1
|
Nicholls SJ, Nelson AJ, Michael LF. Oral agents for lowering lipoprotein(a). Curr Opin Lipidol 2024:00041433-990000000-00089. [PMID: 39329200 DOI: 10.1097/mol.0000000000000953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
PURPOSE OF REVIEW To review the development of oral agents to lower Lp(a) levels as an approach to reducing cardiovascular risk, with a focus on recent advances in the field. RECENT FINDINGS Extensive evidence implicates Lp(a) in the causal pathway of atherosclerotic cardiovascular disease and calcific aortic stenosis. There are currently no therapies approved for lowering of Lp(a). The majority of recent therapeutic advances have focused on development of injectable agents that target RNA and inhibit synthesis of apo(a). Muvalaplin is the first, orally administered, small molecule inhibitor of Lp(a), which acts by disrupting binding of apo(a) and apoB, in clinical development. Nonhuman primate and early human studies have demonstrated the ability of muvalaplin to produce dose-dependent lowering of Lp(a). Ongoing clinical trials will evaluate the impact of muvalaplin in high cardiovascular risk and will ultimately need to determine whether this strategy lowers the rate of cardiovascular events. SUMMARY Muvalaplin is the first oral agent, developed to lower Lp(a) levels. The ability of muvalaplin to reduce cardiovascular risk remains to be investigated, in order to determine whether it will be a useful agent for the prevention of cardiovascular disease.
Collapse
Affiliation(s)
- Stephen J Nicholls
- From the Victorian Heart Institute, Monash University, Melbourne, Australia
| | - Adam J Nelson
- From the Victorian Heart Institute, Monash University, Melbourne, Australia
| | | |
Collapse
|
2
|
Nicholls SJ. Therapeutic Potential of Lipoprotein(a) Inhibitors. Drugs 2024; 84:637-643. [PMID: 38849700 PMCID: PMC11196316 DOI: 10.1007/s40265-024-02046-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2024] [Indexed: 06/09/2024]
Abstract
Increasing evidence has implicated lipoprotein(a) [Lp(a)] in the causality of atherosclerosis and calcific aortic stenosis. This has stimulated immense interest in developing novel approaches to integrating Lp(a) into the setting of cardiovascular prevention. Current guidelines advocate universal measurement of Lp(a) levels, with the potential to influence cardiovascular risk assessment and triage of higher-risk patients to use of more intensive preventive therapies. In parallel, considerable activity has been undertaken to develop novel therapeutics with the potential to achieve selective and substantial reductions in Lp(a) levels. Early studies of antisense oligonucleotides (e.g., mipomersen, pelacarsen), RNA interference (e.g., olpasiran, zerlasiran, lepodisiran) and small molecule inhibitors (e.g., muvalaplin) have demonstrated effective Lp(a) lowering and good tolerability. These agents are moving forward in clinical development, in order to determine whether Lp(a) lowering reduces cardiovascular risk. The results of these studies have the potential to transform our approach to the prevention of cardiovascular disease.
Collapse
Affiliation(s)
- Stephen J Nicholls
- Victorian Heart Institute, Monash University, 631 Blackburn Road, Clayton, Melbourne, VIC, 3168, Australia.
| |
Collapse
|
3
|
Sampietro T, Pino BD, Bigazzi F, Sbrana F, Ripoli A, Fontanelli E, Pianelli M, Luciani R, Lepri A, Calzetti G. Acute Increase in Ocular Microcirculation Blood Flow Upon Cholesterol Removal. The Eyes Are the Window of the Heart. Am J Med 2023; 136:108-114. [PMID: 36152804 DOI: 10.1016/j.amjmed.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 03/08/2022] [Accepted: 08/06/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Lipoprotein apheresis acutely increases coronary microvascular blood flow. However, measurement techniques are time-consuming, costly, and invasive. The ocular vasculature may be an appropriate surrogate and an easily accessible window to investigate the microcirculation. Recent advances in ocular imaging techniques enable quick, noninvasive quantification of ocular microcirculation blood flow. The insights from these techniques represent a significant opportunity to study the short-term changes in optic disk blood flow after lipoprotein apheresis for inherited hypercholesterolemia. METHODS This study was performed at the Italian Reference Center for Inherited Dyslipidemias in Tuscany. The study sample was comprised of 22 patients with inherited hypercholesterolemia who were previously studied for coronary microcirculation. Laser speckle flowgraphy (LSFG) was used to measure optic disk blood flow before and after lipoprotein apheresis. The main outcomes measures were average tissue blood flow (referred to as mean tissue) and arteriolar/venular average blood flow (referred to as mean vessel). Eyes were divided into 2 groups based on pre-lipoprotein apheresis optic disk blood flow values. P < .05 was considered statistically significant. RESULTS After each lipoprotein apheresis treatment resulting in the reduction of plasma lipids, there was a concurrent increase in all optic disk microcirculatory parameters. The increase was statistically significant in eyes with lower pre-apheresis optic disk blood flow values (mean tissue +7.0%, P < .005; mean vessel +7.2%, P < .05). CONCLUSIONS A single lipoprotein apheresis session resulted in a statistically significant short-term increase in optic disk blood flow. These findings together with previous coronary microcirculation data suggest a similar ocular and coronary blood flow response to lipoprotein apheresis. Ocular microcirculation may represent a versatile biomarker for evaluating systemic microcirculatory health, including coronary microcirculation. Hence, it is plausible that plasma lipoprotein levels may influence optic disk blood flow.
