1
|
Zhang X, Zhang H, Wang Y, Bai P, Zhang L, Toriba A, Nagao S, Suzuki N, Honda M, Wu Z, Han C, Hu M, Tang N. Estimation of gaseous polycyclic aromatic hydrocarbons (PAHs) and characteristics of atmospheric PAHs at a traffic site in Kanazawa, Japan. J Environ Sci (China) 2025; 149:57-67. [PMID: 39181668 DOI: 10.1016/j.jes.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 08/27/2024]
Abstract
Size-fractionated particulate matter (PM2.5 and PM>2.5) was collected at a traffic site in Kanazawa, Japan in a seasonal sampling work in 2020. Nine polycyclic aromatic hydrocarbons (4- to 6-ring PAHs) were determined in fine and coarse particles. The gas/particle partitioning coefficients (Kp) of the PAHs were calculated from the supercooled liquid vapour pressure and octanol-air partitioning coefficient based on the relationships obtained in previous traffic pollution-related studies. Gaseous PAHs were estimated by Kp and the concentrations of PM and particulate PAHs. The concentrations of total PAHs were 32.5, 320.1 and 5646.2 pg/m3 in the PM>2.5, PM2.5 and gas phases, respectively. Significant seasonal trends in PAHs were observed (particle phase: lowest in summer, gas phase: lowest in spring, particle and gas phase: lowest in spring). Compared to 2019, the total PAH concentrations (in particles) decreased in 2020, especially in spring and summer, which might be due to reduced traffic trips during the COVID-19 outbreak. The incremental lifetime cancer risk (ILCR) calculated from the toxic equivalent concentrations relative to benzo[a]pyrene (BaPeq) was lower than the acceptable limit issued by the US Environmental Protection Agency, indicating a low cancer risk in long-term exposure to current PAH levels. It is notable that gaseous PAHs considerably contributed to BaPeq and ILCR (over 50%), which highlighted the significance of gaseous PAH monitoring for public health protection. This low-cost estimation method for gaseous PAHs can be expected to reliably and conveniently obtain PAH concentrations as a surrogate for traditional sampling in the future work.
Collapse
Affiliation(s)
- Xuan Zhang
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Hao Zhang
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Yan Wang
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Pengchu Bai
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Lulu Zhang
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China; Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa 920-1192, Japan.
| | - Akira Toriba
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Seiya Nagao
- Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Nobuo Suzuki
- Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Masato Honda
- Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Zhijun Wu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Chong Han
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Min Hu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Ning Tang
- Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa 920-1192, Japan; Institute of Medical, Pharmaceutical and Health Science, Kanazawa University, Kanazawa 920-1192, Japan.
| |
Collapse
|
2
|
Zhang W, Sun H, Wang P, Zhu Y, Qian C, Yang R, Li Y, Li S, Matsiko J, Zhang Q, Jiang G. Temporal and spatial distribution of novel brominated flame retardants in atmosphere of the Beijing-Tianjin-Hebei region, China. CHEMOSPHERE 2024; 367:143598. [PMID: 39442574 DOI: 10.1016/j.chemosphere.2024.143598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
The occurrence and spatio-temporal distribution of atmospheric novel brominated flame retardants (NBFRs) were studied across five sampling sites in the Beijing-Tianjin-Hebei (BTH) region over a whole year. By collecting samples (gas and particle) with a high-volume active air sampler (HV-AAS), nine NBFRs were analyzed and the sum concentrations ranged from 1.65 to 344 pg/m3, with the highest value found in the urban sampling site in Shijiazhuang City. Decabromodiphenylethane (DBDPE) was the predominant congener, which accounted for 60% of ∑9NBFRs on average, while it was 90% of ∑9NBFRs in the rural site and significantly higher than those observed in the urban sites (one-way ANOVA, p < 0.05). The levels of particle-bound NBFRs were significantly correlated with the variation of total suspended particulates (TSP) and temperature (p < 0.01), indicating their evident impact on the spatio-temporal distribution of NBFRs. Moreover, a significantly positive correlation was observed between the concentrations of 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB) and bis (2-ethyl-1-hexyl) tetrabromophthalate (BEH-TEBP) (p < 0.01). Monocyclic brominated flame retardants (including PBBz, PBT, PBEB, HBB and TBP-DBPE) were correlated with each other (p < 0.01) in both gas and particle phase, suggesting their co-occurrence and the similar source in the environment. The gas-particle partitioning behavior was well predicted by the Li-Jia Empirical Model, and the results indicated that the target NBFRs did not reach the equilibrium state in air. This is one of very few studies revealed the spatio-temporal distribution of atmospheric NBFRs in the BTH region.
Collapse
Affiliation(s)
- Weiwei Zhang
- Nutrition and Health Research Institute, COFCO Corporation, Beijing Key Laboratory of Nutrition and Health and Food Safety, Beijing, 102209, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Huizhong Sun
- Key Laboratory of Eco-geochemistry, Ministry of Natural Resources, National Research Center for Geoanalysis, Beijing, 100037, China
| | - Pu Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Health and Environment, Jianghan University, Wuhan, 430056, China.
| | - Ying Zhu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chengjing Qian
- Nutrition and Health Research Institute, COFCO Corporation, Beijing Key Laboratory of Nutrition and Health and Food Safety, Beijing, 102209, China
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Shuangjiang Li
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Julius Matsiko
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Health and Environment, Jianghan University, Wuhan, 430056, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
3
|
Zhang Q, Liu Y, Li S, Li H, Gao M, Yao Y, Wang L, Wang Y. Traditional and Novel Organophosphate Esters in Plastic Greenhouse: Occurrence, Multimedia Migration, and Exposure Risk via Vegetable Consumption. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13929-13939. [PMID: 38978502 DOI: 10.1021/acs.est.4c02705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The migration and risk of organophosphate esters (OPEs) in agricultural air-soil-plant multimedia systems due to plastic film application remain unclear. This study investigates the multimedia distribution of traditional OPEs (TOPEs), novel OPEs (NOPEs), and their transformation products (POPEs) in plastic and solar greenhouses. The total concentration of OPE-associated contaminants in air and airborne particles ranged from 594 to 1560 pg/m3 and 443 to 15600 ng/g, respectively. Significant correlations between air OPE concentrations and those in polyolefin film (P < 0.01) indicate plastic film as the primary source. Contaminants were also found in soils (96.8-9630 ng/g) and vegetables (197-7540 ng/g). The primary migration pathway for NOPEs was particle dry deposition onto the soil and leaf, followed by plant accumulation. Leaf absorption was the main uptake pathway for TOPEs and POPEs, influenced by vegetable specific leaf surface area. Moreover, total exposure to OPE-associated contaminants via vegetable intake was assessed at 2250 ng/kg bw/day for adults and 2900 ng/kg bw/day for children, with an acceptable hazard index. However, a high ecological risk was identified for NOPE compounds (median risk quotient, 975). This study provides the first evidence of the multimedia distribution and potential threat posed by OPE-associated contaminants in agricultural greenhouses.
Collapse
Affiliation(s)
- Qiuyue Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yarui Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Siyuan Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hong Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Meng Gao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
4
|
Ren H, Ge X, Qi Z, Lin Q, Shen G, Yu Y, An T. Emission and gas-particle partitioning characteristics of atmospheric halogenated and organophosphorus flame retardants in decabromodiphenyl ethane-manufacturing functional areas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121709. [PMID: 37116567 DOI: 10.1016/j.envpol.2023.121709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/08/2023] [Accepted: 04/22/2023] [Indexed: 05/03/2023]
Abstract
The emission and gas-particle partitioning characteristics in various functional areas of production lines are still unknown. However, flame-retardant manufacturing activities are the primary emission source of flame retardants. Thus, fine particles and gases were investigated in three functional areas of a decabromodiphenyl ethane production line, i.e., polybrominated diphenyl ethers (PBDEs), novel brominated flame retardants (NBFRs), dechlorane plus (DPs), and organophosphorus flame retardants (OPFRs) in a flame-retardant manufacturing factory. High levels of PBDEs (8.02 × 103-4.16 × 104 pg/m3), NBFRs (6.05 × 103-1.92 × 105 pg/m3), and DPs (89.5-5.20 × 103 pg/m3) were found in various functional areas, suggesting manufacturing activities were a primary emission source. In contrast, OPFRs were derived from long-range transport or other non-industrial sources. Varied concentrations of PBDEs, NBFRs, and DPs were observed in different production lines, higher in the reaction zone area than others. As the predominant compounds, decabromodiphenyl ether, decabromodiphenyl ethane, syn-DP, and tris(chloropropyl) phosphate accounted for 54.7%, 89.3%, 93.4%, and 34.7% of PBDEs, NBFRs, DPs, and OPFRs, respectively. Three models were used to predict the gas-particle partitioning of the halogenated flame retardants emitted from manufacturing activities. The Li-Jia Empirical Model predicted the gas-particle partitioning behavior well. This research shows that the adsorption-desorption process of the halogenated flame retardants between the gaseous and particulate phases did not reach equilibrium.
