1
|
Klontzas ME, Kakkos GA, Papadakis GZ, Marias K, Karantanas AH. Advanced clinical imaging for the evaluation of stem cell based therapies. Expert Opin Biol Ther 2021; 21:1253-1264. [PMID: 33576278 DOI: 10.1080/14712598.2021.1890711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: As stem cell treatments reach closer to the clinic, the need for appropriate noninvasive imaging for accurate disease diagnosis, treatment planning, follow-up, and early detection of complications, is constantly rising. Clinical radiology affords an extensive arsenal of advanced imaging techniques, to provide anatomical and functional information on the whole spectrum of stem cell treatments from diagnosis to follow-up.Areas covered: This manuscript aims at providing a critical review of major published studies on the utilization of advanced imaging for stem cell treatments. Uses of magnetic resonance imaging (MRI), computed tomography (CT), ultrasound, and positron emission tomography (PET) are reviewed and interrogated for their applicability to stem cell imaging.Expert opinion: A wide spectrum of imaging methods have been utilized for the evaluation of stem cell therapies. The majority of published techniques are not clinically applicable, using methods exclusively applicable to animals or technology irrelevant to current clinical practice. Harmonization of preclinical methods with clinical reality is necessary for the timely translation of stem cell therapies to the clinic. Methods such as diffusion weighted MRI, hybrid imaging, and contrast-enhanced ultrasound hold great promise and should be routinely incorporated in the evaluation of patients receiving stem cell treatments.
Collapse
Affiliation(s)
- Michail E Klontzas
- Department of Medical Imaging, University Hospital of Heraklion, Crete, Greece.,Advanced Hybrid Imaging Systems, Institute of Computer Science, Foundation for Research and Technology (FORTH), Heraklion, Crete, Greece
| | - George A Kakkos
- Department of Medical Imaging, University Hospital of Heraklion, Crete, Greece
| | - Georgios Z Papadakis
- Advanced Hybrid Imaging Systems, Institute of Computer Science, Foundation for Research and Technology (FORTH), Heraklion, Crete, Greece.,Computational Biomedicine Laboratory (CBML), Foundation for Research and Technology Hellas (FORTH), Heraklion, Crete, Greece.,Department of Radiology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Kostas Marias
- Computational Biomedicine Laboratory (CBML), Foundation for Research and Technology Hellas (FORTH), Heraklion, Crete, Greece.,Department of Electrical and Computer Engineering, Hellenic Mediterranean University, Heraklion, Crete, Greece
| | - Apostolos H Karantanas
- Department of Medical Imaging, University Hospital of Heraklion, Crete, Greece.,Advanced Hybrid Imaging Systems, Institute of Computer Science, Foundation for Research and Technology (FORTH), Heraklion, Crete, Greece.,Computational Biomedicine Laboratory (CBML), Foundation for Research and Technology Hellas (FORTH), Heraklion, Crete, Greece.,Department of Radiology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|
2
|
Devetzi M, Goulielmaki M, Khoury N, Spandidos DA, Sotiropoulou G, Christodoulou I, Zoumpourlis V. Genetically‑modified stem cells in treatment of human diseases: Tissue kallikrein (KLK1)‑based targeted therapy (Review). Int J Mol Med 2018; 41:1177-1186. [PMID: 29328364 PMCID: PMC5819898 DOI: 10.3892/ijmm.2018.3361] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/02/2018] [Indexed: 12/12/2022] Open
Abstract
The tissue kallikrein-kinin system (KKS) is an endogenous multiprotein metabolic cascade which is implicated in the homeostasis of the cardiovascular, renal and central nervous system. Human tissue kallikrein (KLK1) is a serine protease, component of the KKS that has been demonstrated to exert pleiotropic beneficial effects in protection from tissue injury through its anti-inflammatory, anti-apoptotic, anti-fibrotic and anti-oxidative actions. Mesenchymal stem cells (MSCs) or endothelial progenitor cells (EPCs) constitute populations of well-characterized, readily obtainable multipotent cells with special immunomodulatory, migratory and paracrine properties rendering them appealing potential therapeutics in experimental animal models of various diseases. Genetic modification enhances their inherent properties. MSCs or EPCs are competent cellular vehicles for drug and/or gene delivery in the targeted treatment of diseases. KLK1 gene delivery using adenoviral vectors or KLK1 protein infusion into injured tissues of animal models has provided particularly encouraging results in attenuating or reversing myocardial, renal and cerebrovascular ischemic phenotype and tissue damage, thus paving the way for the administration of genetically modified MSCs or EPCs with the human tissue KLK1 gene. Engraftment of KLK1-modified MSCs and/or KLK1-modified EPCs resulted in advanced beneficial outcome regarding heart and kidney protection and recovery from ischemic insults. Collectively, findings from pre-clinical studies raise the possibility that tissue KLK1 may be a novel future therapeutic target in the treatment of a wide range of cardiovascular, cerebrovascular and renal disorders.