Collapse
Affiliation(s)
- Tiziana Sampietro
- Lipoapheresis Unit, Reference Center for Diagnosis and Treatment of Inherited Dyslipidemias, Fondazione Toscana Gabriele Monasterio, Pisa Italy.
| | - Beatrice Dal Pino
- Lipoapheresis Unit, Reference Center for Diagnosis and Treatment of Inherited Dyslipidemias, Fondazione Toscana Gabriele Monasterio, Pisa Italy
| | - Federico Bigazzi
- Lipoapheresis Unit, Reference Center for Diagnosis and Treatment of Inherited Dyslipidemias, Fondazione Toscana Gabriele Monasterio, Pisa Italy
| | - Francesco Sbrana
- Lipoapheresis Unit, Reference Center for Diagnosis and Treatment of Inherited Dyslipidemias, Fondazione Toscana Gabriele Monasterio, Pisa Italy
| | - Andrea Ripoli
- Bioengineering Department, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | | | - Mascia Pianelli
- Lipoapheresis Unit, Reference Center for Diagnosis and Treatment of Inherited Dyslipidemias, Fondazione Toscana Gabriele Monasterio, Pisa Italy
| | - Roberta Luciani
- Lipoapheresis Unit, Reference Center for Diagnosis and Treatment of Inherited Dyslipidemias, Fondazione Toscana Gabriele Monasterio, Pisa Italy
| | - Antonio Lepri
- Institute of Ophthalmology, University of Pisa, Italy
| | - Giacomo Calzetti
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Ophthalmology Unit, University Hospital of Parma, Parma, Italy
| |
Collapse
|
4
|
Li JJ, Ma CS, Zhao D, Yan XW. Lipoprotein(a) and Cardiovascular Disease in Chinese Population: A Beijing Heart Society Expert Scientific Statement. JACC. ASIA 2022; 2:653-665. [PMID: 36444328 PMCID: PMC9700018 DOI: 10.1016/j.jacasi.2022.08.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022]
Abstract
Elevated concentration of lipoprotein(a) [Lp(a)] is an independent risk factor for atherosclerotic cardiovascular disease, including coronary artery disease, stroke, peripheral artery disease, and so on. Emerging data suggest that Lp(a) contributes to the increased risk for cardiovascular events even in the setting of effective reduction of plasma low-density lipoprotein cholesterol. Nevertheless, puzzling issues exist covering potential genetic factors, Lp(a) assay, possible individuals for analysis, a cutoff point of increased risk, and clinical interventions. In the Chinese population, Lp(a) exhibited a distinctive prevalence and regulated various cardiovascular diseases in specific ways. Hence, it is valuable to clarify the role of Lp(a) in cardiovascular diseases and explore prevention and control measures for the increase in Lp(a) prevalence in the Chinese population. This Beijing Heart Society experts' scientific statement will present the detailed knowledge concerning Lp(a)-related studies combined with Chinese population observations to provide the key points of reference.
Collapse
Key Words
- AMI, acute myocardial infarction
- ASCVD, atherosclerotic cardiovascular disease
- Apo, apolipoprotein
- CAD, coronary artery disease
- CAVS, calcific aortic valve stenosis
- CVD, cardiovascular disease
- CVE, cardiovascular event
- FH, familial hypercholesterolemia
- GWAS, genome-wide association analysis
- KIV, Kringle IV
- LA, lipoprotein apheresis
- LDL-C, low-density lipoprotein cholesterol
- Lp(a), lipoprotein(a)
- MACE, major adverse cardiovascular events
- OxPL, oxidized phospholipids
- PCSK9, proprotein convertase subtilisin/kexin type 9
- SNP, single nucleotide polymorphism
- T2DM, type 2 diabetes mellitus
- atherosclerotic cardiovascular disease
- calcific aortic value stenosis
- lipoprotein(a)
- scientific statement
Collapse
Affiliation(s)
- Jian-Jun Li
- Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Chang-Sheng Ma
- Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, China
| | - Dong Zhao
- Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, China
| | - Xiao-Wei Yan
- Beijing Union Medical College Hospital, Beijing, China
| |
Collapse
|
5
|
Alothman L, Bélanger AM, Ruel I, Brunham LR, Hales L, Genest J, Akioyamen LE. Health-related quality of life in homozygous familial hypercholesterolemia: A systematic review and meta-analysis. J Clin Lipidol 2021; 16:52-65. [PMID: 35027327 DOI: 10.1016/j.jacl.2021.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/04/2021] [Accepted: 11/30/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Homozygous familial hypercholesterolemia (HoFH) is a rare genetic disease characterized by extreme elevations of low-density lipoprotein cholesterol (LDL-C) and extremely premature atherosclerotic cardiovascular disease. To date, impacts of HoFH and its treatment on the psychosocial wellbeing of patients have been poorly characterized. OBJECTIVES We performed a systematic review of the association between HoFH and health-related quality of life (HRQL). METHODS This review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) consensus guidelines. We searched MEDLINE, Embase, The Cochrane Controlled Register of