Collapse
Affiliation(s)
- Helong Ren
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Xiang Ge
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Zenghua Qi
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Qinhao Lin
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Guofeng Shen
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, PR China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|
5
|
Iakovides M, Oikonomou K, Sciare J, Mihalopoulos N. Evidence of stockpile contamination for legacy polychlorinated biphenyls and organochlorine pesticides in the urban environment of Cyprus (Eastern Mediterranean): Influence of meteorology on air level variability and gas/particle partitioning based on equilibrium and steady-state models. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129544. [PMID: 35908394 DOI: 10.1016/j.jhazmat.2022.129544] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The present study investigated comprehensively the atmospheric occurrence and fate of an extensive range of polychlorinated biphenyls (PCBs; forty-two congeners), organochlorine pesticides (OCPs; twenty-seven emerging and legacy agrochemicals) and polycyclic aromatic hydrocarbons (PAHs; fifty parent and alkylated members, including the non USEPA-16 listed toxic ones), in both gas and particulate phase of the scarcely monitored atmosphere over Cyprus for the first time. Parent-metabolite concentration ratios suggested fresh application for dichlorodiphenyl-trichloroethanes (DDTs), dicofol, hexachlorocyclohexanes, endosulfan and chlorothalonil, particularly during spring (April-May). Regressions of logarithms of partial pressure against ambient temperature revealed that secondary recycling from contaminated terrestrial surfaces regulates the atmospheric level variability of PCBs, DDTs, aldrin, chlordane, dicofol, heptachlor and endosulfan. Enthalpies of surface-air exchange (∆HSA) calculated from Clausius-Clapeyron equations were significantly correlated to vaporization enthalpies (∆HV) determined by chromatographic techniques, corroborating presence of potential stockpile-contaminated sites around the study area. The Harner-Bidleman equilibrium model simulating urban areas, and the Li-Jia empirical model, predicted better the partitioning behavior of PAHs (<four-ring parent and alkylated members), PCBs (<hexa-chlorobiphenyls), and OCPs, respectively. For heavier PAHs and PCBs, partitioning coefficients (KP) were inadequately predicted by the Li-Ma-Yang steady-state model, probably due to local human activities and regional transport in the study area.
Collapse
Affiliation(s)
- Minas Iakovides
- Climate and Atmosphere Research Center, The Cyprus Institute, 20, Konstantinou Kavafi Street, 2121 Aglantzia, Cyprus.
| | - Konstantina Oikonomou
- Climate and Atmosphere Research Center, The Cyprus Institute, 20, Konstantinou Kavafi Street, 2121 Aglantzia, Cyprus
| | - Jean Sciare
- Climate and Atmosphere Research Center, The Cyprus Institute, 20, Konstantinou Kavafi Street, 2121 Aglantzia, Cyprus
| | - Nikos Mihalopoulos
- Climate and Atmosphere Research Center, The Cyprus Institute, 20, Konstantinou Kavafi Street, 2121 Aglantzia, Cyprus; Chemistry Department, University of Crete, 71003 Heraklion, Crete, Greece; Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Palaia Penteli, 15236 Athens, Greece
| |
Collapse
|
6
|
Yin F, He Z, Song Z, Zhang W, Li X, Qin B, Zhang L, Su P, Zhang J, Kitazawa D. Gas-particle partitioning of polycyclic aromatic hydrocarbons from oil combustion involving condensate, diesel and heavy oil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113866. [PMID: 35839529 DOI: 10.1016/j.ecoenv.2022.113866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/21/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
This study focuses on the gas-particle (G-P) partitioning of 16 polycyclic aromatic hydrocarbons (PAHs) from oil combustion, which is one of the important contributors of anthropogenic PAHs but has been rarely studied. The combustions of different types of oils involving ultra-light to heavy oils were investigated, and the PAH partitioning mechanism was determined by the widely used Junge-Pankow adsorption model, Koa absorption model, and dual sorption model, respectively. The results show that the source-specific diagnostic ratios of Ant/(Ant+Phe) are between 0.09 and 0.24, the estimated regression slopes of G-P partition coefficients (KP) of the total PAHs on their sub-cooled liquid vapor pressures (PLO) are in the range of - 0.34 to - 0.25, and the predicted fractions of PAHs in the particle phase (φ) by Koa absorption model are close to the measured values, while the log KPvalues of the LMW PAHs from the combustions of diesel and heavy oil are better represented by the dual sorption model. Our findings indicate that PAHs are derived from mixed sources that include the unburned original oil and combustion products, and the PAH partitioning mechanism is governed by the process of absorption into organic matter because of the unburned oil, but both adsorption and absorption exist simultaneously in the lighter PAHs from the combustions of heavier oils (i.e., diesel and heavy oil). Based on these findings, the understanding of the fate and transport of PAH emissions and the optimization of the emergency responses to accidents such as marine oil spills would be potentially improved.
Collapse
Affiliation(s)
- Fang Yin
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, PR China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Shanghai Maritime University, Shanghai 201306, PR China
| | - Zhiwei He
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, PR China
| | - Zhibo Song
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, PR China
| | - Weiwei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, PR China
| | - Xianbin Li
- City Operation Office of Tinglin Town, Jinshan District, Shanghai 201505, PR China
| | - Boyu Qin
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, PR China
| | - Li Zhang
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, PR China
| | - Penghao Su
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, PR China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Shanghai Maritime University, Shanghai 201306, PR China
| | - Junbo Zhang
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China; National Engineering Research Center for Oceanic Fisheries, Shanghai 201306, PR China; Institute of Industrial Science, The University of Tokyo, Tokyo 1538505, Japan.
| | - Daisuke Kitazawa
- Institute of Industrial Science, The University of Tokyo, Tokyo 1538505, Japan
| |
Collapse
|
7
|
Zhu FJ, Ma WL, Zhang ZF, Yang PF, Hu PT, Liu LY, Song WW. Prediction of the gas/particle partitioning quotient of PAHs based on ambient temperature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:151411. [PMID: 34742985 DOI: 10.1016/j.scitotenv.2021.151411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/27/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
Gas/particle (G/P) partitioning is an important influencing factor for the environmental fate of semi-volatile organic compounds (SVOCs). The G/P partitioning of polycyclic aromatic hydrocarbons (PAHs) is an integrated complex process due to its formation and growth concurrently with particles. Based on the large dataset of gaseous and particulate samples in a wide ambient temperature range of 50 °C, the simple empirical equations based on ambient temperature were established to predict the G/P partitioning quotient (KP) of PAHs at the temperature range from 252 K to 307 K (-21 °C to 34 °C). The performance of the empirical equations was validated by comparison with the monitoring KP of PAHs worldwide. The empirical equations exhibited good performance for the prediction of KP of PAHs based on ambient temperature. Two deviations with the prediction lines of the previous G/P partitioning models from the monitoring data of KP were observed. It was found that the deviations might be attributed to some non-considered influencing factors with the previous G/P partitioning prediction models. Therefore, further research should be conducted to study the mechanism of the G/P partitioning of PAHs, and more influencing factors should be introduced into the establishment of G/P partitioning models of PAHs. In summary, the result of the present study provided a convenient method for the prediction of KP of PAHs, which should be useful for the study of environmental fate of PAHs in atmosphere.
Collapse
Affiliation(s)
- Fu-Jie Zhu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China.
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - Pu-Fei Yang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - Peng-Tuan Hu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - Wei-Wei Song
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| |
Collapse
|
8
|
Hu PT, Ma WL, Zhang ZF, Liu LY, Song WW, Cao ZG, Macdonald RW, Nikolaev A, Li L, Li YF. Approach to Predicting the Size-Dependent Inhalation Intake of Particulate Novel Brominated Flame Retardants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15236-15245. [PMID: 34724783 DOI: 10.1021/acs.est.1c03749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The risk of human exposure to particulate novel brominated flame retardants (NBFRs) in the atmosphere has received increasing attention from scientists and the public, but currently, there is no reliable approach to predict the intake of these compounds on the basis of their size distribution. Here, we develop a reliable approach to predict the size-dependent inhalation intake of particulate NBFRs, based on the gas/particle (G/P) partitioning behavior of the NBFRs. We analyzed the concentrations of eight NBFRs in 363 size-segregated particulate samples and 99 paired samples of gaseous and bulk particles. Using these data, we developed an equation to predict the G/P partitioning quotients of NBFRs in particles in different size ranges (KPi) based on particle size. This equation was then successfully applied to predict the size-dependent inhalation intake of particulate NBFRs in combination with an inhalation exposure model. This new approach provides the first demonstration of the effects of the temperature-dependent octanol-air partitioning coefficient (KOA) and total suspended particle concentration (TSP) on the intake of particulate NBFRs by inhalation. In an illustrative case where TSP = 100 μg m-3, inhalation intake of particulate NBFRs exceeded the intake of gaseous NBFRs when log KOA > 11.4.
