1
|
Rocca MA, Preziosa P, Filippi M. Advances in neuroimaging of multiple sclerosis. Curr Opin Neurol 2025; 38:205-216. [PMID: 40104925 DOI: 10.1097/wco.0000000000001360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
PURPOSE OF REVIEW To summarize recent advancements in understanding multiple sclerosis (MS) pathophysiology, predicting disease course, and monitoring treatment responses using MRI. RECENT FINDINGS Paramagnetic rim lesions (PRLs) are highly specific to MS and clinically relevant. Detected from the earliest disease phases, PRLs aid in distinguishing MS from other conditions, improving diagnostic accuracy. Moreover, PRLs are associated with more severe disability and measures of brain damage and may predict disease progression. Similarly, slowly expanding lesions (SELs) are associated with more severe disability and predict a more severe disease course. Disease-modifying therapies have limited effectiveness in reducing PRLs or SELs. Choroid plexus (CP) enlargement is associated with structural brain damage and clinical disability and predicts disease evolution. Enlarged perivascular spaces (ePVS) suggest microangiopathic changes rather than direct MS-related inflammation. Glymphatic dysfunction, evaluated using diffusion tensor image analysis along the perivascular space, emerges early in MS and correlates with disability, cognitive impairment, and structural brain damage. Aging and comorbidities exacerbate MS-related damage, complicating diagnosis and treatment. Emerging technologies, such as brain-age paradigms, aim to disentangle aging from MS-specific neurodegeneration. SUMMARY Advances in MRI have highlighted the clinical significance of chronic inflammation and glymphatic dysfunction as early contributors to MS progression as well as the interplay between aging, comorbidities and MS.
Collapse
Affiliation(s)
- Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience
- Neurology Unit, IRCCS San Raffaele Scientific Institute
- Vita-Salute San Raffaele University, Milan, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience
- Neurology Unit, IRCCS San Raffaele Scientific Institute
- Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience
- Neurology Unit, IRCCS San Raffaele Scientific Institute
- Vita-Salute San Raffaele University, Milan, Italy
- Neurorehabilitation Unit
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
2
|
Liu L, Weng Q, Cai Q, Yu X, Huang W, Xie S, Shi Y, Li H, Zhang Y, Hu J, Li M, Chen G, Wang N, Lin X, Fu Y, Lin Y. Choroid plexus enlargement contributes to motor severity via regional glymphatic dysfunction in Parkinson's disease. NPJ Parkinsons Dis 2025; 11:134. [PMID: 40404762 PMCID: PMC12098873 DOI: 10.1038/s41531-025-00971-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/19/2025] [Indexed: 05/24/2025] Open
Abstract
Choroid plexus (CP) enlargement and glymphatic dysfunction have been implicated in neurodegeneration, but their roles in Parkinson's disease (PD) remain unclear. This retrospective cross-sectional study examined associations among CP volume, perivascular spaces (PVS), and motor symptom severity in 123 PD patients stratified by disease stage. MRI quantified CP volume and PVS, including dilated PVS (dPVS), across brain regions. CP-dPVS correlations were stronger in early-stage PD. Region-specific analyses revealed CP volume was associated with PVS in the midbrain and basal ganglia. CP-dPVS correlations emerged in midbrain, basal ganglia, and centrum semiovale. Correlation matrix and mediation analyses together confirmed that only basal ganglia dPVS was both significantly correlated with motor symptoms and served as a mediator, accounting for 30.52% of the association between CP volume and motor severity. These findings suggest that CP enlargement contributes to motor severity in PD, in part through regional glymphatic dysfunction localized to the basal ganglia.
Collapse
Affiliation(s)
- Linyu Liu
- Department of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Qiang Weng
- Department of Radiology of First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Qing Cai
- Department of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Xintong Yu
- Department of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Weibin Huang
- Department of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Shaohua Xie
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Yan Shi
- Department of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Huiting Li
- Department of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Yuxuan Zhang
- Department of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Jianping Hu
- Department of Radiology of First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Mengcheng Li
- Department of Radiology of First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Guannan Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Ning Wang
- Department of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China.
| | - Xiang Lin
- Department of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China.
| | - Ying Fu
- Department of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China.