Trials (CENTRAL), Pubmed, Scopus, AfricaWide (via EBSCO), and six trial registries and grey-literature databases from inception to May 2021 for published English-language literature examining HRQL and its determinants in HoFH. Studies were eligible if they included patients with confirmed HoFH and evaluated HRQL using validated tools. We performed a narrative synthesis of qualitative findings from included studies and, where data permitted, random-effects meta-analysis reporting standardized mean differences (SMD) and 95% confidence intervals (CIs). RESULTS Our review identified seven eligible studies examining HRQL in HoFH participants. Pooling data from two included studies, we found that relative to the general population, HoFH patients demonstrated significantly poorer HRQL in multiple dimensions of the 36-item Short-Form Health Survey (SF-36) with lower scores in physical functioning (SMD -0.37; 95% CI: -0.60, -0.15), role limitations due to physical health (SMD -0.63; 95% CI: -1.24, -0.02), social functioning (SMD -0.61; 95% CI: -1.19, -0.03), bodily pain (SMD -0.24; 95% CI: -0.46, -0.01), and general health (SMD -1.55; 95% CI: -1.80, -1.31). No differences were observed in domains of energy and vitality, mental health and emotional well-being, or role limitations due to emotional problems. Patients suffered high treatment burdens related to lipoprotein apheresis that compromised educational attainment and employment. However, few patients received psychological support in navigating their treatment challenges. No studies evaluated the association of HoFH with incident anxiety, depression, or other psychopathology. CONCLUSIONS Limited data are available on quality of life for patients with HoFH. The available data suggest that these patients may suffer disease-related impairments in quality of life. Future work should aim to elucidate relationships between HoFH and mental health outcomes and develop interventions to improve quality of life in this population.
Collapse
Affiliation(s)
- Latifah Alothman
- Research Institute of the McGill University Health Centre, Montreal QC H4A 3J1, Canada
| | - Alexandre M Bélanger
- Research Institute of the McGill University Health Centre, Montreal QC H4A 3J1, Canada
| | - Isabelle Ruel
- Research Institute of the McGill University Health Centre, Montreal QC H4A 3J1, Canada
| | - Liam R Brunham
- Department of Medicine, University of British Columbia, Vancouver, V5Z 1M9, Canada; Centre for Heart Lung Innovation, University of British Columbia, Vancouver, V6Z 1Y6, Canada
| | - Lindsay Hales
- McGill University Health Center Medical Libraries, Montreal QC, H3G 1A4, Canada
| | - Jacques Genest
- Research Institute of the McGill University Health Centre, Montreal QC H4A 3J1, Canada
| | - Leo E Akioyamen
- Department of Medicine, University of Toronto, Toronto ON, M5S 1A8, Canada.
| |
Collapse
|
6
|
Khan TZ, Schatz U, Bornstein SR, Barbir M. Hypertriglyceridaemia: contemporary management of a neglected cardiovascular risk factor. Glob Cardiol Sci Pract 2021; 2021:e202119. [PMID: 34805377 PMCID: PMC8587207 DOI: 10.21542/gcsp.2021.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/30/2021] [Indexed: 11/05/2022] Open
Abstract
Hypertriglyceridaemia represents one of the most prevalent lipid abnormalities, however it is often eclipsed by focus on LDL cholesterol and is frequently overlooked by clinicians, despite it being an important cardiovascular risk factor. For most patients, hypertriglyceridaemia arises from a combination of environmental factors and multiple genetic variations with small effects. Even in cases with apparent familial clustering of hypertriglyceridaemia, a monogenetic cause is rarely identified. Common secondary causes include obesity, uncontrolled diabetes, alcohol, and various commonly used drugs. Correction of these factors, along with lifestyle optimisation, should be prioritised prior to commencing medication. The goal of drug treatment is to reduce the risk of cardiovascular disease in those with moderate hypertriglyceridaemia and the risk of pancreatitis in those with severe hypertriglyceridaemia. Recent and ongoing trials demonstrate the important role of triglycerides (TG) in determining residual risk in patients with cardiovascular disease (CVD) already established on statin therapy. Novel and emerging data on omega-3 fatty acids (high-dose icosapent ethyl) and the selective PPAR modulator pemafibrate are eagerly awaited and may provide further clarity for clinicians in determining which patients will benefit from TG lowering and help inform clinical guidelines. There are numerous novel therapies on the horizon that reduce TG by decreasing the activity of proteins that inhibit lipoprotein lipase such as apolipoprotein C-III (including Volanesorsen which was recently approved in Germany) and ANGPTL 3/4 which may offer promise for the future.