Collapse
Affiliation(s)
- Peng-Tuan Hu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy/School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin 150090, P. R. China
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy/School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy/School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy/School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Wei-Wei Song
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy/School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Zhi-Guo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Robie W Macdonald
- Department of Fisheries and Oceans, Institute of Ocean Sciences, P.O. Box 6000, Sidney, British Columbia V8L 4B2, Canada
| | - Anatoly Nikolaev
- Institute of Natural Sciences, North-Eastern Federal University, 58 Belinsky str., Yakutsk 677000, Russia
| | - Li Li
- School of Public Health, University of Nevada, Reno, Reno, Nevada 89557, United States
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy/School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin 150090, P. R. China
- IJRC-PTS-NA, Toronto, Ontario M2N 6X9, Canada
| |
Collapse
|
9
|
Li YF, Qiao LN, Macdonald RW. Slopes and intercepts from log-log correlations of gas/particle quotient and octanol-air partition coefficient (vapor-pressure) for semi-volatile organic compounds: I. Theoretical analysis. CHEMOSPHERE 2021; 273:128865. [PMID: 33218722 DOI: 10.1016/j.chemosphere.2020.128865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
Gas/particle partitioning governs the transport and fate of semi-volatile organic compounds (SVOCs) released to the atmosphere. The partition quotient of SVOCs, KP, is related to their subcooled liquid vapor pressure (logKP = mp logPL + bp) and to their octanol-air partition coefficient (logKP = mo logKOA + bo). Previous theory predicts that -mp and mo should be close to, or equal to 1 based on the assumption that gas- and particle-phases are at equilibrium in the atmosphere. Here, we develop analytical equations to calculate mo and bo as functions of logKOA and mp and bp as functions of logPL. We find that experimental, analytical, or statistical artifacts and other reported factors are not the leading causes for deviations of the slopes, mp and mo, from -1 and 1, respectively. Rather, it is the inherent parameter, KOA, that determines mo and bo, and equivalently, PL is the major parameter determining mp and bp, and such deviations are evidence that equilibrium is an inappropriate assumption. In contrast, the actual steady-state between gas and particle phases of SVOCs leads that their -mp and mo should range from 0 to 1, implying that equilibrium is a reasonable assumption only when -mp and mo are larger than 0.49. To illustrate these points, we provide a detailed discussion of the global atmospheric transport of polybrominated diphenyl ethers (PBDEs) with emphasis on Polar Regions where low air temperatures favor a special steady-state, where their slopes mp and mo can reach 0, indicating a constant value of logKP (-1.53).
Collapse
Affiliation(s)
- Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment/ School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology (PA-HIT), Harbin, 150090, PR China; IJRC-PTS, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, PR China; IJRC-PTS-NA, Toronto, Ontario, M2N 6X9, Canada.
| | - Li-Na Qiao
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment/ School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology (PA-HIT), Harbin, 150090, PR China; Department of Marine Sciences, Marine College, Shandong University, Weihai, 264209, China
| | - Robie W Macdonald
- Institute of Ocean Sciences, Department of Fisheries and Oceans, P.O. Box 6000, Sidney, BC, V8L 4B2, Canada
| |
Collapse
|
10
|
Hu PT, Su PH, Ma WL, Zhang ZF, Liu LY, Song WW, Qiao LN, Tian CG, Macdonald RW, Nikolaev A, Cao ZG, Li YF. New equation to predict size-resolved gas-particle partitioning quotients for polybrominated diphenyl ethers. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123245. [PMID: 32947688 DOI: 10.1016/j.jhazmat.2020.123245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/01/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Gas/particle (G/P) partition quotients of semi-volatile organic compounds (SVOCs) for bulk air have been widely discussed in experimental and theoretical contexts, but research on size-resolved G/P partition quotients (KPi) are scarce and limited in scope. To investigate G/P partition behavior of polybrominated diphenyl ethers (PBDEs) for size-segregated particles in the atmosphere, 396 individual size-segregated particulate samples (36 batches × 11 size-ranges), and 108 pairs of concurrent gaseous and bulk particulate samples were collected in Harbin, China. A steady-state equation based on bulk particles is derived to determine G/P partition quotients of PBDEs for size-segregated particles, which depends on the organic matter contents of size-segregated particles (fOMi). This equation can well predict KPi with knowledge of bulk partition quotient (KPS), ambient temperature, and fOMi, the results of which match well with monitoring data in Harbin and other published data collected in Shanghai and Guangzhou of China and Thessaloniki of Greece, and remedies a defect of over-estimate KPi for high-brominated PBDEs by the previous equation. In particular, the new equation contributes to obtaining the PBDEs concentrations in all atmospheric phase from partial phase, then provides a credible path to evaluate healthy exposure dose from the airborne PBDEs, by co-utilization with exposure models.
Collapse
Affiliation(s)
- Peng-Tuan Hu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin, 150090, PR China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, HIT (PA-HIT), Harbin, 150090, PR China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), School of Environment, HIT, Harbin, 150090, PR China
| | - Peng-Hao Su
- Department of Environmental Engineering, Shanghai Maritime University, Shanghai, 201306, PR China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin, 150090, PR China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, HIT (PA-HIT), Harbin, 150090, PR China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), School of Environment, HIT, Harbin, 150090, PR China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin, 150090, PR China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, HIT (PA-HIT), Harbin, 150090, PR China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), School of Environment, HIT, Harbin, 150090, PR China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin, 150090, PR China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, HIT (PA-HIT), Harbin, 150090, PR China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), School of Environment, HIT, Harbin, 150090, PR China
| | - Wei-Wei Song
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin, 150090, PR China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, HIT (PA-HIT), Harbin, 150090, PR China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), School of Environment, HIT, Harbin, 150090, PR China
| | - Li-Na Qiao
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin, 150090, PR China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, HIT (PA-HIT), Harbin, 150090, PR China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), School of Environment, HIT, Harbin, 150090, PR China
| | - Chong-Guo Tian
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, PR China
| | - Robie W Macdonald
- Institute of Ocean Sciences, Department of Fisheries and Oceans, P.O. Box 6000, Sidney, BC, V8L 4B2, Canada
| | - Anatoly Nikolaev
- Institute of Natural Sciences, North-Eastern Federal University, Russia
| | - Zhi-Guo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin, 150090, PR China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, HIT (PA-HIT), Harbin, 150090, PR China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), School of Environment, HIT, Harbin, 150090, PR China; IJRC-PTS-NA, Toronto, Ontario, M2N 6X9, Canada.
| |
Collapse
|
11
|
Wang C, Wang P, Zhao J, Fu M, Zhang L, Li Y, Yang R, Zhu Y, Fu J, Zhang Q, Jiang G. Atmospheric organophosphate esters in the Western Antarctic Peninsula over 2014-2018: Occurrence, temporal trend and source implication. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115428. [PMID: 32889514 DOI: 10.1016/j.envpol.2020.115428] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 05/13/2023]
Abstract
Organophosphate esters (OPEs) were comprehensively investigated in the air samples collected using high-volume samplers near the Chinese Great Wall Station in the Western Antarctic Peninsula over the period of 2014-2018. The concentrations of ∑8OPEs (gaseous + particle phases) ranged from 33.9 to 404 pg/m3 with a geometric mean of 119 ± 12.0 pg/m3. Tris [(2R)-1-chloro-2-propyl] phosphate (TCIPP) and tris(2-chloroethyl) phosphate (TCEP) dominated in the gaseous phase, while tris-n-butyl phosphate (TnBP) was the most abundant OPEs in the particle phase, followed by TCIPP and TCEP. An apparently temporal trend was observed for atmospheric ∑8OPEs over the five years, with a doubling time of about 3.8 years, which indicated continuous inputs of OPEs into the sampling area. The particle-bound ∑8OPEs accounted for 45% of the total, generally lower than that reported in the Arctic. Gas-particle partitioning modeling suggested that the partitioning of OPEs with higher logKOA values approached the steady state in the Antarctic air. The back-trajectory modeling showed that high levels of OPEs were usually associated with air inputs from the northwest of the peninsula. This suggested that long-range transport from South America, which was confirmed by the no temperature dependencies of OPEs concentrations (excluding TnBP). Nevertheless, a steady high level of particle-bound TnBP implied local sources in the Western Antarctic Peninsula, which required further investigation in future works.
Collapse
Affiliation(s)
- Chu Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pu Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Junpeng Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Fu
- Key Laboratory of Research on Marine Hazards Forecasting, National Marine Environmental Forecasting Center, Beijing, 100081, China
| | - Lin Zhang
- Key Laboratory of Research on Marine Hazards Forecasting, National Marine Environmental Forecasting Center, Beijing, 100081, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ying Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310000, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
12
|
Qiao LN, Hu PT, Macdonald R, Kannan K, Nikolaev A, Li YF. Modeling gas/particle partitioning of polybrominated diphenyl ethers (PBDEs) in the atmosphere: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:138962. [PMID: 32353721 DOI: 10.1016/j.scitotenv.2020.138962] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/18/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Gas/particle (G/P) partitioning of semi-volatile organic compounds (SVOCs) such as polybrominated diphenyl ethers (PBDEs), is an important atmospheric process due to its significance in governing atmospheric fate, wet/dry deposition, and long-range atmospheric transport. In this article, eight models published to predict the G/P partitioning of PBDEs are reviewed. These eight models are used to calculate the G/P partitioning quotient and particulate phase fraction of selected PBDE congeners. A comparison of the predicted results from the eight models with monitoring data published by several research groups worldwide leads to the following conclusions: 1) when the values of the logarithm of the octanol-air partition coefficient (logKOA) fall below 11.4 (the first threshold value, logKOA1), all 8 models perform well in predicting the G/P partitioning of PBDEs in the atmosphere, and 2) when logKOA is >11.4, and especially above 12.5 (the second threshold value, logKOA2), the Li-Ma-Yang model, a steady-state model developed based on wet and dry deposition of the particles (Li et al., Atmos. Chem. Phys. 2015; 15:1669-1681), shows the best performance with highest conformity to the measurements for selected PBDEs (94.4 ± 1.6% data points within ±1 log unit). Overall, the Li-Ma-Yang model appears to capture the most important factors that affect the partitioning of PBDEs between gaseous and particular phases in the atmosphere.