| | - Yu Lin
- Department of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
3
|
Filippi M, Preziosa P, Barkhof F, Ciccarelli O, Cossarizza A, De Stefano N, Gasperini C, Geraldes R, Granziera C, Haider L, Lassmann H, Margoni M, Pontillo G, Ropele S, Rovira À, Sastre-Garriga J, Yousry TA, Rocca MA. The ageing central nervous system in multiple sclerosis: the imaging perspective. Brain 2024; 147:3665-3680. [PMID: 39045667 PMCID: PMC11531849 DOI: 10.1093/brain/awae251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/10/2024] [Accepted: 06/23/2024] [Indexed: 07/25/2024] Open
Abstract
The interaction between ageing and multiple sclerosis is complex and carries significant implications for patient care. Managing multiple sclerosis effectively requires an understanding of how ageing and multiple sclerosis impact brain structure and function. Ageing inherently induces brain changes, including reduced plasticity, diminished grey matter volume, and ischaemic lesion accumulation. When combined with multiple sclerosis pathology, these age-related alterations may worsen clinical disability. Ageing may also influence the response of multiple sclerosis patients to therapies and/or their side effects, highlighting the importance of adjusted treatment considerations. MRI is highly sensitive to age- and multiple sclerosis-related processes. Accordingly, MRI can provide insights into the relationship between ageing and multiple sclerosis, enabling a better understanding of their pathophysiological interplay and informing treatment selection. This review summarizes current knowledge on the immunopathological and MRI aspects of ageing in the CNS in the context of multiple sclerosis. Starting from immunosenescence, ageing-related pathological mechanisms and specific features like enlarged Virchow-Robin spaces, this review then explores clinical aspects, including late-onset multiple sclerosis, the influence of age on diagnostic criteria, and comorbidity effects on imaging features. The role of MRI in understanding neurodegeneration, iron dynamics and myelin changes influenced by ageing and how MRI can contribute to defining treatment effects in ageing multiple sclerosis patients, are also discussed.
Collapse
Affiliation(s)
- Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London WC1N 3BG, UK
| | - Olga Ciccarelli
- Queen Square MS Centre, UCL Institute of Neurology, UCL, London WC1N 3BG, UK
- NIHR (National Institute for Health and Care Research) UCLH (University College London Hospitals) BRC (Biomedical Research Centre), London WC1N 3BG, UK
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 42121 Modena, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Claudio Gasperini
- Department of Neurosciences, S Camillo Forlanini Hospital Rome, 00152 Rome, Italy
| | - Ruth Geraldes
- Clinical Neurology, John Radcliffe Hospital, Oxford University Foundation Trust, Oxford OX3 9DU, UK
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Cristina Granziera
- Department of Neurology, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, 4031 Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - Lukas Haider
- Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London WC1N 3BG, UK
- Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Monica Margoni
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giuseppe Pontillo
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London WC1N 3BG, UK
- Department of Advanced Biomedical Sciences, University “Federico II”, 80138 Naples, Italy
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, 8010 Graz, Austria
| | - Àlex Rovira
- Neuroradiology Section, Department of Radiology, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Jaume Sastre-Garriga
- Neurology Department and Multiple Sclerosis Centre of Catalunya (Cemcat), Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Tarek A Yousry
- Lysholm Department of Neuroradiology, UCLH National Hospital for Neurology and Neurosurgery, Neuroradiological Academic Unit, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
4
|
Borrelli S, Leclercq S, Pasi M, Maggi P. Cerebral small vessel disease and glymphatic system dysfunction in multiple sclerosis: A narrative review. Mult Scler Relat Disord 2024; 91:105878. [PMID: 39276600 DOI: 10.1016/j.msard.2024.105878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024]
Abstract
As the multiple sclerosis (MS) population ages, the prevalence of vascular comorbidities increases, potentially accelerating disease progression and brain atrophy. Recent studies highlight the prevalence of cerebral small vessel disease (CSVD) in MS, suggesting a potential link between vascular comorbidities and accelerated disability. CSVD affects the brain's small vessels, often leading to identifiable markers on MRI such as enlarged perivascular spaces (EPVS). EPVS are increasingly recognized also in MS and have been associated with vascular comorbidities, lower percentage of MS-specific perivenular lesions, brain atrophy and aging. The exact sequence of event leading to MRI visible EPVS is yet to be determined, but an impaired perivascular brain fluid drainage appears a possible physiopathological explanation for EPVS in both CSVD and MS. In this context, a dysfunction of the brain fluid clearance system - also known as "glymphatic system" - appears associated in MS to aging, neuroinflammation, and vascular dysfunction. Advanced imaging techniques show an impaired glymphatic function in both MS and CSVD. Additionally, lifestyle factors such as physical exercise, diet, and sleep quality appear to influence glymphatic function, potentially revealing novel therapeutic strategies to mitigate microangiopathy and neuroinflammation in MS. This review underscores the potential role of glymphatic dysfunction in the complex and not-yet elucidated interplay between neuroinflammation and CSVD in MS.