Collapse
Affiliation(s)
- Tina Z. Khan
- Department of Cardiology, Harefield Hospital, Royal Brompton & Harefield NHS Foundation Trust Hospital, Hill End Road, Harefield UB9 6JH, United Kingdom
| | - Ulrike Schatz
- University Hospital Carl Gustav Carus, Fetscher Street 74, Dresden 01307, Germany
| | - Stefan R. Bornstein
- University Hospital Carl Gustav Carus, Fetscher Street 74, Dresden 01307, Germany
| | - Mahmoud Barbir
- Department of Cardiology, Harefield Hospital, Royal Brompton & Harefield NHS Foundation Trust Hospital, Hill End Road, Harefield UB9 6JH, United Kingdom
- University Hospital Carl Gustav Carus, Fetscher Street 74, Dresden 01307, Germany
| |
Collapse
|
7
|
Nicholls SJ, Bubb KJ. The Riskier Lipid: What Is on the HORIZON for Lipoprotein (a) and Should There Be Lp(a) Screening for All? Curr Cardiol Rep 2021; 23:97. [PMID: 34196823 DOI: 10.1007/s11886-021-01528-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/14/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Despite widespread targeting of cardiovascular risk factors, many patients continue to experience clinical events. This residual risk has stimulated efforts to develop novel therapeutic approaches to target additional factors underscoring cardiovascular disease. This review aimed to summarize existing evidence supporting targeting of Lp(a) as a novel cardioprotective strategy. RECENT FINDINGS Increasing evidence has implicated lipoprotein (a) [Lp(a)] in the pathogenesis of both atherosclerotic and calcific aortic valve disease. Therapeutic advances have produced novel agents that selectively lower Lp(a) levels, which have now progressed to evaluate their impact on cardiovascular events in large clinical outcome trials. Evidence continues to accumulate suggesting that targeting Lp(a) may be effective in reducing cardiovascular risk. With advances in Lp(a) targeted therapeutics, clinical trials now have the opportunity to determine whether this strategy will be effective for high-risk patients.
Collapse
Affiliation(s)
- Stephen J Nicholls
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Monash University, 246 Clayton Road, Clayton, VIC, 3168, Australia.
| | - Kristen J Bubb
- Biomedical Discovery Institute, Monash University, Melbourne, Australia
| |
Collapse
|
8
|
Mickiewicz A, Marlega J, Kuchta A, Bachorski W, Cwiklinska A, Raczak G, Gruchala M, Fijalkowski M. Cardiovascular events in patients with familial hypercholesterolemia and hyperlipoproteinaemia (a): Indications for lipoprotein apheresis in Poland. J Clin Apher 2021; 36:370-378. [PMID: 33386762 DOI: 10.1002/jca.21872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/07/2020] [Accepted: 12/21/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND Lipoprotein apheresis (LA) is a safe method of reducing atherogenic lipoproteins and improving cardiovascular (CV) outcomes. We aimed to assess the reductions in low-density lipoprotein cholesterol (LDL-C) and lipoprotein (a) [Lp(a)] levels in patients undergoing regular LA therapy and to evaluate its influence on the incidence rate of adverse cardiac and vascular events (ACVE) and major adverse cardiac events (MACE). METHODS A longitudinal study in Poland evaluated the prospective and retrospective observational data of 23 patients with hyperlipoproteinaemia (a) [hyper-Lp(a)] and familial hypercholesterolemia (FH), undergoing 1014 LA sessions between 2013 and 2020. Their pre- and post-apheresis LDL-C and Lp(a) levels were assessed to calculate the acute percent reductions. The time period used to evaluate annual rates of ACVE and MACE before and after initiation of LA was matched in each patient. RESULTS The pre-apheresis LDL-C and Lp(a) concentrations were 155 (107-228) (mg/dL) (median and interquartile range) and 0.56 (0.14-1.37) (g/L), respectively. LA therapy resulted in a reduction of LDL-C to 50 (30-73.5) (mg/dL) and of Lp(a) to 0.13 (0.05-0.34) (g/L), representing a percent reduction of 70.0% and 72.7% for LDL-C and Lp(a), respectively. We found a significant reduction in the annual rate of ACVE (0.365[0.0-0.585] vs (0.0[0.0-0.265]; P = .047) and MACE (0.365[0.0-0.585] vs 0.0[0.0-0.265]; P = .031). CONCLUSIONS The findings of our study indicate that LA treatment in patients with hyperlipoproteinaemia (a) and FH on maximally tolerated lipid lowering therapies leads to a substantial reduction in LDL-C and Lp(a) concentrations and lowers CV event rates in Polish patients.
Collapse
Affiliation(s)
| | - Joanna Marlega
- Department of Cardiology I, Medical University of Gdansk, Gdansk, Poland
| | - Agnieszka Kuchta
- Department of Clinical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Witold Bachorski
- Department of Cardiology I, Medical University of Gdansk, Gdansk, Poland
| | | | - Grzegorz Raczak
- Department of Cardiology & Electrotherapy, Medical University of Gdansk, Gdansk, Poland
| | - Marcin Gruchala
- Department of Cardiology I, Medical University of Gdansk, Gdansk, Poland
| | - Marcin Fijalkowski
- Department of Cardiology I, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
9
|
Pokrovsky SN, Afanasieva OI, Ezhov MV. Therapeutic Apheresis for Management of Lp(a) Hyperlipoproteinemia. Curr Atheroscler Rep 2020; 22:68. [DOI: 10.1007/s11883-020-00886-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
10
|
Abstract
Several new or emerging drugs for dyslipidemia owe their existence, in part, to human genetic evidence, such as observations in families with rare genetic disorders or in Mendelian randomization studies. Much effort has been directed to agents that reduce LDL (low-density lipoprotein) cholesterol, triglyceride, and Lp[a] (lipoprotein[a]), with some sustained programs on agents to raise HDL (high-density lipoprotein) cholesterol. Lomitapide, mipomersen, AAV8.TBG.hLDLR, inclisiran, bempedoic acid, and gemcabene primarily target LDL cholesterol. Alipogene tiparvovec, pradigastat, and volanesorsen primarily target elevated triglycerides, whereas evinacumab and IONIS-ANGPTL3-LRx target both LDL cholesterol and triglyceride. IONIS-APO(a)-LRx targets Lp(a).