Collapse
Affiliation(s)
- Li-Na Qiao
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Peng-Tuan Hu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Robie Macdonald
- Institute of Ocean Sciences, Department of Fisheries and Oceans, P.O. Box 6000, Sidney, BC V8L 4B2, Canada
| | - Kurunthachalam Kannan
- Department of Pediatrics, Department of Environmental Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Anatoly Nikolaev
- Institute of Natural Sciences, North-Eastern Federal University, Russia
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China; IJRC-PTS-NA, Toronto, Ontario M2N 6X9, Canada.
| |
Collapse
|
13
|
Hong WJ, Li YF, Li WL, Jia H, Minh NH, Sinha RK, Moon HB, Nakata H, Chi KH, Kannan K, Sverko E. Soil concentrations and soil-air exchange of polycyclic aromatic hydrocarbons in five Asian countries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:135223. [PMID: 31822410 DOI: 10.1016/j.scitotenv.2019.135223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
The Asia Soil and Air Monitoring Program (Asia-SAMP) is a large-scale monitoring program spanning China, Japan, South Korea, Vietnam and India. 47 polycyclic aromatic hydrocarbons (PAHs) were analyzed in 169 concurrently collected surface soil samples across the five study regions. Total PAH concentrations (∑47PAHs) ranged from 13.1 to 7310 ng/g dry weight, with a median value of 272 ng/g dry weight. Higher concentrations of ΣPAHs were recorded in soils from urban areas, followed by soils from rural areas and background soils. Low correlation coefficients were found between PAHs concentrations with population density, surface air temperature and soil organic content. A trend of depleting high molecular weight PAHs and enrichment of low molecular weight PAHs occurred from east to west in Chinese soils. Based on atmospheric PAHs detected in almost the same sampling sites, the equilibrium status of PAHs in the atmosphere and on the ground was investigated. Sample sites with a soil-air equilibrium status for different PAH congeners recorded differences, and differences were recorded between seasons. 2-ring PAHs were mainly volatilized, and 5- & 6-ring PAHs were mainly deposited in all seasons and across all study regions. 3- & 4-ring PAHs were more affected by soil-air transfer, showing a tendency to accumulate in soils in cold regions/seasons and to be re-volatilized into the atmosphere in warm regions/seasons. Partitioning and exchange of PAHs among soil and air were significantly affected by the air temperature.
Collapse
Affiliation(s)
- Wen-Jun Hong
- Institute of Environmental and Health Sciences, College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Dalian Maritime University, Dalian 116026, China.
| | - Yi-Fan Li
- IJRC-PTS, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wen-Long Li
- IJRC-PTS, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hongliang Jia
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Dalian Maritime University, Dalian 116026, China
| | - Nguyen Hung Minh
- DIOXIN LABORATORY, Center for Environmental Monitoring (CEM), Vietnam Environmental Administration (VEA), 556 Nguyen Van Cu, Long Bien, Ha Noi, Viet Nam
| | | | - Hyo-Bang Moon
- IJRC-PTS, Department of Marine Sciences and Convergent Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan City, Gyeonggi-do 426-791, Republic of Korea
| | - Haruhiko Nakata
- IJRC-PTS, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Kai Hsien Chi
- Institute of Environmental and Occupational Health Sciences, National Yang Ming University, Taipei 112, Taiwan
| | - Kurunthachalam Kannan
- IJRC-PTS, Wadsworth Center, New York State Department of Health, Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Empire State Plaza, P.O. Box 509, Albany, New York 12201-0509, United States
| | - Ed Sverko
- IJRC-PTS, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
14
|
Li YF, Qiao LN, Ren NQ, Macdonald RW, Kannan K. Gas/particle partitioning of semi-volatile organic compounds in the atmosphere: Transition from unsteady to steady state. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:136394. [PMID: 31923696 DOI: 10.1016/j.scitotenv.2019.136394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
We derive differential equations to determine the kinetics of gas/particle partitioning of semi-volatile organic compounds (SVOCs). These equations model the transient states from initiation of sorption to particles (non-steady state) through the establishment of steady state. Two hypothetical scenarios are examined: (1) exchange of SVOCs between gas- and particle-phases alone; and (2) both gas/particle partitioning and wet and dry deposition of particles. The differential equations show that, under Scenario 1, a steady state is reached as an equilibrium between gas- and particle-phases, whereas under Scenario 2, the attained steady state is not in equilibrium. Our model shows that SVOCs in atmosphere where particle deposition is occurring reach a steady non-equilibrium state sooner than they would reach equilibrium under Scenario 1. We infer that SVOCs in the atmosphere will reach steady state instead of equilibrium between gaseous and particulate phases in circumstances where wet and dry deposition of particles cannot be neglected. In addition, our study indicates that the time for SVOCs to reach steady state in the atmosphere is fast, most likely within minutes or hours, suggesting that SVOCs are in steady or quasi-steady state in the atmosphere. Our analysis also reveals that gas/particle partitioning and particle deposition of SVOCs are dependent on each other.
Collapse
Affiliation(s)
- Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, HIT (PA-HIT), Harbin 150090, China; Heilongjiang Provincial Key laboratory of Polar Environment and Ecosystem (HPKL-PEE), School of Environment, HIT, Harbin 150090, China; IJRC-PTS-NA, Toronto M2N 6X9, Canada.
| | - Li-Na Qiao
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, HIT (PA-HIT), Harbin 150090, China; Heilongjiang Provincial Key laboratory of Polar Environment and Ecosystem (HPKL-PEE), School of Environment, HIT, Harbin 150090, China
| | - Nan-Qi Ren
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, HIT (PA-HIT), Harbin 150090, China
| | - Robie W Macdonald
- Institute of Ocean Sciences, Department of Fisheries and Oceans, P.O. Box 6000, Sidney, BC V8L 4B2, Canada
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Empire State Plaza, P.O. Box 509, Albany, NY 12201-0509, USA
| |
Collapse
|
15
|
Ma WL, Zhu FJ, Hu PT, Qiao LN, Li YF. Gas/particle partitioning of PAHs based on equilibrium-state model and steady-state model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:136029. [PMID: 31855629 DOI: 10.1016/j.scitotenv.2019.136029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/29/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
The gas/particle (G/P) partitioning (KP) behavior is an important factor for the environmental fate of PAHs in atmosphere. Based on large database of log KP, equilibrium-state and steady-state models were applied for the comprehensive study with the G/P partitioning of PAHs, including the Harner-Bidleman (H-B) model, the Dachs-Eisenreich (D-E) model, and the Li-Ma-Yang (L-M-Y) model. For different sites, the trend of regression between log KP and log KOA was same, however, the slopes and intercepts were different. No obvious difference was observed between northern Chinese cities and southern Chinese cities. For congeners and aromatic rings of PAHs, the difference was much more obvious for the regressions, slopes and intercepts. The prediction of the D-E model and the H-B model matched well for the regression of the 4-rings and 5-rings PAHs, with >80% of monitoring data points in the range of ±1 log unit. The L-M-Y model only predicted well with the measurement for 4-rings PAHs with special values of log KOA. For different ranges of log KOA, the difference with the regression between log KP and log KOA was also obvious. Compared with our measurement, if 1 order of magnitude difference with log KP values between prediction and measurement was considered, the H-B model, the D-E model and the L-M-Y model can be only used when the log KOA in the ranges from 7.65 to 13.7, 6.88 to 13.5, and 7.65 to 11.7, respectively. Therefore, further studies with prediction models should be conducted for the G/P partitioning of PAHs. The results of this study provided new insights into the research field of the G/P partitioning of SVOCs.