Collapse
Affiliation(s)
- Serena Borrelli
- Neuroinflammation Imaging Lab (NIL), Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium; Department of Neurology, Hôpital Erasme, Hôpital Universitaire de Bruxelles, Université Libre de Brussels, Brussels, Belgium.
| | - Sophie Leclercq
- Laboratory of Nutritional Psychiatry, Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium
| | - Marco Pasi
- Stroke Unit, Department of Neurology, CIC-IT 1415, CHRU de Tours, INSERM 1253 iBrain, Tours, France
| | - Pietro Maggi
- Neuroinflammation Imaging Lab (NIL), Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium; Department of Neurology, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Av. Hippocrate 10, Brussels 1200, Belgium.
| |
Collapse
|
5
|
Omori N, Ikawa F, Chiku M, Kitamura N, Tomimoto H, Aoyama A, Shuhei Y, Nagai A. Dose-Dependent Effect of Current Smoking on Enlarged Perivascular Space Identified on Brain Magnetic Resonance Imaging. Cerebrovasc Dis 2024:1-7. [PMID: 39348801 DOI: 10.1159/000541657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/20/2024] [Indexed: 10/02/2024] Open
Abstract
INTRODUCTION Cerebral small-vessel disease (CSVD) is a common cause of cognitive decline and stroke. Several studies have shown that smoking is a risk factor for CSVD progression. However, the extent to which smoking exacerbates CSVD lesions remains unclear. In this study, we aimed to clarify the association between total smoking exposure and the severity of CSVD in healthy participants. METHODS We analyzed the data of participants aged ≥50 years who underwent brain screening. The participants' age, sex, body mass index, alcohol consumption history, and medical history (hypertension, diabetes mellitus, and dyslipidemia) were investigated. Smoking status was assessed in pack-years, and smokers were classified as current or past smokers. CSVD findings on magnetic resonance imaging were used to evaluate the severity of periventricular hyperintensity (PVH), deep subcortical white matter hyperintensity (DSWMH), and enlarged perivascular spaces (EPVSs). The EPVSs were measured in the basal ganglia and centrum semiovale regions. Multivariable ordinal logistic regression analyses were performed to evaluate the effect of smoking, adjusted for the participants' baseline characteristics. RESULTS A total of 2,137 participants were included in this study. The mean age of the participants was 58.7 years. The mean pack-years were 20.5 for past smokers and 26.8 for current smokers. Among current smokers, increased pack-years were significantly associated with a high EPVS burden in the basal ganglia (odds ratio: 1.14, 95% confidence interval: 1.00-1.28), whereas no such significant association was found for past smokers. No statistically significant association was found between pack-years and the risks of PVH, DSWMH, or EPVS in the centrum semiovale. CONCLUSION Current smoking was associated with a dose-dependent risk of EPVS in the basal ganglia in healthy participants.