Collapse
Affiliation(s)
- Robert A Hegele
- From the Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada (R.A.H.)
| | - Sotirios Tsimikas
- Sulpizio Cardiovascular Center, Vascular Medicine Program, University of California San Diego, La Jolla (S.T.)
| |
Collapse
|
11
|
Labudovic D, Kostovska I, Tosheska Trajkovska K, Cekovska S, Brezovska Kavrakova J, Topuzovska S. Lipoprotein(a) – Link between Atherogenesis and Thrombosis. Prague Med Rep 2019; 120:39-51. [DOI: 10.14712/23362936.2019.9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Lipoprotein(a) – Lp(a) – is an independent risk factor for cardiovascular disease (CVD). Indeed, individuals with plasma concentrations of Lp(a) > 200 mg/l carry an increased risk of developing CVD. Circulating levels of Lp(a) are remarkably resistant to common lipid lowering therapies, currently available treatment for reduction of Lp(a) is plasma apheresis, which is costly and labour intensive. The Lp(a) molecule is composed of two parts: LDL/apoB-100 core and glycoprotein, apolipoprotein(a) – Apo(a), both of them can interact with components of the coagulation cascade, inflammatory pathways and blood vessel cells (smooth muscle cells and endothelial cells). Therefore, it is very important to determine the molecular pathways by which Lp(a) affect the vascular system in order to design therapeutics for targeting the Lp(a) cellular effects. This paper summarises the cellular effects and molecular mechanisms by which Lp(a) participate in atherogenesis, thrombogenesis, inflammation and development of cardiovascular diseases.
Collapse
|
12
|
Tsimikas S, Fazio S, Ferdinand KC, Ginsberg HN, Koschinsky ML, Marcovina SM, Moriarty PM, Rader DJ, Remaley AT, Reyes-Soffer G, Santos RD, Thanassoulis G, Witztum JL, Danthi S, Olive M, Liu L. NHLBI Working Group Recommendations to Reduce Lipoprotein(a)-Mediated Risk of Cardiovascular Disease and Aortic Stenosis. J Am Coll Cardiol 2019; 71:177-192. [PMID: 29325642 DOI: 10.1016/j.jacc.2017.11.014] [Citation(s) in RCA: 326] [Impact Index Per Article: 65.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 11/06/2017] [Indexed: 12/16/2022]
Abstract
Pathophysiological, epidemiological, and genetic studies provide strong evidence that lipoprotein(a) [Lp(a)] is a causal mediator of cardiovascular disease (CVD) and calcific aortic valve disease (CAVD). Specific therapies to address Lp(a)-mediated CVD and CAVD are in clinical development. Due to knowledge gaps, the National Heart, Lung, and Blood Institute organized a working group that identified challenges in fully understanding the role of Lp(a) in CVD/CAVD. These included the lack of research funding, inadequate experimental models, lack of globally standardized Lp(a) assays, and inadequate understanding of the mechanisms underlying current drug therapies on Lp(a) levels. Specific recommendations were provided to facilitate basic, mechanistic, preclinical, and clinical research on Lp(a); foster collaborative research and resource sharing; leverage expertise of different groups and centers with complementary skills; and use existing National Heart, Lung, and Blood Institute resources. Concerted efforts to understand Lp(a) pathophysiology, together with diagnostic and therapeutic advances, are required to reduce Lp(a)-mediated risk of CVD and CAVD.
Collapse
Affiliation(s)
- Sotirios Tsimikas
- Vascular Medicine Program, Sulpizio Cardiovascular Center, Division of Cardiology, Department of Medicine, University of California San Diego, La Jolla, California.
| | - Sergio Fazio
- Oregon Health & Science University, Portland, Oregon
| | | | - Henry N Ginsberg
- College of Physicians and Surgeons, Columbia University, New York, New York
| | - Marlys L Koschinsky
- Robarts Research Institute and Department of Physiology & Pharmacology Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | | | | | - Daniel J Rader
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alan T Remaley
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Raul D Santos
- Heart Institute (InCor) University of Sao Paulo Medical School Hospital and Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | | | - Joseph L Witztum
- Division of Endocrinology, Department of Medicine, University of California San Diego, La Jolla, California
| | - Simhan Danthi
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Michelle Olive
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Lijuan Liu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
13
|
Enas EA, Varkey B, Dharmarajan TS, Pare G, Bahl VK. Lipoprotein(a): An independent, genetic, and causal factor for cardiovascular disease and acute myocardial infarction. Indian Heart J 2019; 71:99-112. [PMID: 31280836 PMCID: PMC6620428 DOI: 10.1016/j.ihj.2019.03.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/10/2019] [Accepted: 03/13/2019] [Indexed: 12/24/2022] Open
Abstract
Lipoprotein(a) [Lp(a)] is a circulating lipoprotein, and its level is largely determined by variation in the Lp(a) gene (LPA) locus encoding apo(a). Genetic variation in the LPA gene that increases Lp(a) level also increases coronary artery disease (CAD) risk, suggesting that Lp(a) is a causal factor for CAD risk. Lp(a) is the preferential lipoprotein carrier for oxidized phospholipids (OxPL), a proatherogenic and proinflammatory biomarker. Lp(a) adversely affects endothelial function, inflammation, oxidative stress, fibrinolysis, and plaque stability, leading to accelerated atherothrombosis and premature CAD. The INTER-HEART Study has established the usefulness of Lp(a) in assessing the risk of acute myocardial infarction in ethnically diverse populations with South Asians having the highest risk and population attributable risk. The 2018 Cholesterol Clinical Practice Guideline have recognized elevated Lp(a) as an atherosclerotic cardiovascular disease risk enhancer for initiating or intensifying statin therapy.