Collapse
Affiliation(s)
- Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China..
| | - Fu-Jie Zhu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Peng-Tuan Hu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Li-Na Qiao
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
16
|
Ma WL, Zhu FJ, Liu LY, Jia HL, Yang M, Li YF. PAHs in Chinese atmosphere: Gas/particle partitioning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133623. [PMID: 31377357 DOI: 10.1016/j.scitotenv.2019.133623] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/20/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
The gas/particle (G/P) partitioning behavior is an important factor for the environmental fate of polycyclic aromatic hydrocarbons (PAHs) in atmosphere. Based on one year monitoring program at 11 urban sites across China, 7647 pairs of gaseous and particulate concentrations were obtained for 16 priority PAHs, which provided a good opportunity to study the G/P partitioning behavior of PAHs. The concentrations of PAHs in both gas and particle phases were not in the same level among the 11 sites with a difference of more than one orders of magnitude. Along with the increase of molar weight of PAHs, the proportion of concentration in particle phase was increasing. In particle phase, the concentrations of ∑16PAHs in northern Chinese cities were significantly (p < 0.05) higher than those in southern Chinese cities with the average concentrations of 83.4 ± 151 ng/m3 and 33.4 ± 45.5 ng/m3, respectively. However, non-significant difference was found with ∑16PAHs in gas phase. The values of log KP (the G/P partitioning coefficient/quotient) ranged from -5.65 m3/μg to 2.34 m3/μg, with the mean value of -2.01 ± 1.65 m3/μg for the 16 PAHs. The values of log KP for individual PAHs at the 11 sites were not in the same level. Furthermore, significant difference (p < 0.05) with log KP of the 16 PAHs was found between northern Chinese cities and southern Chinese cities except for Acy, Flu and DahA. More than one orders of magnitude difference with KP were observed for different congeners and different rings PAHs, which are mainly caused by their physical-chemical properties. The results of this study provided large database of KP, which is necessary and important to the research field of the G/P partitioning of PAHs.
Collapse
Affiliation(s)
- Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Fu-Jie Zhu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hong-Liang Jia
- IJRC-PTS, Dalian Maritime University, Dalian 116026, China
| | - Meng Yang
- IJRC-PTS, Dalian Maritime University, Dalian 116026, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; IJRC-PTS, Dalian Maritime University, Dalian 116026, China.
| |
Collapse
|
17
|
Genisoglu M, Sofuoglu A, Kurt-Karakus PB, Birgul A, Sofuoglu SC. Brominated flame retardants in a computer technical service: Indoor air gas phase, submicron (PM 1) and coarse (PM 10) particles, associated inhalation exposure, and settled dust. CHEMOSPHERE 2019; 231:216-224. [PMID: 31129402 DOI: 10.1016/j.chemosphere.2019.05.077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/10/2019] [Accepted: 05/11/2019] [Indexed: 06/09/2023]
Abstract
Brominated flame retardants (BFRs) are found in multi-media indoors, therefore, may pose serious risks to human health. This study investigated the occurrence of BFRs in particulate matter (PM1 and PM10) and gas phase by active and passive sampling, and settled dust to estimate potential exposure in a computer technical service. Polybrominated diphenyl ethers (PBDEs) and their alternatives (novel BFRs, NBFRs) were studied. PM and gas phase were collected on glass fiber filters and polyurethane foam plugs, respectively, and analyzed with a GC/MS after extraction, clean-up, and concentration. Inhalation exposure of the staff was estimated based on the measured concentrations using Monte Carlo simulation. BDE-209 was the dominating PBDE congener in all media while bis(2-ethylhexyl)-3,4,5,6-tetrabromophthalate and 1,2-bis(2,4,6-tribromophenoxy)ethane were those of NBFRs. Submicron particulate matter (PM1) BFR levels constituted about one half of the PM10-associated concentrations, while average PM10 mass concentration (69.9 μg m-3) was nine times that of PM1 (7.73 μg m-3). Calculated log10 dust-gas and PM-gas partitioning coefficients ranged from -5.03 to -2.10, -2.21 to -0.55, and -2.26 to -1.04 for settled dust, PM10, and PM1, respectively. The indoor/outdoor concentration ratios were >1 for all compounds indicating the strength of indoor sources in the service. The estimated potential inhalation exposures, for future chronic-toxic and carcinogenic risk assessments, indicated that the levels of gas-phase and PM1-associated exposures were similar at approximately one half of PM10-associated levels. Results of this study indicate that the occurrence of BFRs in all studied media should be taken into consideration for occupational health mitigation efforts.
Collapse
Affiliation(s)
- Mesut Genisoglu
- Izmir Institute of Technology, Dept. of Environmental Engineering, Urla, Turkey
| | - Aysun Sofuoglu
- Izmir Institute of Technology, Dept. of Chemical Engineering, Urla, Turkey
| | | | - Askin Birgul
- Bursa Technical University, Dept. of Environmental Engineering, Bursa, Turkey
| | - Sait C Sofuoglu
- Izmir Institute of Technology, Dept. of Environmental Engineering, Urla, Turkey.
| |
Collapse
|
18
|
Qiao LN, Zhang ZF, Liu LY, Song WW, Ma WL, Zhu NZ, Li YF. Measurement and modeling the gas/particle partitioning of organochlorine pesticides (OCPs) in atmosphere at low temperatures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 667:318-324. [PMID: 30833236 DOI: 10.1016/j.scitotenv.2019.02.347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/18/2019] [Accepted: 02/21/2019] [Indexed: 06/09/2023]
Abstract
The gas/particle (G/P) partition of organochlorine pesticides (OCPs) has been widely investigated and well documented, but rare at low temperature. In this study, seventy-four pairs of air samples in two sampling sites in northeastern China at a wide ambient temperature range of ~63 °C (-40 to +23 °C) were simultaneously collected in both gaseous and particulate phases and eighteen OCPs in these samples were measured and analyzed, among which, partition quotient (KP) values for fifteen OCPs were determined. Seven models including those have never been used for OCPs were applied to predict the values of KP, and the results were compared with the monitoring data for the fifteen OCPs. It was found out that, L-M-Y model provided advantages over the other models, with the best agreement to the monitoring data for analyzed OCPs (90.1 ± 11.1% data points within ±1 log unit, RMSE: 0.53 ± 0.18). The predicted maximum partition (MP) domain for eleven OCPs was observed with high values of their logarithm of octanol-air partition coefficient (log KOA > 12.5), where the log KP values become a constant (-1.53), indicating that the G/P partition of OCPs is in steady state but not the equilibrium. The Li-Ma-Yang (L-M-Y model) model, considering the wet and dry depositions of particles, elucidates the necessity of non-equilibrium term for the OCPs at low temperature. These results indicate that the L-M-Y model is valid for OCPs, which renders it highly promising for describing the partition behaviors in atmosphere for SVOCs, particularly at low temperature. An equation to calculate the condensation temperature TC was also derived, which gave a new understanding on the situation of chemicals with equal distribution between gaseous and particulate phases of OCPs and other similar SVOCs, especially in Polar Regions.
Collapse
Affiliation(s)
- Li-Na Qiao
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology (PA-HIT), Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology (PA-HIT), Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology (PA-HIT), Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei-Wei Song
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology (PA-HIT), Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology (PA-HIT), Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ning-Zheng Zhu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology (PA-HIT), Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology (PA-HIT), Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China; IJRC-PTS-NA, Toronto, Ontario M2N 6X9, Canada.
| |
Collapse
|
19
|
Ma X, Wang Z, Yu L, Yao W, Xiao L, Yao Z, Na G, Wang YW, Jiang G. Mirror image between gas-particle partitioning and soil-moss distribution of polybrominated diphenyl ethers in the polar regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:1199-1206. [PMID: 30625651 DOI: 10.1016/j.scitotenv.2018.11.452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/29/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
The concentrations and congener-specific profiles of polybrominated diphenyl ethers (PBDEs) were investigated in the atmosphere, soil and moss samples were collected from Ny-Ålesund, Svalbard in the Arctic and King Georgia Island (KGI), Fildes Peninsula in Antarctica, respectively. The congener profiles of PBDEs were symmetrical between gas and moss, as well as between particles and soil at Ny-Ålesund and KGI, respectively, similar to a "mirror image". The proportions of highly brominated congeners (for example, BDE-99, -153 and -183) in the particle phase and soil were higher than those in the gas phase and moss, while tri- and tetra-BDEs possessed higher proportions in the gas phase and moss at both sites. The slopes of log-log linear correlations between the gas-particle partition coefficient (Kp) and sub-cooled liquid vapor pressures (p°L) of PBDEs were observed at both sites compared with the values in the urban areas. Moreover, the slopes of logKp vs. logp°L (-0.51 at Ny-Ålesund and - 0.29 at KGI) were notably close to the slopes of log-log linear correlations between the dimensionless soil-moss quotient (QSM) and p°L (-0.42 at Ny-Ålesund and -0.22 at KGI). Significant correlations between particle fraction (φparticle) and soil fraction (φsoil) at both sites indicated that the gas-particle partitioning of PBDEs is directly related to their distribution in moss and soil.