Collapse
Affiliation(s)
- Naoki Omori
- Department of Neurology, Shimane Prefectural Central Hospital, Izumo, Japan,
| | - Fusao Ikawa
- Department of Neurosurgery, Shimane Prefectural Central Hospital, Izumo, Japan
| | - Masaaki Chiku
- Department of Neurosurgery, Medical Check Studio Tokyo Ginza Clinic, Tokyo, Japan
| | | | - Hidekazu Tomimoto
- Department of Neurology, Mie University Graduate School of Medicine Faculty of Medicine, Tsu, Japan
| | - Atsuo Aoyama
- Department of Neurology, Shimane Prefectural Central Hospital, Izumo, Japan
| | | | - Atsushi Nagai
- Department of Neurology, Shimane University, Izumo, Japan
| |
Collapse
|
6
|
Borrelli S, Guisset F, Vanden Bulcke C, Stölting A, Bugli C, Lolli V, Du Pasquier R, van Pesch V, Absinta M, Pasi M, Maggi P. Enlarged perivascular spaces are associated with brain microangiopathy and aging in multiple sclerosis. Mult Scler 2024; 30:983-993. [PMID: 38850029 DOI: 10.1177/13524585241256881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
BACKGROUND Growing evidence links brain-MRI enlarged perivascular spaces (EPVS) and multiple sclerosis (MS), but their role remains unclear. OBJECTIVE This study aimed to investigate the cross-sectional associations of EPVS with several neuroinflammatory and neurodegenerative features in a large multicentric-MS cohort. METHODS In total, 207 patients underwent 3T axial-T2-weighted brain-MRI for EPVS assessment (EPVS dichotomized into high/low according to ⩾ 2/< 2 rating categories). MRI biomarkers included brain-predicted age and brain-predicted age difference (brain-PAD), central vein sign (CVS)-positive lesion percentage (CVS%), paramagnetic rim and cortical lesions, T2-lesion load, and brain volumetry. The variable relative importance for EPVS-category prediction was explored using a classification random forest approach. RESULTS High EPVS patients were older (49 vs 44 years, p = 0.003), had ⩾ 1 vascular risk factors (VRFs; p = 0.005), lower CVS% (67% vs 78%, p < 0.001), reduced brain volumes (whole brain: 0.63 vs 0.73, p = 0.01; gray matter: 0.36 vs 0.40; p = 0.002), and older brain-predicted age (58 vs 50 years, p < 0.001). No differences were found for neuroinflammatory markers. After adjusting for age and VFRs (multivariate analyses), the high EPVS category correlated with lower CVS% (odds ratio (OR) = 0.98, 95% confidence interval (CI) = 0.96-0.99; p = 0.02), lower whole brain (OR = 0.01, 95% CI = 0.0003-0.5; p = 0.02), gray matter (OR = 0.0004, 95% CI = 0.0000004-0.4; p = 0.03) volumes, and higher brain-PAD (OR = 1.05, 95% CI = 1.01-1.09; p = 0.02). Random forest identified brain-PAD as the most important predictor of high EPVS. CONCLUSION EPVS in MS likely reflect microangiopathic disease rather than neuroinflammation, potentially contributing to accelerated neurodegeneration.
Collapse
Affiliation(s)
- Serena Borrelli
- Neuroinflammation Imaging Lab (NIL), Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium/Department of Neurology, Hôpital Erasme, Hôpital Universitaire de Bruxelles, Université Libre de Brussels, Brussels, Belgium
| | - François Guisset
- Neuroinflammation Imaging Lab (NIL), Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium
| | - Colin Vanden Bulcke
- Neuroinflammation Imaging Lab (NIL), Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium/ICTEAM Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Anna Stölting
- Neuroinflammation Imaging Lab (NIL), Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium
| | - Céline Bugli
- Plateforme technologique de Support en Méthodologie et Calcul Statistique, Université catholique de Louvain, Brussels, Belgium
| | - Valentina Lolli
- Department of Radiology, Hôpital Erasme, Hôpital Universitaire de Bruxelles, Université Libre de Brussels, Brussels, Belgium
| | - Renaud Du Pasquier
- Neurology Service, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Vincent van Pesch
- Department of Neurology, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Martina Absinta
- Vita-Salute San Raffaele University, Milan, Italy/Translational Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy/Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marco Pasi
- Stroke Unit, Department of Neurology, CIC-IT 1415, CHRU de Tours, INSERM 1253 iBrain, Tours, France
| | - Pietro Maggi
- Neuroinflammation Imaging Lab (NIL), Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium/Neurology Service, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland/Department of Neurology, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
7
|
Tan LY, Cunliffe G, Hogan MP, Yeo XY, Oh C, Jin B, Kang J, Park J, Kwon MS, Kim M, Jung S. Emergence of the brain-border immune niches and their contribution to the development of neurodegenerative diseases. Front Immunol 2024; 15:1380063. [PMID: 38863704 PMCID: PMC11165048 DOI: 10.3389/fimmu.2024.1380063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
Historically, the central nervous system (CNS) was regarded as 'immune-privileged', possessing its own distinct immune cell population. This immune privilege was thought to be established by a tight blood-brain barrier (BBB) and blood-cerebrospinal-fluid barrier (BCSFB), which prevented the crossing of peripheral immune cells and their secreted factors into the CNS parenchyma. However, recent studies have revealed the presence of peripheral immune cells in proximity to various brain-border niches such as the choroid plexus, cranial bone marrow (CBM), meninges, and perivascular spaces. Furthermore, emerging evidence suggests that peripheral immune cells may be able to infiltrate the brain through these sites and play significant roles in driving neuronal cell death and pathology progression in neurodegenerative disease. Thus, in this review, we explore how the brain-border immune niches may contribute to the pathogenesis of neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). We then discuss several emerging options for harnessing the neuroimmune potential of these niches to improve the prognosis and treatment of these debilitative disorders using novel insights from recent studies.