Collapse
Affiliation(s)
- Enas A Enas
- Coronary Artery Disease in Indians (CADI) Research Foundation, Lisle, IL USA.
| | - Basil Varkey
- Emeritus of Medicine, Medical College of Wisconsin, USA
| | - T S Dharmarajan
- Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine, Montefiore Medical Center (Wakefield Campus), Bronx, NY, USA
| | | | - Vinay K Bahl
- Department of Cardiology, All India Institute of Medical Sciences New Delhi, India
| |
Collapse
|
14
|
Tsimikas S, Fazio S, Viney NJ, Xia S, Witztum JL, Marcovina SM. Relationship of lipoprotein(a) molar concentrations and mass according to lipoprotein(a) thresholds and apolipoprotein(a) isoform size. J Clin Lipidol 2018; 12:1313-1323. [DOI: 10.1016/j.jacl.2018.07.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/28/2018] [Accepted: 07/11/2018] [Indexed: 12/22/2022]
|
15
|
Zenti MG, Altomari A, Lupo MG, Botta M, Bonora E, Corsini A, Ruscica M, Ferri N. From lipoprotein apheresis to proprotein convertase subtilisin/kexin type 9 inhibitors: Impact on low-density lipoprotein cholesterol and C-reactive protein levels in cardiovascular disease patients. Eur J Prev Cardiol 2018; 25:1843-1851. [DOI: 10.1177/2047487318792626] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this observational study, we compared the effect of lipoprotein apheresis and evolocumab or alirocumab on levels of lipoprotein cholesterol, triglycerides and inflammatory markers (C reactive protein and interleukin 6) in cardiovascular patients ( n = 9). Patients were monitored during the last year of lipoprotein apheresis followed by six months of treatment with proprotein convertase subtilisin/kexin type 9 inhibitors. The biochemical parameters were determined pre- and post- every apheresis procedure for 12 months and then after one, three and six months of treatment with evolocumab (140 mg every two weeks [Q2W]) or alirocumab (75 mg or 150 mg every two weeks [Q2W]). Lipoprotein apheresis significantly reduced low-density lipoprotein cholesterol levels from 138 ± 32 mg/dl to 46 ± 16 mg/dl ( p < 0.001), with an inter-apheresis level of 114 ± 26 mg/dl. Lipoprotein(a) was also reduced from a median of 42 mg/dl to 17 mg/dl ( p < 0.01). Upon anti-proprotein convertase subtilisin/kexin type 9 therapy, low-density lipoprotein cholesterol levels were similar to post-apheresis (59 ± 25, 41 ± 22 and 42 ± 21mg/dl at one, three and six months, respectively) as well as those of lipoprotein(a) (18 mg/dl). However, an opposite effect was observed on high-density lipoprotein cholesterol levels: –16.0% from pre- to post-apheresis and +34.0% between pre-apheresis and proprotein convertase subtilisin/kexin type 9 inhibitors. Apheresis significantly reduced high-sensitivity C-reactive protein levels (1.5 ± 1.2 mg/l pre-apheresis to 0.6 ± 0.6 mg/l post-apheresis), while no changes were found upon proprotein convertase subtilisin/kexin type 9 mAbs administration. In conclusion, our study demonstrated that, by switching from lipoprotein apheresis to anti-proprotein convertase subtilisin/kexin type 9 therapies, patients reached similar low-density lipoprotein cholesterol and lipoprotein(a) levels, increased those of high-density lipoprotein cholesterol, and showed no changes on high-sensitivity C-reactive protein.