Collapse
Affiliation(s)
- Xindong Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Oceanic Administration Key Laboratory for Ecological Environment in Coastal Areas, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Zhen Wang
- State Oceanic Administration Key Laboratory for Ecological Environment in Coastal Areas, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Limin Yu
- State Oceanic Administration Key Laboratory for Ecological Environment in Coastal Areas, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Wenjun Yao
- State Oceanic Administration Key Laboratory for Ecological Environment in Coastal Areas, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Lin Xiao
- State Oceanic Administration Key Laboratory for Marine Disaster Forecasting, National Marine Environmental Forecasting Center, Beijing 100081, China
| | - Ziwei Yao
- State Oceanic Administration Key Laboratory for Ecological Environment in Coastal Areas, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Guangshui Na
- State Oceanic Administration Key Laboratory for Ecological Environment in Coastal Areas, National Marine Environmental Monitoring Center, Dalian 116023, China.
| | - Yawei W Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
20
|
Cetin B, Yurdakul S, Odabasi M. Spatio-temporal variations of atmospheric and soil polybrominated diphenyl ethers (PBDEs) in highly industrialized region of Dilovasi. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:1164-1171. [PMID: 30235602 DOI: 10.1016/j.scitotenv.2018.07.299] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/26/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) were investigated in ambient air of a highly industrialized region at 23 different sampling sites for 12 months. Total concentrations of 8 PBDE congeners (Σ8PBDE) were found to be between 5.73 and 520 pg m-3 (94.7 ± 78.9; average ± SD) and BDE-209 was the predominant congener, followed by BDE-47 and/or BDE-99. Their contributions to Σ8PBDE were 71 ± 13, 9 ± 4% and 8 ± 4%; respectively. Compared to previous studies around the world, high concentrations detected in Dilovasi demonstrated the severity of atmospheric PBDE pollution in the area. For all sampling sites, average PBDE concentration obtained in summer (118.5 ± 98.7 pg m-3) was higher than one found in winter period (79.7 ± 59.1 pg m-3) and this seasonal difference was more obvious in industrial/urban sites (p < 0.05), probably due to enhanced volatilization from ongoing PBDE sources such as waste incineration and iron-steel plants. The soil-air exchange tendencies of PBDEs did not show substantial differences between the sampling periods with small variations for each congener. All congeners either tend to deposit to soil or to be within the equilibrium range for all seasons. This reflects the impact of local ongoing sources rather than temperature on the direction of soil-air exchange of PBDEs in this region. Specific congener ratios such as BDE-47/-99 and -99/-100 confirmed the impact of local sources rather than long-range transport on PBDE congeners in the study area. According to the Positive Matrix Factorization (PMF) results, the BDE-209 content of the first factor was found to be 91.7% and this factor was attributed to the deca-BDE technical formulations. The second factor was highly rich with both BDE-183 (%61) and BDE-28 (%52) and identified as octa-BDE technical products. The last factor was highly loaded with BDE-99, BDE-47, BDE-100, BDE-154 and BDE-153 and has been determined as the penta-BDE commercial formulations.
Collapse
Affiliation(s)
- Banu Cetin
- Environmental Engineering Department, Gebze Technical University (GTU), 41400 Gebze, Kocaeli, Turkey.
| | - Sema Yurdakul
- Environmental Engineering Department, Suleyman Demirel University, 32260 Isparta, Turkey
| | - Mustafa Odabasi
- Environmental Engineering Department, Faculty of Engineering, Dokuz Eylul University, Tinaztepe Campus, 35160 Buca, Izmir, Turkey
| |
Collapse
|
21
|
Yang M, Li YF, Qiao LN, Zhang XM. Estimating subcooled liquid vapor pressures and octanol-air partition coefficients of polybrominated diphenyl ethers and their temperature dependence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:329-337. [PMID: 29444485 DOI: 10.1016/j.scitotenv.2018.02.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/03/2018] [Accepted: 02/05/2018] [Indexed: 06/08/2023]
Abstract
Both subcooled liquid vapor pressure (PL) and octanol-air partition coefficient (KOA) are widely used as descriptors to predict gas-particle partitioning behavior of semi-volatile organic compounds (SVOCs), such as polybrominated diphenyl ethers (PBDEs). These two descriptors are functions of temperature, which are expressed as the Clausius-Clapeyron equations with the coefficients AL and BL for PL (log PL=AL+BL/T) and AO and BO for KOA (log KOA=AO+BO/T), where T is temperature in K. In this study, a simple equation to relate log KOA and log PL (log KOA=-log PL+6.46) was derived, which also links the coefficients of AL &BL and AO &BO. Regression analysis of published data of internal energy ΔUOA for 22 PBDE congeners with their mole mass was made, leading a regression equation to calculate the internal energy for all 209 PBDE congeners. Three datasets of log KOA at 25°C for all 209 PBDE congeners were evaluated; the one with the best match with experimentally measurements was selected. Using the datasets and equations described above, we calculated the values of Clausius-Clapeyron coefficients AO &BO and AL &BL for all 209 PBDE congeners at the following steps. First, BO was computed using the values of ΔUOA. Next, we calculated the values of AO using the values of BO and the values of log KOA at 25°C. Finally, the values of the parameter AL and BL were determined for all 209 PBDE congeners. Results are in consistent with data available in the literature and the accuracy of the data were also evaluated. With these Clausius-Clapeyron coefficients, the values of PL and KOA at any environmentally relevant temperature can be calculated for all 209 PBDE congeners, and thus provides a quick reference for environmental monitoring and modeling of PBDEs.
Collapse
Affiliation(s)
- Meng Yang
- Dalian Environmental Monitoring Center, Dalian, PR China; IJRC-PTS, Dalian Maritime University, Dalian, PR China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS)/International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; IJRC-PTS, Dalian Maritime University, Dalian, PR China; IJRC-PTS-NA & IJRC-AEE-NA, Toronto, Ontario M2N 6X9, Canada.
| | - Li-Na Qiao
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS)/International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | | |
Collapse
|
22
|
Li TY, Zhou JF, Wu CC, Bao LJ, Shi L, Zeng EY. Characteristics of Polybrominated Diphenyl Ethers Released from Thermal Treatment and Open Burning of E-Waste. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:4650-4657. [PMID: 29600707 DOI: 10.1021/acs.est.8b00780] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Primitive processing of e-waste potentially releases abundant organic contaminants to the environment, but the magnitudes and mechanisms remain to be adequately addressed. We conducted thermal treatment and open burning of typical e-wastes, that is, plastics and printed circuit boards. Emission factors of the sum of 39 polybrominated diphenyl ethers (∑39PBDE) were 817-1.60 × 105 ng g-1 in thermal treatment and nondetected-9.14 × 104 ng g-1, in open burning. Airborne particles (87%) were the main carriers of PBDEs, followed by residual ashes (13%) and gaseous constituents (0.3%), in thermal treatment, while they were 30%, 43% and 27% in open burning. The output-input mass ratios of ∑39PBDE were 0.12-3.76 in thermal treatment and 0-0.16 in open burning. All PBDEs were largely affiliated with fine particles, with geometric mean diameters at 0.61-0.83 μm in thermal degradation and 0.57-1.16 μm in open burning from plastic casings, and 0.44-0.56 and nondetected- 0.55 μm, from printed circuit boards. Evaporation and reabsorption may be the main emission mechanisms for lightly brominated BDEs, but heavily brominated BDEs tend to affiliate with particles from heating or combustion. The different size distributions of particulate PBDEs in emission sources and adjacent air implicated a noteworthy redisposition process during atmospheric dispersal.
Collapse
Affiliation(s)
- Ting-Yu Li
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou 510632 , China
| | - Jun-Feng Zhou
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou 510632 , China
| | - Chen-Chou Wu
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou 510632 , China
| | - Lian-Jun Bao
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou 510632 , China
| | - Lei Shi
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou 510632 , China
| | - Eddy Y Zeng
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou 510632 , China
| |
Collapse
|
23
|
Sorais M, Rezaei A, Okeme JO, Diamond ML, Izquierdo R, Giroux JF, Verreault J. A miniature bird-borne passive air sampler for monitoring halogenated flame retardants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:1903-1911. [PMID: 28545217 DOI: 10.1016/j.scitotenv.2017.04.246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/22/2017] [Accepted: 04/04/2017] [Indexed: 06/07/2023]
Abstract
Birds have been used intensively as biomonitors of halogenated flame retardants (HFRs), and several studies have reported elevated tissue concentrations and inter-individual variability for these contaminants. While diet is known to be an important exposure pathway for HFRs in birds, it has been suggested that exposure through air may represent an underestimated source of HFRs for certain species. However, a method was not available for measuring the atmospheric exposure of individual birds to HFRs or other semi-volatile contaminants. The goal of this study was to develop a bird-borne passive air sampler (PAS) enabling the determination of individual atmospheric exposure to gas- and particle-phase HFRs using the ring-billed gull (Larus delawarensis) nesting in the Montreal area (QC, Canada). The new miniaturized elliptical-shaped PAS (mean weight: 2.72g) was tested using two sorbent types during three exposure periods (one, two and three weeks). Results showed that PAS using polyurethane foam (PUF) combined with a glass fiber filter collected all major polybrominated diphenyl ethers (PBDEs) and exhibited better performance for collecting highly hydrophobic DecaBDE mixture congeners compared to the PAS using polydimethylsiloxane (PDMS). Emerging HFRs including hexabromobenzene, Dechlorane 604 Component B, and Dechlorane plus (DP) isomers also were sampled by the PUF-based PAS. Sampling rates for most HFRs were comparable between the three exposure periods. This novel bird-borne PAS provides valuable information on the non-dietary exposure of free-ranging birds to HFRs.