Collapse
Affiliation(s)
- Li Yang Tan
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Grace Cunliffe
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Michael Patrick Hogan
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Xin Yi Yeo
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chansik Oh
- Department of Medical Science, College of Medicine, CHA University, Seongnam, Republic of Korea
| | - Bohwan Jin
- Department of Medical Science, College of Medicine, CHA University, Seongnam, Republic of Korea
| | - Junmo Kang
- Department of Medical Science, College of Medicine, CHA University, Seongnam, Republic of Korea
| | - Junho Park
- Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, Seongnam, Republic of Korea
| | - Min-Soo Kwon
- Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, Seongnam, Republic of Korea
| | - MinYoung Kim
- Rehabilitation and Regeneration Research Center, CHA University School of Medicine, Seongnam, Republic of Korea
- Department of Biomedical Science, CHA University School of Medicine, Seongnam, Republic of Korea
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Sangyong Jung
- Department of Medical Science, College of Medicine, CHA University, Seongnam, Republic of Korea
| |
Collapse
|
8
|
Zhou L, Nguyen TD, Chiang GC, Wang XH, Xi K, Hu T, Tanzi EB, Butler TA, de Leon MJ, Li Y. Parenchymal CSF fraction is a measure of brain glymphatic clearance and positively associated with amyloid beta deposition on PET. Alzheimers Dement 2024; 20:2047-2057. [PMID: 38184796 PMCID: PMC10984424 DOI: 10.1002/alz.13659] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/08/2024]
Abstract
INTRODUCTION Mapping of microscopic changes in the perivascular space (PVS) of the cerebral cortex, beyond magnetic resonance-visible PVS in white matter, may enhance our ability to diagnose Alzheimer's disease (AD) early. METHODS We used the cerebrospinal fluid (CSF) water fraction (CSFF), a magnetic resonance imaging-based biomarker, to characterize brain parenchymal CSF water, reflecting microscopic PVS in parenchyma. We measured CSFF and amyloid beta (Aβ) using 11 C Pittsburgh compound B positron emission tomography to investigate their relationship at both the subject and voxel levels. RESULTS Our research has demonstrated a positive correlation between the parenchymal CSFF, a non-invasive imaging biomarker indicative of parenchymal glymphatic clearance, and Aβ deposition, observed at both individual and voxel-based assessments in the posterior cingulate cortex. DISCUSSION This study shows that an increased parenchymal CSFF is associated with Aβ deposition, suggesting that CSFF could serve as a biomarker for brain glymphatic clearance, which can be used to detect early fluid changes in PVS predisposing individuals to the development of AD. HIGHLIGHTS Cerebrospinal fluid fraction (CSFF) could be a biomarker of parenchymal perivascular space. CSFF is positively associated with amyloid beta (Aβ) deposition at subject level. CSFF in an Aβ+ region is higher than in an Aβ- region in the posterior cingulate cortex. Correspondence is found between Aβ deposition and glymphatic clearance deficits measured by CSFF.
