1
|
Sababathy M, Ramanathan G, Ganesan S, Sababathy S, Yasmin A, Ramasamy R, Foo J, Looi Q, Nur-Fazila S. Multipotent mesenchymal stromal/stem cell-based therapies for acute respiratory distress syndrome: current progress, challenges, and future frontiers. Braz J Med Biol Res 2024; 57:e13219. [PMID: 39417447 PMCID: PMC11484355 DOI: 10.1590/1414-431x2024e13219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/30/2024] [Indexed: 10/19/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a critical, life-threatening condition marked by severe inflammation and impaired lung function. Mesenchymal stromal/stem cells (MSCs) present a promising therapeutic avenue due to their immunomodulatory, anti-inflammatory, and regenerative capabilities. This review comprehensively evaluates MSC-based strategies for ARDS treatment, including direct administration, tissue engineering, extracellular vesicles (EVs), nanoparticles, natural products, artificial intelligence (AI), gene modification, and MSC preconditioning. Direct MSC administration has demonstrated therapeutic potential but necessitates optimization to overcome challenges related to effective cell delivery, homing, and integration into damaged lung tissue. Tissue engineering methods, such as 3D-printed scaffolds and MSC sheets, enhance MSC survival and functionality within lung tissue. EVs and MSC-derived nanoparticles offer scalable and safer alternatives to cell-based therapies. Likewise, natural products and bioactive compounds derived from plants can augment MSC function and resilience, offering complementary strategies to enhance therapeutic outcomes. In addition, AI technologies could aid in optimizing MSC delivery and dosing, and gene editing tools like CRISPR/Cas9 allow precise modification of MSCs to enhance their therapeutic properties and target specific ARDS mechanisms. Preconditioning MSCs with hypoxia, growth factors, or pharmacological agents further enhances their therapeutic potential. While MSC therapies hold significant promise for ARDS, extensive research and clinical trials are essential to determine optimal protocols and ensure long-term safety and effectiveness.
Collapse
Affiliation(s)
- M. Sababathy
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - G. Ramanathan
- Faculty of Computer Science and Information Technology, University Malaya, Kuala Lumpur, Malaysia
| | - S. Ganesan
- School of Pharmacy, Management and Science University, Shah Alam, Selangor, Malaysia
| | - S. Sababathy
- Faculty of Medicine and Defence Health, National Defence University of Malaysia, Sungai Besi, Kuala Lumpur, Malaysia
| | - A.R. Yasmin
- Department of Veterinary Laboratory Diagnostics, Faculty of Veterinary Medicine, University Putra Malaysia, Serdang, Selangor, Malaysia
- Laboratory of Vaccines and Biomolecules, Institute of Bioscience, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - R. Ramasamy
- Department of Pathology, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - J.B. Foo
- Center for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Q.H. Looi
- My Cytohealth Sdn. Bhd., Bandar Seri Petaling, Kuala Lumpur, Malaysia
| | - S.H. Nur-Fazila
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University Putra Malaysia, Serdang, Selangor, Malaysia
- Laboratory of Vaccines and Biomolecules, Institute of Bioscience, University Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
2
|
Tunstead C, Volkova E, Dunbar H, Hawthorne IJ, Bell A, Crowe L, Masterson JC, Dos Santos CC, McNicholas B, Laffey JG, English K. The ARDS microenvironment enhances MSC-induced repair via VEGF in experimental acute lung inflammation. Mol Ther 2024; 32:3422-3432. [PMID: 39108095 PMCID: PMC11489539 DOI: 10.1016/j.ymthe.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/10/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024] Open
Abstract
Clinical trials investigating the potential of mesenchymal stromal cells (MSCs) for the treatment of inflammatory diseases, such as acute respiratory distress syndrome (ARDS), have been disappointing, with less than 50% of patients responding to treatment. Licensed MSCs show enhanced therapeutic efficacy in response to cytokine-mediated activation signals. There are two distinct sub-phenotypes of ARDS: hypo- and hyper-inflammatory. We hypothesized that pre-licensing MSCs in a hyper-inflammatory ARDS environment would enhance their therapeutic efficacy in acute lung inflammation (ALI). Serum samples from patients with ARDS were segregated into hypo- and hyper-inflammatory categories based on interleukin (IL)-6 levels. MSCs were licensed with pooled serum from patients with hypo- or hyper-inflammatory ARDS or healthy serum controls. Our findings show that hyper-inflammatory ARDS pre-licensed MSC conditioned medium (MSC-CMHyper) led to a significant enrichment in tight junction expression and enhanced barrier integrity in lung epithelial cells in vitro and in vivo in a vascular endothelial growth factor (VEGF)-dependent manner. Importantly, while both MSC-CMHypo and MSC-CMHyper significantly reduced IL-6 and tumor necrosis factor alpha (TNF-α) levels in the bronchoalveolar lavage fluid (BALF) of lipopolysaccharide (LPS)-induced ALI mice, only MSC-CMHyper significantly reduced lung permeability and overall clinical outcomes including weight loss and clinical score. Thus, the hypo- and hyper-inflammatory ARDS environments may differentially influence MSC cytoprotective and immunomodulatory functions.
Collapse
Affiliation(s)
- Courteney Tunstead
- Cellular Immunology Lab, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Evelina Volkova
- Cellular Immunology Lab, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Hazel Dunbar
- Cellular Immunology Lab, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Ian J Hawthorne
- Cellular Immunology Lab, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Alison Bell
- Anesthesia and Intensive Care Medicine, School of Medicine, College of Medicine Nursing and Health Sciences, University of Galway, Galway, Ireland; Anesthesia and Intensive Care Medicine, Galway University Hospitals, Saolta University Hospitals Groups, Galway, Ireland
| | - Louise Crowe
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland; Allergy, Inflammation & Remodelling Research Lab, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Joanne C Masterson
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland; Allergy, Inflammation & Remodelling Research Lab, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Claudia C Dos Santos
- Keenan Research Centre for Biomedical Research, St. Michael's Hospital, Toronto, ON, Canada
| | - Bairbre McNicholas
- Anesthesia and Intensive Care Medicine, School of Medicine, College of Medicine Nursing and Health Sciences, University of Galway, Galway, Ireland; Anesthesia and Intensive Care Medicine, Galway University Hospitals, Saolta University Hospitals Groups, Galway, Ireland
| | - John G Laffey
- Anesthesia and Intensive Care Medicine, School of Medicine, College of Medicine Nursing and Health Sciences, University of Galway, Galway, Ireland; Anesthesia and Intensive Care Medicine, Galway University Hospitals, Saolta University Hospitals Groups, Galway, Ireland
| | - Karen English
- Cellular Immunology Lab, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
3
|
Mahida RY, Yuan Z, Kolluri KK, Scott A, Parekh D, Hardy RS, Matthay MA, Perkins GD, Janes SM, Thickett DR. 11β hydroxysteroid dehydrogenase type 1 transgenic mesenchymal stem cells attenuate inflammation in models of sepsis. Front Bioeng Biotechnol 2024; 12:1422761. [PMID: 39036559 PMCID: PMC11257926 DOI: 10.3389/fbioe.2024.1422761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/12/2024] [Indexed: 07/23/2024] Open
Abstract
Background Human bone marrow mesenchymal stem cell (MSC) administration reduces inflammation in pre-clinical models of sepsis and sepsis-related lung injury, however clinical efficacy in patients has not yet been demonstrated. We previously showed that Alveolar Macrophage (AM) 11β-hydroxysteroid dehydrogenase type-1 (HSD-1) autocrine signalling is impaired in critically ill sepsis patients, which promotes inflammatory injury. Administration of transgenic MSCs (tMSCs) which overexpress HSD-1 may enhance the anti-inflammatory effects of local glucocorticoids and be more effective at reducing inflammation in sepsis than cellular therapy alone. Methods MSCs were transfected using a recombinant lentiviral vector containing the HSD-1 and GPF transgenes under the control of a tetracycline promoter. Thin layer chromatography assessed HSD-1 reductase activity in tMSCs. Mesenchymal stem cell phenotype was assessed by flow cytometry and bi-lineage differentiation. HSD-1 tMSCs were co-cultured with LPS-stimulated monocyte-derived macrophages (MDMs) from healthy volunteers prior to assessment of pro-inflammatory cytokine release. HSD-1 tMSCs were administered intravenously to mice undergoing caecal ligation and puncture (CLP). Results MSCs were transfected with an efficiency of 91.1%, and maintained an MSC phenotype. Functional HSD-1 activity was demonstrated in tMSCs, with predominant reductase cortisol activation (peak 8.23 pM/hour/100,000 cells). HSD-1 tMSC co-culture with LPS-stimulated MDMs suppressed TNFα and IL-6 release. Administration of transgene activated HSD-1 tMSCs in a murine model of CLP attenuated neutrophilic inflammation more effectively than transgene inactive tMSCs (medians 0.403 v 1.36 × 106/ml, p = 0.033). Conclusion The synergistic impact of HSD-1 transgene expression and MSC therapy attenuated neutrophilic inflammation in a mouse model of peritoneal sepsis more effectively than MSC therapy alone. Future studies investigating the anti-inflammatory capacity of HSD-1 tMSCs in models of sepsis-related direct lung injury and inflammatory diseases are required.
