, ; Liting Yan,
| | - Xingxiang Yang
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- *Correspondence: Xingxiang Yang, ; Fujie Zhang, ; Liting Yan,
| |
Collapse
|