Collapse
Affiliation(s)
- Maria G Zenti
- Divisione di Endocrinologia, Diabetologia e Metabolismo, Università degli Studi di Verona, Italy
| | - Anna Altomari
- Divisione di Endocrinologia, Diabetologia e Metabolismo, Università degli Studi di Verona, Italy
| | - Maria G Lupo
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Italy
| | - Margherita Botta
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy
| | - Enzo Bonora
- Divisione di Endocrinologia, Diabetologia e Metabolismo, Università degli Studi di Verona, Italy
| | - Alberto Corsini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy
- IRCCS, Multimedica, Italy
| | - Massimiliano Ruscica
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy
| | - Nicola Ferri
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Italy
| |
Collapse
|
16
|
Mytilinaiou M, Kyrou I, Khan M, Grammatopoulos DK, Randeva HS. Familial Hypercholesterolemia: New Horizons for Diagnosis and Effective Management. Front Pharmacol 2018; 9:707. [PMID: 30050433 PMCID: PMC6052892 DOI: 10.3389/fphar.2018.00707] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 06/12/2018] [Indexed: 12/11/2022] Open
Abstract
Familial hypercholesterolemia (FH) is a common genetic cause of premature cardiovascular disease (CVD). The reported prevalence rates for both heterozygous FH (HeFH) and homozygous FH (HoFH) vary significantly, and this can be attributed, at least in part, to the variable diagnostic criteria used across different populations. Due to lack of consistent data, new global registries and unified guidelines are being formed, which are expected to advance current knowledge and improve the care of FH patients. This review presents a comprehensive overview of the pathophysiology, epidemiology, manifestations, and pharmacological treatment of FH, whilst summarizing the up-to-date relevant recommendations and guidelines. Ongoing research in FH seems promising and novel therapies are expected to be introduced in clinical practice in order to compliment or even substitute current treatment options, aiming for better lipid-lowering effects, fewer side effects, and improved clinical outcomes.
Collapse
Affiliation(s)
- Maria Mytilinaiou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom.,Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, United Kingdom.,Division of Translational and Experimental Medicine, Warwick Medical School, University of Warwick, Coventry, United Kingdom.,Centre of Applied Biological and Exercise Sciences, Faculty of Health and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Mike Khan
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
| | - Dimitris K Grammatopoulos
- Division of Translational and Experimental Medicine, Warwick Medical School, University of Warwick, Coventry, United Kingdom.,Institute of Precision Diagnostics and Translational Medicine, Coventry and Warwickshire Pathology Service, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
| | - Harpal S Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom.,Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, United Kingdom.,Division of Translational and Experimental Medicine, Warwick Medical School, University of Warwick, Coventry, United Kingdom.,Centre of Applied Biological and Exercise Sciences, Faculty of Health and Life Sciences, Coventry University, Coventry, United Kingdom.,Institute of Precision Diagnostics and Translational Medicine, Coventry and Warwickshire Pathology Service, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
| |
Collapse
|
17
|
Lappegård KT, Kjellmo CA, Ljunggren S, Cederbrant K, Marcusson-Ståhl M, Mathisen M, Karlsson H, Hovland A. Lipoprotein apheresis affects lipoprotein particle subclasses more efficiently compared to the PCSK9 inhibitor evolocumab, a pilot study. Transfus Apher Sci 2018; 57:91-96. [PMID: 29398508 DOI: 10.1016/j.transci.2018.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/31/2017] [Accepted: 01/03/2018] [Indexed: 12/22/2022]
Abstract
Lipoprotein apheresis and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors are last therapeutic resorts in patients with familial hypercholesterolemia (FH). We explored changes in lipoprotein subclasses and high-density lipoprotein (HDL) function when changing treatment from lipoprotein apheresis to PCSK9 inhibition. We measured the levels of low-density lipoprotein (LDL) and HDL particle subclasses, serum amyloid A1 (SAA1), paraoxonase-1 (PON1) activity and cholesterol efflux capacity (CEC) in three heterozygous FH patients. Concentrations of all LDL particle subclasses were reduced during apheresis (large 68.0 ± 17.5 to 16.3 ± 2.1 mg/dL, (p = 0.03), intermediate 38.3 ± 0.6 to 5.0 ± 3.5 mg/dL (p = 0.004) and small 5.0 ± 2.6 to 0.2 ± 0.1 mg/dL (p = 0.08)). There were non-significant reductions in the LDL subclasses during evolocumab treatment. There were non-significant reductions in subclasses of HDL particles during apheresis, and no changes during evolocumab treatment. CEC was unchanged throughout the study, while the SAA1/PON1 ratio was unchanged during apheresis but decreased during evolocumab treatment. In conclusion, there were significant reductions in large and intermediate size LDL particles during apheresis, and a non-significant reduction in small LDL particles. There were only non-significant reductions in the LDL subclasses during evolocumab treatment.
Collapse
Affiliation(s)
- Knut Tore Lappegård
- Division of Internal Medicine, Nordland Hospital, Bodø, Norway; Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway
| | | | - Stefan Ljunggren
- Occupational and Environmental Medicine Center, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | | | | | | | - Helen Karlsson
- Occupational and Environmental Medicine Center, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Anders Hovland
- Division of Internal Medicine, Nordland Hospital, Bodø, Norway; Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway.
| |
Collapse
|
18
|
Tsimikas S. A Test in Context: Lipoprotein(a): Diagnosis, Prognosis, Controversies, and Emerging Therapies. J Am Coll Cardiol 2017; 69:692-711. [PMID: 28183512 DOI: 10.1016/j.jacc.2016.11.042] [Citation(s) in RCA: 640] [Impact Index Per Article: 91.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/10/2016] [Accepted: 11/21/2016] [Indexed: 12/14/2022]
Abstract
Evidence that elevated lipoprotein(a) (Lp[a]) levels contribute to cardiovascular disease (CVD) and calcific aortic valve stenosis (CAVS) is substantial. Development of isoform-independent assays, in concert with genetic, epidemiological, translational, and pathophysiological insights, have established Lp(a) as an independent, genetic, and likely causal risk factor for CVD and CAVS. These observations are consistent across a broad spectrum of patients, risk factors, and concomitant therapies, including patients with low-density lipoprotein cholesterol <70 mg/dl. Statins tend to increase Lp(a) levels, possibly contributing to the "residual risk" noted in outcomes trials and at the bedside. Recently approved proprotein convertase subtilisin/kexin-type 9 inhibitors and mipomersen lower Lp(a) 20% to 30%, and emerging RNA-targeted therapies lower Lp(a) >80%. These approaches will allow testing of the "Lp(a) hypothesis" in clinical trials. This review summarizes the current landscape of Lp(a), discusses controversies, and reviews emerging therapies to reduce plasma Lp(a) levels to decrease risk of CVD and CAVS.