Collapse
Affiliation(s)
- Rahul Y. Mahida
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Zhengqiang Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Krishna K. Kolluri
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Aaron Scott
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Dhruv Parekh
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Rowan S. Hardy
- Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Michael A. Matthay
- Cardiovascular Research Institute, Department of Medicine and Department of Anaesthesia, University of California San Francisco, San Francisco, CA, United States
| | - Gavin D. Perkins
- Warwick Medical School, University of Warwick, Warwick, United Kingdom
| | - Sam M. Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - David R. Thickett
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
4
|
Kim N, Min GJ, Im KI, Nam YS, Song Y, Lee JS, Oh EJ, Chung NG, Jeon YW, Lee JW, Cho SG. Repeated Infusions of Bone-Marrow-Derived Mesenchymal Stem Cells over 8 Weeks for Steroid-Refractory Chronic Graft-versus-Host Disease: A Prospective, Phase I/II Clinical Study. Int J Mol Sci 2024; 25:6731. [PMID: 38928436 PMCID: PMC11204151 DOI: 10.3390/ijms25126731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Chronic graft-versus-host disease (cGVHD) is a long-term complication of allogeneic hematopoietic stem cell transplantation associated with poor quality of life and increased morbidity and mortality. Currently, there are several approved treatments for patients who do not respond to steroids, such as ruxolitinib. Nevertheless, a significant proportion of patients fail second-line treatment, indicating the need for novel approaches. Mesenchymal stem cells (MSCs) have been considered a potential treatment approach for steroid-refractory cGVHD. To evaluate the safety and efficacy of repeated infusions of MSCs, we administered intravenous MSCs every two weeks to ten patients with severe steroid-refractory cGVHD in a prospective phase I clinical trial. Each patient received a total of four doses, with each dose containing 1 × 106 cells/kg body weight from the same donor and same passage. Patients were assessed for their response to treatment using the 2014 National Institutes of Health (NIH) response criteria during each visit. Ten patients with diverse organ involvement were enrolled, collectively undergoing 40 infusions as planned. Remarkably, the MSC infusions were well tolerated without severe adverse events. Eight weeks after the initial MSC infusion, all ten patients showed partial responses characterized by the amelioration of clinical symptoms and enhancement of their quality of life. The overall response rate was 60%, with a complete response rate of 20% and a partial response (PR) rate of 40% at the last follow-up. Overall survival was 80%, with a median follow-up of 381 days. Two patients died due to relapse of their primary disease. Immunological analyses revealed a reduction in inflammatory markers, including Suppression of Tumorigenicity 2 (ST2), C-X-C motif chemokine ligand (CXCL)10, and Secreted phosphoprotein 1(SPP1), following the MSC treatment. Repeated MSC infusions proved to be both feasible and safe, and they may be an effective salvage therapy in patients with steroid-refractory cGVHD. Further large-scale clinical studies with long-term follow-up are needed in the future to determine the role of MSCs in cGVHD.
Collapse
Affiliation(s)
- Nayoun Kim
- Institute for Translational Research and Molecular Imaging, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (N.K.); (G.-J.M.); (K.-I.I.); (Y.-S.N.); (Y.S.); (J.-S.L.)
| | - Gi-June Min
- Institute for Translational Research and Molecular Imaging, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (N.K.); (G.-J.M.); (K.-I.I.); (Y.-S.N.); (Y.S.); (J.-S.L.)
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (N.-G.C.); (J.W.L.)
| | - Keon-Il Im
- Institute for Translational Research and Molecular Imaging, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (N.K.); (G.-J.M.); (K.-I.I.); (Y.-S.N.); (Y.S.); (J.-S.L.)
| | - Young-Sun Nam
- Institute for Translational Research and Molecular Imaging, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (N.K.); (G.-J.M.); (K.-I.I.); (Y.-S.N.); (Y.S.); (J.-S.L.)
| | - Yunejin Song
- Institute for Translational Research and Molecular Imaging, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (N.K.); (G.-J.M.); (K.-I.I.); (Y.-S.N.); (Y.S.); (J.-S.L.)
| | - Jun-Seok Lee
- Institute for Translational Research and Molecular Imaging, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (N.K.); (G.-J.M.); (K.-I.I.); (Y.-S.N.); (Y.S.); (J.-S.L.)
| | - Eun-Jee Oh
- Department of Laboratory Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Nack-Gyun Chung
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (N.-G.C.); (J.W.L.)
| | - Young-Woo Jeon
- Department of Hematology, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Jong Wook Lee
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (N.-G.C.); (J.W.L.)
| | - Seok-Goo Cho
- Institute for Translational Research and Molecular Imaging, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (N.K.); (G.-J.M.); (K.-I.I.); (Y.-S.N.); (Y.S.); (J.-S.L.)