Collapse
Affiliation(s)
- Marina Devetzi
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Maria Goulielmaki
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Nicolas Khoury
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | | | - Ioannis Christodoulou
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece
| |
Collapse
|
3
|
Pei Z, Lan X, Cheng Z, Qin C, Xia X, Yuan H, Ding Z, Zhang Y. Multimodality molecular imaging to monitor transplanted stem cells for the treatment of ischemic heart disease. PLoS One 2014; 9:e90543. [PMID: 24608323 PMCID: PMC3946457 DOI: 10.1371/journal.pone.0090543] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 01/31/2014] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Non-invasive techniques to monitor the survival and migration of transplanted stem cells in real-time is crucial for the success of stem cell therapy. The aim of this study was to explore multimodality molecular imaging to monitor transplanted stem cells with a triple-fused reporter gene [TGF; herpes simplex virus type 1 thymidine kinase (HSV1-tk), enhanced green fluorescence protein (eGFP), and firefly luciferase (FLuc)] in acute myocardial infarction rat models. METHODS Rat myocardial infarction was established by ligating the left anterior descending coronary artery. A recombinant adenovirus carrying TGF (Ad5-TGF) was constructed. After transfection with Ad5-TGF, 5 × 10(6) bone marrow mesenchymal stem cells (BMSCs) were transplanted into the anterior wall of the left ventricle (n = 14). Untransfected BMSCs were as controls (n = 8). MicroPET/CT, fluorescence and bioluminescence imaging were performed. Continuous images were obtained at day 2, 3 and 7 after transplantation with all three imaging modalities and additional images were performed with bioluminescence imaging until day 15 after transplantation. RESULTS High signals in the heart area were observed using microPET/CT, fluorescence and bioluminescence imaging of infarcted rats injected with Ad5-TGF-transfected BMSCs, whereas no signals were observed in controls. Semi-quantitative analysis showed the gradual decrease of signals in all three imaging modalities with time. Immunohistochemistry assays confirmed the location of the TGF protein expression was the same as the site of stem cell-specific marker expression, suggesting that TGF tracked the stem cells in situ. CONCLUSIONS We demonstrated that TGF could be used as a reporter gene to monitor stem cells in a myocardial infarction model by multimodality molecular imaging.