Collapse
Affiliation(s)
- Manon Sorais
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, P.O. Box 8888, Succursale Centre-ville, Montreal, QC H3C 3P8, Canada
| | - Ali Rezaei
- Département d'informatique, Université du Québec à Montréal, P.O. Box 8888, Succursale Centre-ville, Montreal, QC H3C 3P8, Canada
| | - Joseph O Okeme
- Department of Physical and Environmental Science, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Miriam L Diamond
- Department of Earth Sciences, University of Toronto, 22 Russell Street, Toronto, ON M5S 3B1, Canada; Department of Physical and Environmental Science, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Ricardo Izquierdo
- Département d'informatique, Université du Québec à Montréal, P.O. Box 8888, Succursale Centre-ville, Montreal, QC H3C 3P8, Canada
| | - Jean-François Giroux
- Groupe de recherche en écologie comportementale et animale (GRECA), Département des sciences biologiques, Université du Québec à Montréal, P.O. Box 8888, Succursale Centre-ville, Montreal, QC H3C 3P8, Canada
| | - Jonathan Verreault
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, P.O. Box 8888, Succursale Centre-ville, Montreal, QC H3C 3P8, Canada.
| |
Collapse
|
24
|
Besis A, Lammel G, Kukučka P, Samara C, Sofuoglu A, Dumanoglu Y, Eleftheriadis K, Kouvarakis G, Sofuoglu SC, Vassilatou V, Voutsa D. Polybrominated diphenyl ethers (PBDEs) in background air around the Aegean: implications for phase partitioning and size distribution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:28102-28120. [PMID: 28993999 DOI: 10.1007/s11356-017-0285-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
The occurrence and atmospheric behavior of tri- to deca-polybrominated diphenyl ethers (PBDEs) were investigated during a 2-week campaign concurrently conducted in July 2012 at four background sites around the Aegean Sea. The study focused on the gas/particle (G/P) partitioning at three sites (Ag. Paraskevi/central Greece/suburban, Finokalia/southern Greece/remote coastal, and Urla/Turkey/rural coastal) and on the size distribution at two sites (Neochorouda/northern Greece/rural inland and Finokalia/southern Greece/remote coastal). The lowest mean total (G + P) concentrations of ∑7PBDE (BDE-28, BDE-47, BDE-66, BDE-99, BDE-100, BDE-153, BDE-154) and BDE-209 (0.81 and 0.95 pg m-3, respectively) were found at the remote site Finokalia. Partitioning coefficients, K P, were calculated, and their linear relationships with ambient temperature and the physicochemical properties of the analyzed PBDE congeners, i.e., the subcooled liquid pressure (P L°) and the octanol-air partition coefficient (K OA), were investigated. The equilibrium adsorption (P L°-based) and absorption (K OA-based) models, as well as a steady-state absorption model including an equilibrium and a non-equilibrium term, both being functions of log K OA, were used to predict the fraction Φ of PBDEs associated with the particle phase. The steady-state model proved to be superior to predict G/P partitioning of BDE-209. The distribution of particle-bound PBDEs across size fractions < 0.95, 0.95-1.5, 1.5-3.0, 3.0-7.2, and > 7.2 μm indicated a positive correlation between the mass median aerodynamic diameter and log P L° for the less brominated congeners, whereas a negative correlation was observed for the high brominated congeners. The potential source regions of PBDEs were acknowledged as a combination of long-range transport with short-distance sources.
Collapse
Affiliation(s)
- Athanasios Besis
- Department of Chemistry, Environmental Pollution Control Laboratory, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Gerhard Lammel
- Research Centre for Toxic Compounds in the Environment, Masaryk University, Brno, Czech Republic
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Petr Kukučka
- Research Centre for Toxic Compounds in the Environment, Masaryk University, Brno, Czech Republic
- School of Science and Technology, Man-Technology-Environment Research Center (MTM), Örebro University, Orebro, Sweden
| | - Constantini Samara
- Department of Chemistry, Environmental Pollution Control Laboratory, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aysun Sofuoglu
- Department of Chemical Engineering and Environmental Research Center, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Yetkin Dumanoglu
- Department of Environmental Engineering, Dokuz Eylul University, Kaynaklar, Izmir, Turkey
| | - Kostas Eleftheriadis
- Institute of Nuclear Technology and Radiation Protection, NCSR Demokritos Institute, Athens, Greece
| | - Giorgos Kouvarakis
- Department of Chemistry, Environmental Chemical Processes Laboratory, University of Crete, Heraklion, Greece
| | - Sait C Sofuoglu
- Department of Chemical Engineering and Environmental Research Center, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Vassiliki Vassilatou
- Institute of Nuclear Technology and Radiation Protection, NCSR Demokritos Institute, Athens, Greece
| | - Dimitra Voutsa
- Department of Chemistry, Environmental Pollution Control Laboratory, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
25
|
Jin R, Zheng M, Yang H, Yang L, Wu X, Xu Y, Liu G. Gas-particle phase partitioning and particle size distribution of chlorinated and brominated polycyclic aromatic hydrocarbons in haze. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:1601-1608. [PMID: 28964608 DOI: 10.1016/j.envpol.2017.09.066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
Chlorinated and brominated polycyclic aromatic hydrocarbons (Cl/Br-PAHs) are emerging semi-volatile organic pollutants in haze-associated particulate matter (PM). Their gas-particle phase partitioning and distribution among PM fractions have not been clarified. Clarification would increase understanding of atmospheric behavior and health risks of Cl/Br-PAHs. In this study, samples of the gas phase and 4 PM phases (aerodynamic diameters (dae) > 10 μm, 2.5-10 μm, 1.0-2.5 μm, and <1.0 μm) were collected simultaneously during haze events in Beijing and analyzed. Normalized histogram distribution indicated that the Cl/Br-PAHs tended to adhere to fine particles. Over 80% of the Cl-PAHs and 70% of the Br-PAHs were associated with fine PM (dae < 2.5 μm). The gas-particle phase partitioning and PM distribution of Cl/Br-PAHs when heating of buildings was required, which was associated with haze events, were obviously different from those when heating was not required. The relationship between the logarithmic geometric mean diameters of the Cl/Br-PAH congeners and reciprocal of the temperature (1/T) suggested that low air temperatures during the heating period could lead to high proportions of Cl/Br-PAHs in the fine particles. Increased coal burning during the heating period also contributed to high Cl/Br-PAH loads in the fine particles.
Collapse
Affiliation(s)
- Rong Jin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongbo Yang
- Guizhou Academy of Testing and Analysis, Guiyang 550008, China
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolin Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
26
|
Oliveri Conti G, Heibati B, Kloog I, Fiore M, Ferrante M. A review of AirQ Models and their applications for forecasting the air pollution health outcomes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:6426-6445. [PMID: 28054264 DOI: 10.1007/s11356-016-8180-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 11/28/2016] [Indexed: 05/22/2023]
Abstract
Even though clean air is considered as a basic requirement for the maintenance of human health, air pollution continues to pose a significant health threat in developed and developing countries alike. Monitoring and modeling of classic and emerging pollutants is vital to our knowledge of health outcomes in exposed subjects and to our ability to predict them. The ability to anticipate and manage changes in atmospheric pollutant concentrations relies on an accurate representation of the chemical state of the atmosphere. The task of providing the best possible analysis of air pollution thus requires efficient computational tools enabling efficient integration of observational data into models. A number of air quality models have been developed and play an important role in air quality management. Even though a large number of air quality models have been discussed or applied, their heterogeneity makes it difficult to select one approach above the others. This paper provides a brief review on air quality models with respect to several aspects such as prediction of health effects.
Collapse
Affiliation(s)
- Gea Oliveri Conti
- Environmental and Food Hygiene Laboratories (LIAA), Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, via Santa Sofia 87, 95123, Catania, Italy.
| | - Behzad Heibati
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Itai Kloog
- Department of Environmental Health, Harvard University, Landmark Center, 401 Park Drive, Boston, 02215, Massachusetts, USA
| | - Maria Fiore
- Environmental and Food Hygiene Laboratories (LIAA), Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, via Santa Sofia 87, 95123, Catania, Italy
| | - Margherita Ferrante
- Environmental and Food Hygiene Laboratories (LIAA), Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, via Santa Sofia 87, 95123, Catania, Italy
| |
Collapse
|
27
|
Li WL, Huo CY, Liu LY, Song WW, Zhang ZF, Ma WL, Qiao LN, Li YF. Multi-year air monitoring of legacy and current-use brominated flame retardants in an urban center in northeastern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 571:633-642. [PMID: 27401280 DOI: 10.1016/j.scitotenv.2016.07.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 07/02/2016] [Accepted: 07/05/2016] [Indexed: 06/06/2023]
Abstract
The occurrence and temporal trends of polybrominated diphenyl ethers (PBDEs) and non-PBDE brominated flame retardants (NBFRs) were investigated in an urban atmosphere of Northeast China in consecutive six years (2008-2013). Among all chemicals, BDE-209, l,2,5,6,9,10-hexabromocyclododecane (HBCD), and decabromodiphenylethane (DBDPE) were the three most dominant compounds. During the period, the levels of pentabromodiphenyl ethers in the gas-phase and octabromodiphenyl ethers in the particle-phase significantly decreased, while the levels of BDE-209 and NBFRs increased in either the gas-phase or particle-phase. Ambient temperature was the most significant variable that influenced the gas-phase and particle-phase concentrations of BFRs, followed by wind speed and relative humidity. A stronger temperature dependence of the atmospheric concentrations was found for lower mass BFRs. Gas-particle partitioning studies suggested PBDEs in the urban atmosphere of Northeast China were at steady-state. Steady-state equation can also well describe the partitioning behavior for NBFRs, suggesting that the atmospheric partitioning behaviors of NBFRs were similar to those of PBDEs.