Collapse
Affiliation(s)
- Sotirios Tsimikas
- Division of Cardiovascular Medicine, Sulpizio Cardiovascular Center, University of California San Diego, La Jolla, California.
| |
Collapse
|
19
|
Fogacci F, Cicero AFG, D'Addato S, D'Agostini L, Rosticci M, Giovannini M, Bertagnin E, Borghi C. Serum lipoprotein(a) level as long-term predictor of cardiovascular mortality in a large sample of subjects in primary cardiovascular prevention: data from the Brisighella Heart Study. Eur J Intern Med 2017; 37:49-55. [PMID: 27553697 DOI: 10.1016/j.ejim.2016.08.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 08/10/2016] [Indexed: 01/19/2023]
Abstract
BACKGROUND High lipoprotein(a) [Lp(a)] levels have been re-evaluated as an independent risk factor for atherosclerotic vascular diseases. METHODS We assessed whether serum Lp(a) levels can significantly influence long-term survival in subjects with an equal general cardiovascular (CV) risk profile. We prospectively evaluated a sample of 1215 adult subjects from the Brisighella Heart Study cohort (M: 608; F: 607; aged 40-69) who had no cardiovascular disease at enrolment. According to the CUORE project risk-charts (Italian-specific risk-charts), individuals were stratified into a low-(n=865), an intermediate-(n=275) and a high-(n=75) cardiovascular risk groups. Kaplan-Meier 25-year survival analysis was carried out examining apart each class of risk and the log-rank statistic was used to estimate, when statistically possible, the survival time of the subjects stratified into quartiles of Lp(a). RESULTS Subjects at high and intermediate CV risk aged 56-69years (regardless of gender) and women aged 40-55years with a low CV risk profile who had lower Lp(a) levels showed a significant benefit on CV mortality (P<0.05 always) and, indicatively, on the estimated survival time (even P<0.05). The ROC curves constructing for each CV risk group using Lp(a) as test-variable and death as state-variable identified serum Lp(a) as an independent long-term CV mortality prognosticator for subjects at high CV risk (AUC=0.63, 95%CI [0.50-0.76], P=0.049) and women with an intermediate CV risk profile (AUC=0.7, 95%CI [0.52-0.79], P=0.034). CONCLUSIONS In the light of our finding and at the best of the previous knowledge, dosing Lp(a) is confirmed as important in subjects at high or medium risk (even if in primary prevention for CV diseases), especially in women.
Collapse
Affiliation(s)
- Federica Fogacci
- Atherosclerosis and Metabolic diseases Research Unit, Medical and Surgical Sciences Dept., University of Bologna, Italy.
| | | | - Sergio D'Addato
- Atherosclerosis and Metabolic diseases Research Unit, Medical and Surgical Sciences Dept., University of Bologna, Italy
| | - Laura D'Agostini
- Atherosclerosis and Metabolic diseases Research Unit, Medical and Surgical Sciences Dept., University of Bologna, Italy
| | - Martina Rosticci
- Atherosclerosis and Metabolic diseases Research Unit, Medical and Surgical Sciences Dept., University of Bologna, Italy
| | - Marina Giovannini
- Atherosclerosis and Metabolic diseases Research Unit, Medical and Surgical Sciences Dept., University of Bologna, Italy
| | - Enrico Bertagnin
- Atherosclerosis and Metabolic diseases Research Unit, Medical and Surgical Sciences Dept., University of Bologna, Italy
| | - Claudio Borghi
- Atherosclerosis and Metabolic diseases Research Unit, Medical and Surgical Sciences Dept., University of Bologna, Italy
| |
Collapse
|
20
|
Lappegård KT, Enebakk T, Thunhaug H, Ludviksen JK, Mollnes TE, Hovland A. LDL apheresis activates the complement system and the cytokine network, whereas PCSK9 inhibition with evolocumab induces no inflammatory response. J Clin Lipidol 2016; 10:1481-1487. [DOI: 10.1016/j.jacl.2016.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 08/15/2016] [Accepted: 09/01/2016] [Indexed: 11/15/2022]
|
21
|
Lappegård KT, Enebakk T, Thunhaug H, Hovland A. Transition from LDL apheresis to evolocumab in heterozygous FH is equally effective in lowering LDL, without lowering HDL cholesterol. Atherosclerosis 2016; 251:119-123. [DOI: 10.1016/j.atherosclerosis.2016.06.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/01/2016] [Accepted: 06/08/2016] [Indexed: 11/26/2022]
|