Collapse
Affiliation(s)
- Zhijun Pei
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China; Department of PET Center, Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford and Bio-X Program, Stanford University, Stanford, California, United States of America
| | - Chunxia Qin
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xiaotian Xia
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Hui Yuan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Zhiling Ding
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yongxue Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
4
|
Inaba Y, Davidson BP, Kim S, Liu YN, Packwood W, Belcik JT, Xie A, Lindner JR. Echocardiographic evaluation of the effects of stem cell therapy on perfusion and function in ischemic cardiomyopathy. J Am Soc Echocardiogr 2014; 27:192-9. [PMID: 24315764 PMCID: PMC3946830 DOI: 10.1016/j.echo.2013.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Indexed: 10/25/2022]
Abstract
BACKGROUND Small animal models of ischemic left ventricular (LV) dysfunction are important for the preclinical optimization of stem cell therapy. The aim of this study was to test the hypothesis that temporal changes in LV function and regional perfusion after cell therapy can be assessed in mice using echocardiographic imaging. METHODS Wild-type mice (n = 25) were studied 7 and 28 days after permanent ligation of the left anterior descending coronary artery. Animals were randomized to receive closed-chest ultrasound-guided intramyocardial delivery of saline (n = 13) or 5 × 10(5) multipotential adult progenitor cells (MAPCs; n = 12) on day 7. LV end-diastolic and end-systolic volumes, LV ejection fraction, and stroke volume were measured using high-frequency echocardiography. Multiplanar assessments of perfusion and defect area size were made using myocardial contrast echocardiography. RESULTS Between days 7 and 28, MAPC-treated animals had 40% to 50% reductions in defect size (P < .001) and 20% to 30% increases in total perfusion (P < .01). Perfusion did not change in nontreated controls. Both LV end-diastolic and end-systolic volumes increased between days 7 and 28 in both groups, but LV end-systolic volume increased to a lesser degree in MAPC-treated compared with control mice (+4.2 ± 7.9 vs +19.2 ± 22.0 μL, P < .05). LV ejection fraction increased in the MAPC-treated mice and decreased in control mice (+3.0 ± 4.3% vs -5.6 ± 5.9%, P < .01). There was a significant linear relation between the change in LV ejection fraction and the change in either defect area size or total perfusion. CONCLUSIONS High-frequency echocardiography and myocardial contrast echocardiography in murine models of ischemic LV dysfunction can be used to assess the response to stem cell therapy and to characterize the relationship among spatial flow, ventricular function, and ventricular remodeling.
Collapse
Affiliation(s)
- Yoichi Inaba
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Brian P Davidson
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Sajeevani Kim
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Ya Ni Liu
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - William Packwood
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - J Todd Belcik
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Aris Xie
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Jonathan R Lindner
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon.
| |
Collapse
|
5
|
Philippe B, Luc S, Valérie PB, Jérôme R, Alessandra BR, Louis C. Culture and Use of Mesenchymal Stromal Cells in Phase I and II Clinical Trials. Stem Cells Int 2010; 2010:503593. [PMID: 21052537 PMCID: PMC2968415 DOI: 10.4061/2010/503593] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 08/16/2010] [Accepted: 09/19/2010] [Indexed: 12/28/2022] Open
Abstract
Present in numerous tissues, mesenchymal stem cells/multipotent stromal cells (MSCs) can differentiate into different cell types from a mesoderm origin. Their potential has been extended to pluripotency, by their possibility of differentiating into tissues and cells of nonmesodermic origin. Through the release of cytokines, growth factors and biologically active molecules, MSCs exert important paracrine effects during tissue repair and inflammation. Moreover, MSCs have immunosuppressive properties related to non-HLA restricted immunosuppressive capacities. All these features lead to an increasing range of possible applications of MSCs, from treating immunological diseases to tissue and organ repair, that should be tested in phase I and II clinical trials. The most widely used MSCs are cultured from bone marrow or adipose tissue. For clinical trial implementation, BM MSCs and ADSCs should be produced according to Good Manufacturing Practices. Safety remains the major concern and must be ensured during culture and validated with relevant controls. We describe some applications of MSCs in clinical trials.