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (N.-G.C.); (J.W.L.)
| |
Collapse
|
5
|
Battaglini D, Iavarone IG, Rocco PRM. An update on the pharmacological management of acute respiratory distress syndrome. Expert Opin Pharmacother 2024; 25:1229-1247. [PMID: 38940703 DOI: 10.1080/14656566.2024.2374461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/26/2024] [Indexed: 06/29/2024]
Abstract
INTRODUCTION Acute respiratory distress syndrome (ARDS) is characterized by acute inflammatory injury to the lungs, alterations in vascular permeability, loss of aerated tissue, bilateral infiltrates, and refractory hypoxemia. ARDS is considered a heterogeneous syndrome, which complicates the search for effective therapies. The goal of this review is to provide an update on the pharmacological management of ARDS. AREAS COVERED The difficulties in finding effective pharmacological therapies are mainly due to the challenges in designing clinical trials for this unique, varied population of critically ill patients. Recently, some trials have been retrospectively analyzed by dividing patients into hyper-inflammatory and hypo-inflammatory sub-phenotypes. This approach has led to significant outcome improvements with some pharmacological treatments that previously failed to demonstrate efficacy, which suggests that a more precise selection of ARDS patients for clinical trials could be the key to identifying effective pharmacotherapies. This review is provided after searching the main studies on this topics on the PubMed and clinicaltrials.gov databases. EXPERT OPINION The future of ARDS therapy lies in precision medicine, innovative approaches to drug delivery, immunomodulation, cell-based therapies, and robust clinical trial designs. These should lead to more effective and personalized treatments for patients with ARDS.
Collapse
Affiliation(s)
- Denise Battaglini
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico, Genova, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, Genova, Italy
| | - Ida Giorgia Iavarone
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico, Genova, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, Genova, Italy
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Chen S, Liang B, Xu J. Unveiling heterogeneity in MSCs: exploring marker-based strategies for defining MSC subpopulations. J Transl Med 2024; 22:459. [PMID: 38750573 PMCID: PMC11094970 DOI: 10.1186/s12967-024-05294-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/11/2024] [Indexed: 05/19/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) represent a heterogeneous cell population distributed throughout various tissues, demonstrating remarkable adaptability to microenvironmental cues and holding immense promise for disease treatment. However, the inherent diversity within MSCs often leads to variability in therapeutic outcomes, posing challenges for clinical applications. To address this heterogeneity, purification of MSC subpopulations through marker-based isolation has emerged as a promising approach to ensure consistent therapeutic efficacy. In this review, we discussed the reported markers of MSCs, encompassing those developed through candidate marker strategies and high-throughput approaches, with the aim of explore viable strategies for addressing the heterogeneity of MSCs and illuminate prospective research directions in this field.
Collapse
Affiliation(s)
- Si Chen
- Shenzhen University Medical School, Shenzhen University, Shenzhen, 518000, People's Republic of China
| | - Bowei Liang
- Shenzhen University Medical School, Shenzhen University, Shenzhen, 518000, People's Republic of China
| | - Jianyong Xu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Fuqiang Avenue 1001, Shenzhen, 518060, Guangdong, People's Republic of China.
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, 518000, People's Republic of China.
| |
Collapse
|
7
|
Pisciotta W, Passannante A, Arina P, Alotaibi K, Ambler G, Arulkumaran N. High-flow nasal oxygen versus conventional oxygen therapy and noninvasive ventilation in COVID-19 respiratory failure: a systematic review and network meta-analysis of randomised controlled trials. Br J Anaesth 2024; 132:936-944. [PMID: 38307776 PMCID: PMC11103093 DOI: 10.1016/j.bja.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/17/2023] [Accepted: 12/18/2023] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Noninvasive methods of respiratory support, including noninvasive ventilation (NIV), continuous positive airway pressure (CPAP), and high-flow nasal oxygen (HFNO), are potential strategies to prevent progression to requirement for invasive mechanical ventilation in acute hypoxaemic respiratory failure. The COVID-19 pandemic provided an opportunity to understand the utility of noninvasive respiratory support among a homogeneous cohort of patients with contemporary management of acute respiratory distress syndrome. We performed a network meta-analysis of studies evaluating the efficacy of NIV (including CPAP) and HFNO, compared with conventional oxygen therapy (COT), in patients with COVID-19. METHODS PubMed, Embase, and the Cochrane library were searched in May 2023. Standard random-effects meta-analysis was used first to estimate all direct pairwise associations and the results from all studies were combined using frequentist network meta-analysis. Primary outcome was treatment failure, defined as discontinuation of HFNO, NIV, or COT despite progressive disease. Secondary outcome was mortality. RESULTS We included data from eight RCTs with 2302 patients, (756 [33%] assigned to COT, 371 [16%] to NIV, and 1175 [51%] to HFNO). The odds of treatment failure were similar for NIV (P=0.33) and HFNO (P=0.25), and both were similar to that for COT (reference category). The odds of mortality were similar for all three treatments (odds ratio for NIV vs COT: 1.06 [0.46-2.44] and HFNO vs COT: 0.97 [0.57-1.65]). CONCLUSIONS Noninvasive ventilation, high-flow nasal oxygen, and conventional oxygen therapy are comparable with regards to treatment failure and mortality in COVID-19-associated acute respiratory failure. PROSPERO REGISTRATION CRD42023426495.
Collapse
Affiliation(s)
- Walter Pisciotta
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Alberto Passannante
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Pietro Arina
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Khalid Alotaibi
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Gareth Ambler
- Department of Statistical Science, University College London, London, UK
| | - Nishkantha Arulkumaran
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK.
| |
Collapse
|
8
|
Levy E, Reilly JP. Pharmacologic Treatments in Acute Respiratory Failure. Crit Care Clin 2024; 40:275-289. [PMID: 38432696 DOI: 10.1016/j.ccc.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Acute respiratory failure relies on supportive care using non-invasive and invasive oxygen and ventilatory support. Pharmacologic therapies for the most severe form of respiratory failure, acute respiratory distress syndrome (ARDS), are limited. This review focuses on the most promising therapies for ARDS, targeting different mechanisms that contribute to dysregulated inflammation and resultant hypoxemia. Significant heterogeneity exists within the ARDS population. Treatment requires prompt recognition of ARDS and an understanding of which patients may benefit most from specific pharmacologic interventions. The key to finding effective pharmacotherapies for ARDS may rely on deeper understanding of pathophysiology and bedside identification of ARDS subphenotypes.
Collapse
Affiliation(s)
- Elizabeth Levy
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, 3400 Spruce Street, Philadelphia, PA 19146, USA
| | - John P Reilly
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, 3400 Spruce Street, Philadelphia, PA 19146, USA.
| |
Collapse
|
9
|
Wang Z, Li T, Zhang Z, Yuan M, Shi M, Wang FS, Linghu EQ, Shi L. Human umbilical cord-derived mesenchymal stem cells for the treatment of decompensated cirrhosis (MSC-DLC-1): a dose-escalation, phase I trial protocol. BMJ Open 2023; 13:e078362. [PMID: 38159943 PMCID: PMC10759077 DOI: 10.1136/bmjopen-2023-078362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024] Open
Abstract
INTRODUCTION There are limited therapeutic options to efficiently treat patients with decompensated liver cirrhosis. This trial aims to explore the efficacy and safety of human umbilical cord-derived mesenchymal stem cells (UC-MSCs) for the treatment of patients with decompensated liver cirrhosis. METHODS AND ANALYSIS This study is an open-label, dose-escalation, one-armed phase I trial. A single injection of UC-MSCs will be administered in a predetermined dose in each cohort (5.0×107, 1.0×108, 1.5×108 or 2.0×108 cells) according to the '3+3' rule. The primary evaluation measures will include the incidence of adverse events and the change in the Model for End-stage Liver Disease (MELD) score from baseline to the 28th day. Secondary evaluation measures will be evaluated at baseline and at each follow-up point. These measures will include the change in the MELD score from baseline to each follow-up point, the incidence of each complication associated with decompensated cirrhosis, liver transplant-free survival and the incidence of liver failure, among other relevant measures. All patients will be followed up for 24 months. This study will evaluate whether the use of UC-MSCs to treat patients with decompensated liver cirrhosis is safe and tolerable. ETHICS AND DISSEMINATION The study has been approved by the Chinese People's Liberation Army General Hospital (Approval#: 2018-107-D-4). Once conducted, the results from the study will be published in a peer-reviewed journal. TRIAL REGISTRATION NUMBER NCT05227846.