Collapse
Affiliation(s)
- Wen-Long Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Chun-Yan Huo
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China; School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Wei-Wei Song
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Li-Na Qiao
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China; IJRC-PTS-NA, Toronto M2N 6X9, Canada; School of Environmental Science, Liaoning University, Shenyang 110036, China
| |
Collapse
|
28
|
Li H, Liu H, Mo L, Sheng G, Fu J, Peng P. Airborne polybrominated diphenyl ethers (PBDEs), polybrominated dibenzo-p-dioxins/furans (PBDD/Fs), and dechlorane plus (DP) in concentrated vehicle parking areas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:10702-10713. [PMID: 26884244 DOI: 10.1007/s11356-016-6216-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/31/2016] [Indexed: 06/05/2023]
Abstract
This study investigated polybrominated diphenyl ethers (PBDEs), polybrominated dibenzo-p-dioxins/furans (PBDD/Fs), and dechlorane plus (DP) in air around three concentrated vehicle parking areas (underground, indoor, and outdoor) in a metropolitan of South China. The parking areas showed higher concentrations of PBDEs, PBDD/Fs, and DP than their adjacent urban area or distinct congener/isomer profiles, which indicate their local emission sources. The highest PBDE and DP concentrations were found in the outdoor parking lot, which might be related to the heating effect of direct sunlight exposure. Multi-linear regression analysis results suggest that deca-BDEs without noticeable transformation contributed most to airborne PBDEs in all studied areas, followed by penta-BDEs. The statistically lower anti-DP fractions in the urban area than that of commercial product signified its degradation/transformation during transportation. Neither PBDEs nor vehicle exhaust contributed much to airborne PBDD/Fs in the parking areas. There were 68.1-100 % of PBDEs, PBDD/Fs, and DP associated with particles. Logarithms of gas-particle distribution coefficients (K ps) of PBDEs were significantly linear-correlated with those of their sub-cooled vapor pressures (p Ls) and octanol-air partition coefficients (K OAs) in all studied areas. The daily inhalation doses of PBDEs, DP, and PBDD/Fs were individually estimated as 89.7-10,741, 2.05-39.4, and 0.12-4.17 pg kg(-1) day(-1) for employees in the parking areas via Monte Carlo simulation.
Collapse
Affiliation(s)
- Huiru Li
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Hehuan Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ligui Mo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoying Sheng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Jiamo Fu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Ping'an Peng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
29
|
Su PH, Hou CY, Sun D, Feng DL, Halldorson T, Ding YS, Li YF, Tomy GT. Laboratory study of the particle-size distribution of Decabromodiphenyl ether (BDE-209) in ambient air. CHEMOSPHERE 2016; 144:241-248. [PMID: 26363326 DOI: 10.1016/j.chemosphere.2015.08.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/15/2015] [Accepted: 08/18/2015] [Indexed: 06/05/2023]
Abstract
Laboratory measurements for particle-size distribution of Decabromodiphenyl ether (BDE-209) were performed in a 0.5 m(3) sealed room at 25 °C. BDE-209 was manually bounded to ambient particles. An electrostatic field-sampler was employed to collect particles. The number of collected particles (n(i,j), i and j was the class of particle diameter and applied voltage on electrostatic field-sampler sampler, respectively) and the corresponding mass of BDE-209 in collected particles (m(∑i,j)) were determined in a series of 6 experiments. The particle-size distribution coefficient (ki) was calculated through equations related to n(i,j) and m(∑i,j), and the particle-size distribution of BDE-209 was determined by ki·n(i,j). Results revealed that BDE-209 distributed in particles of all size and were not affiliated with fine particles as in field measurements. The particle size-fraction should be taken into account when discussing the particle-size distribution of BDE-209 in ambient air due to the normalized coefficients (normalized to k1) and were approximately in the same order of magnitude for each diameter class. The method described in the present study was deemed feasible in determining the particle-size distribution of BDE-209 from vaporization sources and helpful to understanding the instinct rule of particle-size distribution of BDE-209, and potentially feasible for other SVOCs.
Collapse
Affiliation(s)
- Peng-hao Su
- Department of Environmental Engineering, Shanghai Maritime University, Shanghai, 201306, PR China; IJRC-PTS, Shanghai Maritime University, Shanghai 201306, PR China.
| | - Chun-yan Hou
- Department of Environmental Engineering, Shanghai Maritime University, Shanghai, 201306, PR China; IJRC-PTS, Shanghai Maritime University, Shanghai 201306, PR China
| | - Dan Sun
- Department of Environmental Engineering, Shanghai Maritime University, Shanghai, 201306, PR China; IJRC-PTS, Shanghai Maritime University, Shanghai 201306, PR China
| | - Dao-lun Feng
- Department of Environmental Engineering, Shanghai Maritime University, Shanghai, 201306, PR China; IJRC-PTS, Shanghai Maritime University, Shanghai 201306, PR China
| | - Thor Halldorson
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Yong-sheng Ding
- Department of Environmental Engineering, Shanghai Maritime University, Shanghai, 201306, PR China; IJRC-PTS, Shanghai Maritime University, Shanghai 201306, PR China
| | - Yi-fan Li
- IJRC-PTS-NA, Toronto, Ontario M2N 6X9, Canada
| | - Gregg T Tomy
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
30
|
Li WL, Liu LY, Song WW, Zhang ZF, Qiao LN, Ma WL, Li YF. Five-year trends of selected halogenated flame retardants in the atmosphere of Northeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 539:286-293. [PMID: 26363723 DOI: 10.1016/j.scitotenv.2015.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/12/2015] [Accepted: 09/01/2015] [Indexed: 06/05/2023]
Abstract
This study collected 227 pairs of gas phase and particle phase air samples in a typical urban city of Northeast China from 2008 to 2013. Four alternative halogenated flame retardants for polybrominated diphenyl ethers (PBDEs) were analyzed, namely 2-ethylhexyl 2,3,4,5-tetrabromobenzoate (EHTBB), bis (2-ethylhexyl) tetrabromophthalate (BEHTBP), syn-dechlorane plus (syn-DP) and anti-dechlorane plus (anti-DP). The average concentrations for EHTBB and BEHTBP were 5.2 ± 20 and 30 ± 200 pg/m3, respectively, while for syn-DP and anti-DPwere 1.9±5.1 and 5.8±18 pg/m3, respectively. Generally, they were frequently detected in the particle phase, and the gas/particle partitioning suggested they were the maximum partition chemicals. The fractional abundance of EHTBB (fEHTBB) and syn-DP (fsyn)were comparablewith those in other studies. Strong local sources were identified based on the air parcel backward trajectories and the potential source contribution function. The concentrations of these chemicals were significantly increased during this sampling campaign, possibly suggesting their increasing usages from 2008 to 2013 in China.
Collapse
Affiliation(s)
- Wen-Long Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei-Wei Song
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Li-Na Qiao
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; IJRC-PTS-NA, Toronto M2N 6X9, Canada.
| |
Collapse
|
31
|
Luo P, Ni HG, Bao LJ, Li SM, Zeng EY. Size distribution of airborne particle-bound polybrominated diphenyl ethers and its implications for dry and wet deposition. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:13793-13799. [PMID: 25369178 DOI: 10.1021/es5042018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Size distribution of particles in part dictates the environmental behavior of particle-bound organic pollutants in the atmosphere. The present study was conducted to examine the potential mechanisms responsible for the distribution of organic pollutants in size fractionated particles and their environmental implications, using an e-waste recycling zone in South China as a case study. Size-fractionated atmospheric particles were collected at the heights of 1.5, 5, and 20 m near two residential apartments and analyzed for polybrominated diphenyl ethers (PBDEs). The concentrations of particle-bound ΣPBDE (sum of 18 PBDE congeners) were significantly greater at 5 and 20 m than those at 1.5 m. The size-fractionated distributions of airborne ΣPBDE displayed trimodal peaks in 0.10–0.18, 1.8–3.2, and 10–18 μm at 1.5 m but only an unimodal peak in 1.0–1.8 μm at 20 m height. Emission sources, resuspension of dust and soil, and volatility of PBDEs were important factors influencing the size distribution of particle-bound PBDEs. The dry deposition fluxes of particle-bound PBDE estimated from the measured data in the present study were approximately twice the estimated wet deposition fluxes, with a total deposition flux of 3000 ng m(–2) d(–1). The relative contributions of particles to dry and wet deposition fluxes were also size-dependent, e.g., coarse (aerodynamic diameters (Dp) > 1.8 μm) and fine (Dp < 1.8 μm) particles dominated the dry and wet deposition fluxes of PBDEs, respectively.
Collapse
Affiliation(s)
- Pei Luo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China
| | | | | | | | | |
Collapse
|