Collapse
Affiliation(s)
- Bourin Philippe
- EFS-PM, Laboratoire d'Ingénierie Cellulaire, GECSoM, 75 rue de Lisieux, 31300 Toulouse, France
| | | | | | | | | | | |
Collapse
|
6
|
Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL, Semprun-Prieto L, Delafontaine P, Prockop DJ. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 2009; 5:54-63. [PMID: 19570514 DOI: 10.1016/j.stem.2009.05.003] [Citation(s) in RCA: 1407] [Impact Index Per Article: 87.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 03/31/2009] [Accepted: 05/06/2009] [Indexed: 12/12/2022]
Abstract
Quantitative assays for human DNA and mRNA were used to examine the paradox that intravenously (i.v.) infused human multipotent stromal cells (hMSCs) can enhance tissue repair without significant engraftment. After 2 x 10(6) hMSCs were i.v. infused into mice, most of the cells were trapped as emboli in lung. The cells in lung disappeared with a half-life of about 24 hr, but <1000 cells appeared in six other tissues. The hMSCs in lung upregulated expression of multiple genes, with a large increase in the anti-inflammatory protein TSG-6. After myocardial infarction, i.v. hMSCs, but not hMSCs transduced with TSG-6 siRNA, decreased inflammatory responses, reduced infarct size, and improved cardiac function. I.v. administration of recombinant TSG-6 also reduced inflammatory responses and reduced infarct size. The results suggest that improvements in animal models and patients after i.v. infusions of MSCs are at least in part explained by activation of MSCs to secrete TSG-6.
Collapse
Affiliation(s)
- Ryang Hwa Lee
- Center for Gene Therapy, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Técnicas no invasivas de imagen cardiovascular en investigación básica: aplicación en la terapia celular. Rev Esp Cardiol 2009. [DOI: 10.1016/s0300-8932(09)72074-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Harting MT, Jimenez F, Xue H, Fischer UM, Baumgartner J, Dash PK, Cox CS. Intravenous mesenchymal stem cell therapy for traumatic brain injury. J Neurosurg 2009; 110:1189-97. [PMID: 19301973 DOI: 10.3171/2008.9.jns08158] [Citation(s) in RCA: 197] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECT Cell therapy has shown preclinical promise in the treatment of many diseases, and its application is being translated to the clinical arena. Intravenous mesenchymal stem cell (MSC) therapy has been shown to improve functional recovery after traumatic brain injury (TBI). Herein, the authors report on their attempts to reproduce such observations, including detailed characterizations of the MSC population, non-bromodeoxyuridine-based cell labeling, macroscopic and microscopic cell tracking, quantification of cells traversing the pulmonary microvasculature, and well-validated measurement of motor and cognitive function recovery. METHODS Rat MSCs were isolated, expanded in vitro, immunophenotyped, and labeled. Four million MSCs were intravenously infused into Sprague-Dawley rats 24 hours after receiving a moderate, unilateral controlled cortical impact TBI. Infrared macroscopic cell tracking was used to identify cell distribution. Immunohistochemical analysis of brain and lung tissues 48 hours and 2 weeks postinfusion revealed transplanted cells in these locations, and these cells were quantified. Intraarterial blood sampling and flow cytometry were used to quantify the number of transplanted cells reaching the arterial circulation. Motor and cognitive behavioral testing was performed to evaluate functional recovery. RESULTS At 48 hours post-MSC infusion, the majority of cells were localized to the lungs. Between 1.5 and 3.7% of the infused cells were estimated to traverse the lungs and reach the arterial circulation, 0.295% reached the carotid artery, and a very small percentage reached the cerebral parenchyma (0.0005%) and remained there. Almost no cells were identified in the brain tissue at 2 weeks postinfusion. No motor or cognitive functional improvements in recovery were identified. CONCLUSIONS The intravenous infusion of MSCs appeared neither to result in significant acute or prolonged cerebral engraftment of cells nor to modify the recovery of motor or cognitive function. Less than 4% of the infused cells were likely to traverse the pulmonary microvasculature and reach the arterial circulation, a phenomenon termed the "pulmonary first-pass effect," which may limit the efficacy of this therapeutic approach. The data in this study contradict the findings of previous reports and highlight the potential shortcomings of acute, single-dose, intravenous MSC therapy for TBI.
Collapse
Affiliation(s)
- Matthew T Harting
- Departments of Pediatric Surgery, University of Texas Medical School at Houston, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Affiliation(s)
- Sanjiv Kaul
- Division of Cardiovascular Medicine, Oregon Health and Science University, UHN62, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA.
| |
Collapse
|
10
|
Bibliography. Current world literature. Imaging and echocardiography. Curr Opin Cardiol 2008; 23:512-5. [PMID: 18670264 DOI: 10.1097/hco.0b013e32830d843f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|