Collapse
Affiliation(s)
- Zerui Wang
- Chinese PLA Medical School, Beijing, People's Republic of China
- Senior Department of Gastroenterology, the First Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Tiantian Li
- Senior Department of Infectious Diseases, the Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People's Republic of China
| | - Ziying Zhang
- Chinese PLA Medical School, Beijing, People's Republic of China
- Senior Department of Infectious Diseases, the Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People's Republic of China
| | - Mengqi Yuan
- Chinese PLA Medical School, Beijing, People's Republic of China
- Senior Department of Infectious Diseases, the Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People's Republic of China
| | - Ming Shi
- Chinese PLA Medical School, Beijing, People's Republic of China
- Senior Department of Infectious Diseases, the Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People's Republic of China
| | - Fu-Sheng Wang
- Chinese PLA Medical School, Beijing, People's Republic of China
- Senior Department of Infectious Diseases, the Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People's Republic of China
| | - En-Qiang Linghu
- Chinese PLA Medical School, Beijing, People's Republic of China
- Senior Department of Gastroenterology, the First Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Lei Shi
- Chinese PLA Medical School, Beijing, People's Republic of China
- Senior Department of Infectious Diseases, the Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People's Republic of China
| |
Collapse
|
10
|
Du S, Elliman SJ, Zeugolis DI, O'Brien T. Carrageenan as a macromolecular crowding agent in human umbilical cord derived mesenchymal stromal cell culture. Int J Biol Macromol 2023; 251:126353. [PMID: 37591431 DOI: 10.1016/j.ijbiomac.2023.126353] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Cell sheet tissue engineering requires prolonged in vitro culture for the development of implantable devices. Unfortunately, lengthy in vitro culture is associated with cell phenotype loss and substantially higher cost of goods, which collectively hinder clinical translation and commercialisation of tissue engineered medicines. Although macromolecular crowding has been shown to enhance and accelerate extracellular matrix deposition, whilst maintaining cellular phenotype, the optimal macromolecular crowding agent still remains elusive. Herein, we evaluated the biophysical properties of seven different carrageenan molecules at five different concentrations and their effect on human umbilical cord-derived mesenchymal stromal cell morphology, viability, metabolic activity, proliferation, extracellular matrix deposition and surface marker expression. All types of carrageenan (CR) assessed demonstrated a hydrodynamic radius increase as a function of increasing concentration; high polydispersity; and negative charge. Two iota CRs were excluded from further analysis due to poor solubility in cell culture. Among the remaining five carrageenans, the lambda medium viscosity type at concentrations of 10 and 50 μg/ml did not affect cell morphology, viability, metabolic activity, proliferation and expression of surface markers and significantly increased the deposition of collagen types I, III and IV, fibronectin and laminin. Our data highlight the potential of lambda medium viscosity carrageenan as a macromolecular crowding agent for the accelerated development of functional tissue engineered medicines.
Collapse
Affiliation(s)
- Shanshan Du
- Regenerative Medicine Institute (REMEDI), Biomedical Sciences Building, University of Galway, Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, Galway, Ireland
| | | | - Dimitrios I Zeugolis
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, Galway, Ireland; Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, University of Galway, Galway, Ireland; Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research, School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| | - Timothy O'Brien
- Regenerative Medicine Institute (REMEDI), Biomedical Sciences Building, University of Galway, Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, Galway, Ireland; Orbsen Therapeutics Ltd, IDA Business Park, Dangan, Galway, Ireland.
| |
Collapse
|
11
|
Gorman EA, Rynne J, Gardiner HJ, Rostron AJ, Bannard-Smith J, Bentley AM, Brealey D, Campbell C, Curley G, Clarke M, Dushianthan A, Hopkins P, Jackson C, Kefela K, Krasnodembskaya A, Laffey JG, McDowell C, McFarland M, McFerran J, McGuigan P, Perkins GD, Silversides J, Smythe J, Thompson J, Tunnicliffe WS, Welters IDM, Amado-Rodríguez L, Albaiceta G, Williams B, Shankar-Hari M, McAuley DF, O'Kane CM. Repair of Acute Respiratory Distress Syndrome in COVID-19 by Stromal Cells (REALIST-COVID Trial): A Multicenter, Randomized, Controlled Clinical Trial. Am J Respir Crit Care Med 2023; 208:256-269. [PMID: 37154608 DOI: 10.1164/rccm.202302-0297oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023] Open
Abstract
Rationale: Mesenchymal stromal cells (MSCs) may modulate inflammation, promoting repair in coronavirus disease (COVID-19)-related acute respiratory distress syndrome (ARDS). Objectives: We investigated the safety and efficacy of ORBCEL-C (CD362 [cluster of differentiation 362]-enriched, umbilical cord-derived MSCs) in COVID-19-related ARDS. Methods: In this multicenter, randomized, double-blind, allocation-concealed, placebo-controlled trial (NCT03042143), patients with moderate to severe COVID-19-related ARDS were randomized to receive ORBCEL-C (400 million cells) or placebo (Plasma-Lyte 148). The primary safety and efficacy outcomes were the incidence of serious adverse events and oxygenation index at Day 7, respectively. Secondary outcomes included respiratory compliance, driving pressure, PaO2:FiO2 ratio, and Sequential Organ Failure Assessment score. Clinical outcomes relating to duration of ventilation, lengths of ICU and hospital stays, and mortality were collected. Long-term follow-up included diagnosis of interstitial lung disease at 1 year and significant medical events and mortality at 2 years. Transcriptomic analysis was performed on whole blood at Days 0, 4, and 7. Measurements and Main Results: Sixty participants were recruited (final analysis: n = 30 received ORBCEL-C, n = 29 received placebo; 1 participant in the placebo group withdrew consent). Six serious adverse events occurred in the ORBCEL-C group and three in the placebo group (risk ratio, 2.9 [95% confidence interval, 0.6-13.2]; P = 0.25). Day 7 mean (SD) oxygenation index did not differ (ORBCEL-C, 98.3 [57.2] cm H2O/kPa; placebo, 96.6 [67.3] cm H2O/kPa). There were no differences in secondary surrogate outcomes or in mortality at Day 28, Day 90, 1 year, or 2 years. There was no difference in the prevalence of interstitial lung disease at 1 year or significant medical events up to 2 years. ORBCEL-C modulated the peripheral blood transcriptome. Conclusion: ORBCEL-C MSCs were safe in subjects with moderate to severe COVID-19-related ARDS but did not improve surrogates of pulmonary organ dysfunction.