Collapse
Affiliation(s)
- Liangdong Zhou
- Department of RadiologyBrain Health Imaging Institute (BHII)Weill Cornell MedicineNew YorkNew YorkUSA
| | - Thanh D. Nguyen
- Department of RadiologyMRI Research Institute (MRIRI)Weill Cornell MedicineNew YorkNew YorkUSA
| | - Gloria C. Chiang
- Department of RadiologyBrain Health Imaging Institute (BHII)Weill Cornell MedicineNew YorkNew YorkUSA
- Department of RadiologyDivision of NeuroradiologyWeill Cornell MedicineNew York‐Presbyterian HospitalNew YorkNew YorkUSA
| | - Xiuyuan H. Wang
- Department of RadiologyBrain Health Imaging Institute (BHII)Weill Cornell MedicineNew YorkNew YorkUSA
| | - Ke Xi
- Department of RadiologyBrain Health Imaging Institute (BHII)Weill Cornell MedicineNew YorkNew YorkUSA
| | - Tsung‐Wei Hu
- Department of RadiologyBrain Health Imaging Institute (BHII)Weill Cornell MedicineNew YorkNew YorkUSA
| | - Emily B. Tanzi
- Department of RadiologyBrain Health Imaging Institute (BHII)Weill Cornell MedicineNew YorkNew YorkUSA
| | - Tracy A. Butler
- Department of RadiologyBrain Health Imaging Institute (BHII)Weill Cornell MedicineNew YorkNew YorkUSA
| | - Mony J. de Leon
- Department of RadiologyBrain Health Imaging Institute (BHII)Weill Cornell MedicineNew YorkNew YorkUSA
| | - Yi Li
- Department of RadiologyBrain Health Imaging Institute (BHII)Weill Cornell MedicineNew YorkNew YorkUSA
| |
Collapse
|
9
|
Okar SV, Fagiani F, Absinta M, Reich DS. Imaging of brain barrier inflammation and brain fluid drainage in human neurological diseases. Cell Mol Life Sci 2024; 81:31. [PMID: 38212566 PMCID: PMC10838199 DOI: 10.1007/s00018-023-05073-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024]
Abstract
The intricate relationship between the central nervous system (CNS) and the immune system plays a crucial role in the pathogenesis of various neurological diseases. Understanding the interactions among the immunopathological processes at the brain borders is essential for advancing our knowledge of disease mechanisms and developing novel diagnostic and therapeutic approaches. In this review, we explore the emerging role of neuroimaging in providing valuable insights into brain barrier inflammation and brain fluid drainage in human neurological diseases. Neuroimaging techniques have enabled us not only to visualize and assess brain structures, but also to study the dynamics of the CNS in health and disease in vivo. By analyzing imaging findings, we can gain a deeper understanding of the immunopathology observed at the brain-immune interface barriers, which serve as critical gatekeepers that regulate immune cell trafficking, cytokine release, and clearance of waste products from the brain. This review explores the integration of neuroimaging data with immunopathological findings, providing valuable insights into brain barrier integrity and immune responses in neurological diseases. Such integration may lead to the development of novel diagnostic markers and targeted therapeutic approaches that can benefit patients with neurological disorders.
Collapse
Affiliation(s)
- Serhat V Okar
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Francesca Fagiani
- Translational Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Martina Absinta
- Translational Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy.
- Division of Neuroscience, Vita-Salute San Raffaele University, 20132, Milan, Italy.
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
10
|
Faigle W, Piccirelli M, Hortobágyi T, Frontzek K, Cannon AE, Zürrer WE, Granberg T, Kulcsar Z, Ludersdorfer T, Frauenknecht KBM, Reimann R, Ineichen BV. The Brainbox -a tool to facilitate correlation of brain magnetic resonance imaging features to histopathology. Brain Commun 2023; 5:fcad307. [PMID: 38025281 PMCID: PMC10664401 DOI: 10.1093/braincomms/fcad307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/20/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
Magnetic resonance imaging (MRI) has limitations in identifying underlying tissue pathology, which is relevant for neurological diseases such as multiple sclerosis, stroke or brain tumours. However, there are no standardized methods for correlating MRI features with histopathology. Thus, here we aimed to develop and validate a tool that can facilitate the correlation of brain MRI features to corresponding histopathology. For this, we designed the Brainbox, a waterproof and MRI-compatible 3D printed container with an integrated 3D coordinate system. We used the Brainbox to acquire post-mortem ex vivo MRI of eight human brains, fresh and formalin-fixed, and correlated focal imaging features to histopathology using the built-in 3D coordinate system. With its built-in 3D coordinate system, the Brainbox allowed correlation of MRI features to corresponding tissue substrates. The Brainbox was used to correlate different MR image features of interest to the respective tissue substrate, including normal anatomical structures such as the hippocampus or perivascular spaces, as well as a lacunar stroke. Brain volume decreased upon fixation by 7% (P = 0.01). The Brainbox enabled degassing of specimens before scanning, reducing susceptibility artefacts and minimizing bulk motion during scanning. In conclusion, our proof-of-principle experiments demonstrate the usability of the Brainbox, which can contribute to improving the specificity of MRI and the standardization of the correlation between post-mortem ex vivo human brain MRI and histopathology. Brainboxes are available upon request from our institution.