Collapse
Affiliation(s)
- Ellen A Gorman
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Jennifer Rynne
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, United Kingdom
| | - Hannah J Gardiner
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Anthony J Rostron
- Sunderland Royal Hospital, South Tyneside and Sunderland National Health Service Foundation Trust, Sunderland, United Kingdom
- Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Andrew M Bentley
- Acute Intensive Care Unit, Wythenshawe Hospital, Manchester, United Kingdom
| | - David Brealey
- University College Hospital London, London, United Kingdom
| | | | - Gerard Curley
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Mike Clarke
- Northern Ireland Clinical Trials Unit, Belfast, United Kingdom
| | - Ahilanadan Dushianthan
- University Hospital Southampton, Southampton, United Kingdom
- National Institute for Health and Care Research Southampton Biomedical Research Centre, University of Southampton, Southampton, United Kingdom
| | - Phillip Hopkins
- King's Trauma Centre, King's College Hospital, London, United Kingdom
| | - Colette Jackson
- Northern Ireland Clinical Trials Unit, Belfast, United Kingdom
| | - Kallirroi Kefela
- Department of Critical Care, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Anna Krasnodembskaya
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - John G Laffey
- Regenerative Medicine Institute at CÚRAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| | - Cliona McDowell
- Northern Ireland Clinical Trials Unit, Belfast, United Kingdom
| | - Margaret McFarland
- Department of Critical Care, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Jamie McFerran
- Northern Ireland Clinical Trials Unit, Belfast, United Kingdom
| | - Peter McGuigan
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
- Department of Critical Care, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Gavin D Perkins
- Critical Care Unit, University Hospitals Birmingham, Birmingham, United Kingdom
- Warwick Clinical Trials Unit, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Jonathan Silversides
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
- Department of Critical Care, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Jon Smythe
- National Health Service Blood and Transplant, Oxford, United Kingdom
| | - Jacqui Thompson
- National Health Service Blood and Transplant, Birmingham, United Kingdom
| | | | - Ingeborg D M Welters
- Intensive Care Unit, Royal Liverpool University Hospital, Liverpool, United Kingdom
- Institute of Life Course Medical Sciences, University of Liverpool, Liverpool Centre for Cardiovascular Science, Liverpool, United Kingdom
| | - Laura Amado-Rodríguez
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Guillermo Albaiceta
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central de Asturias, Oviedo, Spain
- Departamento de Biología Funcional, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain; and
| | - Barry Williams
- Independent Patient and Public Representative, Sherborne, United Kingdom
| | - Manu Shankar-Hari
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, United Kingdom
| | - Daniel F McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
- Department of Critical Care, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Cecilia M O'Kane
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
12
|
Battaglini D, Iavarone IG, Al-Husinat L, Ball L, Robba C, Silva PL, Cruz FF, Rocco PR. Anti-inflammatory therapies for acute respiratory distress syndrome. Expert Opin Investig Drugs 2023; 32:1143-1155. [PMID: 37996088 DOI: 10.1080/13543784.2023.2288080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/22/2023] [Indexed: 11/25/2023]
Abstract
INTRODUCTION Treatments for the acute respiratory distress syndrome (ARDS) are mainly supportive, and ventilatory management represents a key approach in these patients. Despite progress in pharmacotherapy, anti-inflammatory strategies for the treatment of ARDS have shown controversial results. Positive outcomes with pharmacologic and nonpharmacologic treatments have been found in two different biological subphenotypes of ARDS, suggesting that, with a personalized medicine approach, pharmacotherapy for ARDS can be effective. AREAS COVERED This article reviews the literature concerning anti-inflammatory therapies for ARDS, focusing on pharmacological and stem-cell therapies, including extracellular vesicles. EXPERT OPINION Despite advances, ARDS treatments remain primarily supportive. Ventilatory and fluid management are important strategies in these patients that have demonstrated significant impacts on outcome. Anti-inflammatory drugs have shown some benefits, primarily in preclinical research and in specific clinical scenarios, but no recommendations are available from guidelines to support their use in patients with ARDS, except in particular settings such as different subphenotypes, specific etiologies, or clinical trials. Personalized medicine seems promising insofar as it may identify specific subgroups of patients with ARDS who may benefit from anti-inflammatory treatment. However, additional efforts are needed to move subphenotype characterization from bench to bedside.
Collapse
Affiliation(s)
- Denise Battaglini
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Ida Giorgia Iavarone
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Lou'i Al-Husinat
- Department of Clinical Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Lorenzo Ball
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Chiara Robba
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda F Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia Rm Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Ramji HF, Hafiz M, Altaq HH, Hussain ST, Chaudry F. Acute Respiratory Distress Syndrome; A Review of Recent Updates and a Glance into the Future. Diagnostics (Basel) 2023; 13:diagnostics13091528. [PMID: 37174920 PMCID: PMC10177247 DOI: 10.3390/diagnostics13091528] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 05/15/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a rapidly progressive form of respiratory failure that accounts for 10% of admissions to the ICU and is associated with approximately 40% mortality in severe cases. Despite significant mortality and healthcare burden, the mainstay of management remains supportive care. The recent pandemic of SARS-CoV-2 has re-ignited a worldwide interest in exploring the pathophysiology of ARDS, looking for innovative ideas to treat this disease. Recently, many trials have been published utilizing different pharmacotherapy targets; however, the long-term benefits of these agents remain unknown. Metabolomics profiling and stem cell transplantation offer strong enthusiasm and may completely change the outlook of ARDS management in the near future.
Collapse
Affiliation(s)
- Husayn F Ramji
- University of Oklahoma College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Maida Hafiz
- Department of Sleep Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Hiba Hammad Altaq
- Department of Pulmonary, Critical Care & Sleep Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Syed Talal Hussain
- Department of Pulmonary, Critical Care & Sleep Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Fawad Chaudry
- Department of Pulmonary, Critical Care & Sleep Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
14
|
Yudhawati R, Shimizu K. PGE2 Produced by Exogenous MSCs Promotes Immunoregulation in ARDS Induced by Highly Pathogenic Influenza A through Activation of the Wnt-β-Catenin Signaling Pathway. Int J Mol Sci 2023; 24:ijms24087299. [PMID: 37108459 PMCID: PMC10138595 DOI: 10.3390/ijms24087299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Acute respiratory distress syndrome is an acute respiratory failure caused by cytokine storms; highly pathogenic influenza A virus infection can induce cytokine storms. The innate immune response is vital in this cytokine storm, acting by activating the transcription factor NF-κB. Tissue injury releases a danger-associated molecular pattern that provides positive feedback for NF-κB activation. Exogenous mesenchymal stem cells can also modulate immune responses by producing potent immunosuppressive substances, such as prostaglandin E2. Prostaglandin E2 is a critical mediator that regulates various physiological and pathological processes through autocrine or paracrine mechanisms. Activation of prostaglandin E2 results in the accumulation of unphosphorylated β-catenin in the cytoplasm, which subsequently reaches the nucleus to inhibit the transcription factor NF-κB. The inhibition of NF-κB by β-catenin is a mechanism that reduces inflammation.
Collapse
Affiliation(s)
- Resti Yudhawati
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Airlangga-Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia
- Indonesia-Japan Collaborative Research Center for Emerging and Re-Emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya 60286, Indonesia
| | - Kazufumi Shimizu
- Indonesia-Japan Collaborative Research Center for Emerging and Re-Emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya 60286, Indonesia
- Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| |
Collapse
|
15
|
Jerkic M, Szaszi K, Laffey JG, Rotstein O, Zhang H. Key Role of Mesenchymal Stromal Cell Interaction with Macrophages in Promoting Repair of Lung Injury. Int J Mol Sci 2023; 24:ijms24043376. [PMID: 36834784 PMCID: PMC9965074 DOI: 10.3390/ijms24043376] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
Lung macrophages (Mφs) are essential for pulmonary innate immunity and host defense due to their dynamic polarization and phenotype shifts. Mesenchymal stromal cells (MSCs) have secretory, immunomodulatory, and tissue-reparative properties and have shown promise in acute and chronic inflammatory lung diseases and in COVID-19. Many beneficial effects of MSCs are mediated through their interaction with resident alveolar and pulmonary interstitial Mφs. Bidirectional MSC-Mφ communication is achieved through direct contact, soluble factor secretion/activation, and organelle transfer. The lung microenvironment facilitates MSC secretion of factors that result in Mφ polarization towards an immunosuppressive M2-like phenotype for the restoration of tissue homeostasis. M2-like Mφ in turn can affect the MSC immune regulatory function in MSC engraftment and tissue reparatory effects. This review article highlights the mechanisms of crosstalk between MSCs and Mφs and the potential role of their interaction in lung repair in inflammatory lung diseases.
Collapse
Affiliation(s)
- Mirjana Jerkic
- The Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1T8, Canada
- Correspondence:
| | - Katalin Szaszi
- The Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1T8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - John G. Laffey
- The Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1T8, Canada
- Anaesthesia and Intensive Care Medicine, School of Medicine, University of Galway, H91 TK33 Galway, Ireland
| | - Ori Rotstein
- The Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1T8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Haibo Zhang
- The Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1T8, Canada
- Department of Anesthesiology and Pain Medicine, Interdepartmental Division of Critical Care Medicine and Department of Physiology, University of Toronto, Toronto, ON M5G 1E2, Canada
| |
Collapse
|
16
|
O’Kane CM, Matthay MA. Understanding the Role of Mesenchymal Stromal Cells in Treating COVID-19 Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2023; 207:231-233. [PMID: 36194575 PMCID: PMC9896645 DOI: 10.1164/rccm.202209-1838ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Cecilia M. O’Kane
- Wellcome Wolfson Institute for Experimental MedicineQueen’s University of BelfastBelfast, United Kingdom
| | - Michael A. Matthay
- Cardiovascular Research InstituteSan Francisco, California,Departments of Medicine and AnesthesiaUniversity of California San FranciscoSan Francisco, California
| |
Collapse
|
17
|
Ulldemolins A, Jurado A, Herranz-Diez C, Gavara N, Otero J, Farré R, Almendros I. Lung Extracellular Matrix Hydrogels-Derived Vesicles Contribute to Epithelial Lung Repair. Polymers (Basel) 2022; 14:polym14224907. [PMID: 36433034 PMCID: PMC9692679 DOI: 10.3390/polym14224907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
The use of physiomimetic decellularized extracellular matrix-derived hydrogels is attracting interest since they can modulate the therapeutic capacity of numerous cell types, including mesenchymal stromal cells (MSCs). Remarkably, extracellular vesicles (EVs) derived from MSCs display similar functions as their parental cells, mitigating tissue damage in lung diseases. However, recent data have shown that ECM-derived hydrogels could release other resident vesicles similar to EVs. Here, we aim to better understand the contribution of EVs and ECM-vesicles released from MSCs and/or lung-derived hydrogel (L-HG) in lung repair by using an in vitro lung injury model. L-HG derived-vesicles and MSCs EVs cultured either in L-HG or conventional plates were isolated and characterized. The therapeutic capacity of vesicles obtained from each experimental condition was tested by using an alveolar epithelial wound-healing assay. The number of ECM-vesicles released from acellular L-HG was 10-fold greater than EVs from conventional MSCs cell culture revealing that L-HG is an important source of bioactive vesicles. MSCs-derived EVs and L-HG vesicles have similar therapeutic capacity in lung repair. However, when wound closure rate was normalized by total proteins, the MSCs-derived EVs shows higher therapeutic potential to those released by L-HG. The EVs released from L-HG must be considered when HG is used as substrate for cell culture and EVs isolation.
Collapse
Affiliation(s)
- Anna Ulldemolins
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Alicia Jurado
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Carolina Herranz-Diez
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Núria Gavara
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Jorge Otero
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- CIBER de Enfermedades Respiratorias, 28029 Madrid, Spain
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- CIBER de Enfermedades Respiratorias, 28029 Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain
| | - Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- CIBER de Enfermedades Respiratorias, 28029 Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain
- Correspondence:
| |
Collapse
|
18
|
Li TT, Wang ZR, Yao WQ, Linghu EQ, Wang FS, Shi L. Stem Cell Therapies for Chronic Liver Diseases: Progress and Challenges. Stem Cells Transl Med 2022; 11:900-911. [PMID: 35993521 PMCID: PMC9492280 DOI: 10.1093/stcltm/szac053] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic liver diseases have become a significant health issue worldwide and urgently require the development of novel therapeutic approaches, in addition to liver transplantation. Recent clinical and preclinical studies have shown that cell-based therapeutic strategies may contribute to the improvement of chronic liver diseases and offer new therapeutic options to restore liver function through their roles in tissue impairment and immunomodulation. In this review, we summarize the current progress and analyze the challenges for different types of cell therapies used in the treatment of chronic liver diseases currently explored in clinical trials and preclinical studies in animal models. We also discuss some critical issues regarding the use of mesenchymal stem cells (MSCs, the most extensive cell source of stem cells), including therapeutic dosage, transfusion routine, and pharmacokinetics/pharmacodynamics (PK/PD) of transfused MSCs.
Collapse
Affiliation(s)
- Tian-Tian Li
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People's Republic of China.,The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
| | - Ze-Rui Wang
- Department of Gastroenterology, First Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Wei-Qi Yao
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,National Industrial Base for Stem Cell Engineering Products, Tianjin, People's Republic of China
| | - En-Qiang Linghu
- Department of Gastroenterology, First Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Fu-Sheng Wang
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People's Republic of China
| | - Lei Shi
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People's Republic of China
| |
Collapse
|
19
|
Hoang DM, Pham PT, Bach TQ, Ngo ATL, Nguyen QT, Phan TTK, Nguyen GH, Le PTT, Hoang VT, Forsyth NR, Heke M, Nguyen LT. Stem cell-based therapy for human diseases. Signal Transduct Target Ther 2022; 7:272. [PMID: 35933430 PMCID: PMC9357075 DOI: 10.1038/s41392-022-01134-4] [Citation(s) in RCA: 289] [Impact Index Per Article: 144.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/07/2023] Open
Abstract
Recent advancements in stem cell technology open a new door for patients suffering from diseases and disorders that have yet to be treated. Stem cell-based therapy, including human pluripotent stem cells (hPSCs) and multipotent mesenchymal stem cells (MSCs), has recently emerged as a key player in regenerative medicine. hPSCs are defined as self-renewable cell types conferring the ability to differentiate into various cellular phenotypes of the human body, including three germ layers. MSCs are multipotent progenitor cells possessing self-renewal ability (limited in vitro) and differentiation potential into mesenchymal lineages, according to the International Society for Cell and Gene Therapy (ISCT). This review provides an update on recent clinical applications using either hPSCs or MSCs derived from bone marrow (BM), adipose tissue (AT), or the umbilical cord (UC) for the treatment of human diseases, including neurological disorders, pulmonary dysfunctions, metabolic/endocrine-related diseases, reproductive disorders, skin burns, and cardiovascular conditions. Moreover, we discuss our own clinical trial experiences on targeted therapies using MSCs in a clinical setting, and we propose and discuss the MSC tissue origin concept and how MSC origin may contribute to the role of MSCs in downstream applications, with the ultimate objective of facilitating translational research in regenerative medicine into clinical applications. The mechanisms discussed here support the proposed hypothesis that BM-MSCs are potentially good candidates for brain and spinal cord injury treatment, AT-MSCs are potentially good candidates for reproductive disorder treatment and skin regeneration, and UC-MSCs are potentially good candidates for pulmonary disease and acute respiratory distress syndrome treatment.