Collapse
Affiliation(s)
- Wolfgang Faigle
- Neuroimmunology and MS Research Section, Neurology Clinic, University Zurich, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Marco Piccirelli
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland
| | - Tibor Hortobágyi
- Institute of Neuropathology, University of Zurich, CH-8091 Zurich, Switzerland
| | - Karl Frontzek
- Institute of Neuropathology, University of Zurich, CH-8091 Zurich, Switzerland
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, WC1N 1PJ London, United Kingdom
| | - Amelia Elaine Cannon
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland
| | - Wolfgang Emanuel Zürrer
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland
| | - Tobias Granberg
- Department of Neuroradiology, Karolinska University Hospital, S-141 86 Stockholm, Sweden
| | - Zsolt Kulcsar
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland
| | - Thomas Ludersdorfer
- Neuroimmunology and MS Research Section, Neurology Clinic, University Zurich, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Katrin B M Frauenknecht
- Institute of Neuropathology, University of Zurich, CH-8091 Zurich, Switzerland
- Luxembourg Center of Neuropathology (LCNP), Laboratoire National de Santé, 3555 Dudelange, Luxembourg
- National Center of Pathology (NCP), Laboratoire National de Santé, 3555 Dudelange, Luxembourg
| | - Regina Reimann
- Institute of Neuropathology, University of Zurich, CH-8091 Zurich, Switzerland
| | - Benjamin Victor Ineichen
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland
- Center for Reproducible Science, University of Zurich, CH-8001 Zurich, Switzerland
| |
Collapse
|
11
|
Vivash L. Dilated Virchow Robin spaces in multiple sclerosis - a generalised marker of disease? EBioMedicine 2023; 94:104708. [PMID: 37422981 PMCID: PMC10435834 DOI: 10.1016/j.ebiom.2023.104708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/11/2023] Open
Affiliation(s)
- Lucy Vivash
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne 3004, Australia; Department of Neurology, Alfred Hospital, 55 Commercial Road, Melbourne 3004, Australia.
| |
Collapse
|
12
|
Hayden MR. Brain Injury: Response to Injury Wound-Healing Mechanisms and Enlarged Perivascular Spaces in Obesity, Metabolic Syndrome, and Type 2 Diabetes Mellitus. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1337. [PMID: 37512148 PMCID: PMC10385746 DOI: 10.3390/medicina59071337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Embryonic genetic mechanisms are present in the brain and ready to be placed into action upon cellular injury, termed the response to injury wound-healing (RTIWH) mechanism. When injured, regional brain endothelial cells initially undergo activation and dysfunction with initiation of hemostasis, inflammation (peripheral leukocytes, innate microglia, and perivascular macrophage cells), proliferation (astrogliosis), remodeling, repair, and resolution phases if the injurious stimuli are removed. In conditions wherein the injurious stimuli are chronic, as occurs in obesity, metabolic syndrome, and type 2 diabetes mellitus, this process does not undergo resolution and there is persistent RTIWH with remodeling. Indeed, the brain is unique, in that it utilizes its neuroglia: the microglia cell, along with peripheral inflammatory cells and its astroglia, instead of peripheral scar-forming fibrocytes/fibroblasts. The brain undergoes astrogliosis to form a gliosis scar instead of a fibrosis scar to protect the surrounding neuropil from regional parenchymal injury. One of the unique and evolving remodeling changes in the brain is the development of enlarged perivascular spaces (EPVSs), which is the focus of this brief review. EPVSs are important since they serve as a biomarker for cerebral small vessel disease and also represent an impairment of the effluxing glymphatic system that is important for the clearance of metabolic waste from the interstitial fluid to the cerebrospinal fluid, and disposal. Therefore, it is important to better understand how the RTIWH mechanism is involved in the development of EPVSs that are closely associated with and important to the development of premature and age-related cerebrovascular and neurodegenerative diseases with impaired cognition.
Collapse
Affiliation(s)
- Melvin R Hayden
- Diabetes and Cardiovascular Disease Center, Department of Internal Medicine, Endocrinology Diabetes and Metabolism, University of Missouri School of Medicine, One Hospital Drive, Columbia, MO 65211, USA
| |
Collapse
|