Collapse
Affiliation(s)
- Duc M Hoang
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam.
| | - Phuong T Pham
- Department of Cellular Therapy, Vinmec High-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam
| | - Trung Q Bach
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Anh T L Ngo
- Department of Cellular Therapy, Vinmec High-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam
| | - Quyen T Nguyen
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Trang T K Phan
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Giang H Nguyen
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Phuong T T Le
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Van T Hoang
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Nicholas R Forsyth
- Institute for Science & Technology in Medicine, Keele University, Keele, UK
| | - Michael Heke
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Liem Thanh Nguyen
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| |
Collapse
|
20
|
Ting AE, Baker EK, Champagne J, Desai TJ, Dos Santos CC, Heijink IH, Itescu S, Le Blanc K, Matthay MA, McAuley DF, McIntyre L, Mei SHJ, Parekkadan B, Rocco PRM, Sheridan J, Thébaud B, Weiss DJ. Proceedings of the ISCT scientific signature series symposium, "Advances in cell and gene therapies for lung diseases and critical illnesses": International Society for Cell & Gene Therapy, Burlington VT, US, July 16, 2021. Cytotherapy 2022; 24:774-788. [PMID: 35613962 DOI: 10.1016/j.jcyt.2021.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 11/20/2022]
Abstract
The ISCT Scientific Signature Series Symposium "Advances in Cell and Gene Therapies for Lung Diseases and Critical Illnesses" was held as an independent symposium in conjunction with the biennial meeting, "Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Diseases," which took place July 12-15, 2021, at the University of Vermont. This is the third Respiratory System-based Signature Series event; the first 2, "Tracheal Bioengineering, the Next Steps" and "Cellular Therapies for Pulmonary Diseases and Critical Illnesses: State of the Art of European Science," took place in 2014 and 2015, respectively. Cell- and gene-based therapies for respiratory diseases and critical illnesses continue to be a source of great promise and opportunity. This reflects ongoing advancements in understanding of the mechanisms by which cell-based therapies, particularly those using mesenchymal stromal cells (MSCs), can mitigate different lung injuries and the increasing sophistication with which preclinical data is translated into clinical investigations. This also reflects continuing evolution in gene transfer vectors, including those designed for in situ gene editing in parallel with those targeting gene or cell replacement. Therefore, this symposium convened global thought leaders in a forum designed to catalyze communication and collaboration to bring the greatest possible innovation and value of cell- and gene-based therapies for patients with respiratory diseases and critical illnesses.
Collapse
Affiliation(s)
| | - Elizabeth K Baker
- Newborn Research Centre, Royal Women's Hospital, Melbourne, Victoria, Australia
| | | | - Tushar J Desai
- Stanford University School of Medicine, Stanford, California, USA
| | - Claudia C Dos Santos
- Interdepartmental Division of Critical Care, Department of Medicine and the Keenan Center for Biomedical Research, St. Michael's Hospital, University of Toronto, Toronto, Canada
| | - Irene H Heijink
- Medical Center Groningen, Department of Pathology and Medical Biology, University of Groningen, Groningen, the Netherlands
| | | | - Katarina Le Blanc
- Department of Laboratory Medicine, Karolinska Institutet, Sweden; Department of Cellular Therapy and Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Stockholm, Sweden
| | - Michael A Matthay
- University of San Francisco, San Francisco, California, United States
| | - Daniel F McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, NI, UK
| | | | - Shirley H J Mei
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Biju Parekkadan
- Sentien Biotechnologies, Lexington, Massachusetts, USA; Rutgers University, Piscataway, New Jersey, USA
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Daniel J Weiss
- University of Vermont College of Medicine, Burlington, Vermont, USA.
| |
Collapse
|
21
|
Wang J, Luo F, Suo Y, Zheng Y, Chen K, You D, Liu Y. Safety, efficacy and biomarkers analysis of mesenchymal stromal cells therapy in ARDS: a systematic review and meta-analysis based on phase I and II RCTs. Stem Cell Res Ther 2022; 13:275. [PMID: 35752865 PMCID: PMC9233855 DOI: 10.1186/s13287-022-02956-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/08/2022] [Indexed: 11/11/2022] Open
Abstract
Background Mesenchymal stromal cells (MSCs) therapy for acute respiratory distress syndrome (ARDS) is an emerging treatment, but most of the current trials of MSCs stay in the animal experimental stage, and the safety and efficacy of MSCs in clinical application are not clear. We aimed to analyze the safety, efficacy and biomarkers of mesenchymal stromal cells in the treatment of ARDS. Methods For this systematic review and meta-analysis, we searched PubMed, Embase, Cochrane Central Register of Controlled Trials, Web of science, CNKI, VIP and Wan Fang data, studies published between database inception and Mar 17, 2022. All randomized controlled trials (RCT) of stem cell interventions for ARDS were included, without language or date restrictions. We did separate meta-analyses for mortality, subjects with adverse events (AEs) and subjects with serious adverse events (SAEs). Since the trials data are dichotomous outcomes, the odds ratio (OR) is adopted for meta-analysis. The quality of the evidence was assessed with the Cochrane risk of bias tool. Findings In total, 5 trials involving 171 patients with ARDS were included in this meta-analysis. A total of 99 individuals were randomly assigned to receive MSCs treatment, and 72 were randomly assigned to receive placebo treatment. Treatment with MSCs appeared to increase the occurrence of adverse events, but this result was not statistically significant (OR, 1.58; 95%CI, 0.64–3.91; P = 0.32). The occurrence of serious adverse events was lower in the MSCs group than in the placebo group (OR, 0.57; 95%CI, 0.14–2.32; P = 0.43); there seems to be no significant difference between the two groups in terms of 28 days mortality (OR, 0.93; 95%CI, 0.45–1.89); oxygenation index and biomarkers showed a tendency to improve in treatment, but there was a lack of more statistically significant clinical evidence to support them. Interpretation Based on the current clinical trials, MSCs intervention has some safety for ARDS patients, but its effectiveness and predictive value of airspace biomarkers need to be determined by more large-scale, standard randomized controlled trials. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02956-3.
Collapse
Affiliation(s)
- Jianbao Wang
- Department of Respiratory and Critical Care Medicine, Fujian Respiratory Medical Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province, China
| | - Fenbin Luo
- Department of Respiratory and Critical Care Medicine, Fujian Respiratory Medical Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province, China
| | - Ye Suo
- Department of Respiratory and Critical Care Medicine, Fujian Respiratory Medical Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province, China
| | - Yuxin Zheng
- Department of Respiratory and Critical Care Medicine, Fujian Respiratory Medical Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province, China
| | - Kaikai Chen
- Department of Respiratory and Critical Care Medicine, Fujian Respiratory Medical Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province, China
| | - Deyuan You
- Department of Respiratory and Critical Care Medicine, Fujian Respiratory Medical Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province, China
| | - Yuqi Liu
- Department of Respiratory and Critical Care Medicine, Fujian Respiratory Medical Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province, China.
| |
Collapse
|
22
|
Gorman E, Shankar-Hari M, Hopkins P, Tunnicliffe WS, Perkins GD, Silversides J, McGuigan P, Jackson C, Boyle R, McFerran J, McDowell C, Campbell C, McFarland M, Smythe J, Thompson J, Williams B, Curley G, Laffey JG, Clarke M, McAuley DF, O’Kane C. Repair of acute respiratory distress syndrome by stromal cell administration (REALIST): a structured study protocol for an open-label dose-escalation phase 1 trial followed by a randomised, triple-blind, allocation concealed, placebo-controlled phase 2 trial. Trials 2022; 23:401. [PMID: 35562778 PMCID: PMC9099345 DOI: 10.1186/s13063-022-06220-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 03/26/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) may be of benefit in ARDS due to immunomodulatory and reparative properties. This trial investigates a novel CD362 enriched umbilical cord derived MSC product (REALIST ORBCEL-C), produced to Good Manufacturing Practice standards, in patients with moderate to severe ARDS due to COVID-19 and ARDS due to other causes. METHODS Phase 1 is a multicentre open-label dose-escalation pilot trial. Patients will receive a single infusion of REALIST ORBCEL-C (100 × 106 cells, 200 × 106 cells or 400 × 106 cells) in a 3 + 3 design. Phase 2 is a multicentre randomised, triple blind, allocation concealed placebo-controlled trial. Two cohorts of patients, with ARDS due to COVID-19 or ARDS due to other causes, will be recruited and randomised 1:1 to receive either a single infusion of REALIST ORBCEL-C (400 × 106 cells or maximal tolerated dose in phase 1) or placebo. Planned recruitment to each cohort is 60 patients. The primary safety outcome is the incidence of serious adverse events. The primary efficacy outcome is oxygenation index at day 7. The trial will be reported according to the Consolidated Standards for Reporting Trials (CONSORT 2010) statement. DISCUSSION The development and manufacture of an advanced therapy medicinal product to Good Manufacturing Practice standards within NHS infrastructure are discussed, including challenges encountered during the early stages of trial set up. The rationale to include a separate cohort of patients with ARDS due to COVID-19 in phase 2 of the trial is outlined. TRIAL REGISTRATION ClinicalTrials.gov NCT03042143. Registered on 3 February 2017. EudraCT Number 2017-000584-33.
Collapse
Affiliation(s)
- Ellen Gorman
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast, UK
| | - Manu Shankar-Hari
- Guy’s and St Thomas’ NHS Foundation Trust London, London, UK
- School of Immunology and Microbial Sciences, King’s College London, London, UK
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, UK
| | - Phil Hopkins
- Kings Trauma Centre, King’s College London, London, UK
| | | | - Gavin D. Perkins
- Warwick Clinical Trials Unit, Warwick Medical School, University of Warwick, Coventry, UK
- University Hospitals Birmingham, Birmingham, UK
| | - Jonathan Silversides
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast, UK
- Department of Critical Care, Belfast Health and Social Care Trust, Belfast, UK
| | - Peter McGuigan
- Department of Critical Care, Belfast Health and Social Care Trust, Belfast, UK
| | | | - Roisin Boyle
- Northern Ireland Clinical Trials Unit, Belfast, UK
| | | | | | | | - Margaret McFarland
- Department of Critical Care, Belfast Health and Social Care Trust, Belfast, UK
| | - Jon Smythe
- NHS Blood and Transplant Service, Oxford, UK
| | | | - Barry Williams
- Independent Patient and Public Representative, Sherborne, UK
| | - Gerard Curley
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | - John G. Laffey
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
| | - Mike Clarke
- Northern Ireland Clinical Trials Unit, Belfast, UK
| | - Daniel F. McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast, UK
- Department of Critical Care, Belfast Health and Social Care Trust, Belfast, UK
| | - Cecilia O’Kane
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast, UK
| |
Collapse
|
23
|
Xu R, Feng Z, Wang FS. Mesenchymal stem cell treatment for COVID-19. EBioMedicine 2022; 77:103920. [PMID: 35279630 PMCID: PMC8907937 DOI: 10.1016/j.ebiom.2022.103920] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/13/2022] [Accepted: 02/21/2022] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has caused a global pandemic since late 2019 that resulted in more than 360 million population infection. Among them, less than 7% of infected individuals develop severe or critical illness. Mass vaccination has been carried out, but reinfection and vaccine breakthrough cases still occur. Besides supportive and antiviral medications, much attention has been paid in immunotherapies that aim at reducing pathological changes in the lungs. Mesenchymal stem cells (MSCs) is used as an option because of their immunomodulatory, anti-inflammatory, and regenerative properties. As of January 16, 2022, when ClinicalTrials.gov was searched for "Mesenchymal stem cells and COVID-19," over 80 clinical trials were registered. MSC therapy was found to be safe and some effective in preclinical and clinical studies. Here, we summarize the major pathological characteristics of COVID-19 and provide scientific and rational evidence for the safety and possible effectiveness of MSCs in COVID-19 treatment.
Collapse
Affiliation(s)
- Ruonan Xu
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China.
| | - Zhiqian Feng
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Fu-Sheng Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China.
| |
Collapse
|
24
|
Clinical efficacy and mechanism of mesenchymal stromal cells in treatment of COVID-19. Stem Cell Res Ther 2022; 13:61. [PMID: 35130977 PMCID: PMC8822653 DOI: 10.1186/s13287-022-02743-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/25/2022] [Indexed: 02/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a highly infectious epidemic disease that has seriously affected human health worldwide. To date, however, there is still no definitive drug for the treatment of COVID-19. Cell-based therapies could represent a new breakthrough. Over the past several decades, mesenchymal stromal cells (MSCs) have proven to be ideal candidates for the treatment of many viral infectious diseases due to their immunomodulatory and tissue repair or regeneration promoting properties, and several relevant clinical trials for the treatment of COVID-19 have been registered internationally. Herein, we systematically summarize the clinical efficacy of MSCs in the treatment of COVID-19 based on published results, including mortality, time to symptom improvement, computed tomography (CT) imaging, cytokines, and safety, while elaborating on the possible mechanisms underpinning the effects of MSCs, to provide a reference for subsequent studies.
Collapse
|
25
|
Current Status and Future Perspectives on Machine Perfusion: A Treatment Platform to Restore and Regenerate Injured Lungs Using Cell and Cytokine Adsorption Therapy. Cells 2021; 11:cells11010091. [PMID: 35011653 PMCID: PMC8750486 DOI: 10.3390/cells11010091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 02/06/2023] Open
Abstract
Since its advent in the 1990′s, ex vivo lung perfusion (EVLP) has been studied and implemented as a tool to evaluate the quality of a donor organ prior to transplantation. It provides an invaluable window of opportunity for therapeutic intervention to render marginal lungs viable for transplantation. This ultimately aligns with the need of the lung transplant field to increase the number of available donor organs given critical shortages. As transplantation is the only option for patients with end-stage lung disease, advancements in technology are needed to decrease wait-list time and mortality. This review summarizes the results from the application of EVLP as a therapeutic intervention and focuses on the use of the platform with regard to cell therapies, cell product therapies, and cytokine filtration among other technologies. This review will summarize both the clinical and translational science being conducted in these aspects and will highlight the opportunities for EVLP to be developed as a powerful tool to increase the donor lung supply.
Collapse
|