1
|
Marchand A, Tebby C, Catteau A, Turiès C, Porcher JM, Bado-Nilles A. Application in a biomonitoring context of three-spined stickleback immunomarker reference ranges. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112580. [PMID: 34352578 DOI: 10.1016/j.ecoenv.2021.112580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/14/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
The relevance of a biomarker for biomonitoring programs was influenced both by the knowledge on biomarker natural inter-individual and site variabilities and by the sensitivity of the biomarker towards environmental perturbations. To minimize data misinterpretation, robustness reference values for biomarkers were important in biomonitoring programs. Specific three-spined stickleback, Gasterosteus aculeatus, immune reference ranges for field studies had been determined based on laboratory data and one reference station (Contentieuse river at Houdancourt). In this study, data obtained in one uncontaminated and three contaminated sites were compared to these reference ranges as a validation step before considering them for larger scale biomonitoring programs. When the field reference range were compared to data from the uncontaminated station (Béronelle), only few deviations were shown. In this way, data coming from uncontaminated station (Béronelle) was integrated in the field reference ranges to improve the evaluation of site variability. The new field reference ranges provided better discrimination of sites and spanned a larger range of fish lengths than the initial reference ranges. Furthermore, the results suggest lysosomal presence during several months and phagocytosis capacity in autumn may be the most relevant immunomarkers towards identifying contaminated sites. In the future, combining this reference value approach with active biomonitoring could facilitate the obtention of data in multiple stream conditions.
Collapse
Affiliation(s)
- Adrien Marchand
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France
| | - Cleo Tebby
- INERIS, Unit of Models for Ecotoxicology and Toxicology (METO), Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France
| | - Audrey Catteau
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France
| | - Cyril Turiès
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France
| | - Jean-Marc Porcher
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France
| | - Anne Bado-Nilles
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France.
| |
Collapse
|
2
|
Gallão M, Gnocchi KG, Carvalho LR, Silva BF, Barbosa AN, Chippari-Gomes AR. The Impact of Sublethal Concentrations of Treated Leachate on Nile tilápia (Oreochromis niloticus). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 102:519-524. [PMID: 30770961 DOI: 10.1007/s00128-019-02566-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 02/01/2019] [Indexed: 05/06/2023]
Abstract
The objective of this study was to evaluate the impact of sublethal concentrations of treated landfill leachate on Oreochromis niloticus individuals after exposure for 96 h, by assessing biochemical, genotoxic and immunologic biomarkers. Among biochemical biomarkers (activities of ALT, AST and GST enzymes), the treated landfill leachate did not cause significant alterations on O. niloticus and did not significantly affect leukocytes used as an immunologic biomarker. On the other hand, treated leachate induced genotoxic damages, since an increase in erythrocytic micronuclei and in DNA damage (comet assay) were observed in fish exposed to all treatment (2, 4 and 6 mL L-1). Acute toxicity of treated leachate in O. niloticus caused only genotoxic changes in blood cells, showing that micronuclei and comet assay, together, are effective biomarkers in determining the acute toxicity of treated leachate in aquatic environments. This work also shows that leachate, although treated, caused some damages to O. niloticus, which indicates the employed treatment was not efficient in eliminating all genotoxic substances from the leachate.
Collapse
Affiliation(s)
- Michel Gallão
- Laboratório de Ictiologia Aplicada (LAB PEIXE), Universidade Vila Velha - UVV, Rua Comissário José Dantas de Melo, no. 21, Boa Vista, Vila Velha, ES, 29102-770, Brazil
| | - Karla G Gnocchi
- Laboratório de Ictiologia Aplicada (LAB PEIXE), Universidade Vila Velha - UVV, Rua Comissário José Dantas de Melo, no. 21, Boa Vista, Vila Velha, ES, 29102-770, Brazil
| | - Luciano R Carvalho
- Laboratório de Ictiologia Aplicada (LAB PEIXE), Universidade Vila Velha - UVV, Rua Comissário José Dantas de Melo, no. 21, Boa Vista, Vila Velha, ES, 29102-770, Brazil
| | - Bruno F Silva
- Laboratório de Ictiologia Aplicada (LAB PEIXE), Universidade Vila Velha - UVV, Rua Comissário José Dantas de Melo, no. 21, Boa Vista, Vila Velha, ES, 29102-770, Brazil
| | - Andressa N Barbosa
- Laboratório de Ictiologia Aplicada (LAB PEIXE), Universidade Vila Velha - UVV, Rua Comissário José Dantas de Melo, no. 21, Boa Vista, Vila Velha, ES, 29102-770, Brazil
| | - Adriana R Chippari-Gomes
- Laboratório de Ictiologia Aplicada (LAB PEIXE), Universidade Vila Velha - UVV, Rua Comissário José Dantas de Melo, no. 21, Boa Vista, Vila Velha, ES, 29102-770, Brazil.
| |
Collapse
|
3
|
Marchand A, Tebby C, Beaudouin R, Hani YMI, Porcher JM, Turies C, Bado-Nilles A. Modelling the effect of season, sex, and body size on the three-spined stickleback, Gasterosteus aculeatus, cellular innate immunomarkers: A proposition of laboratory reference ranges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:337-349. [PMID: 30121033 DOI: 10.1016/j.scitotenv.2018.07.381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/19/2018] [Accepted: 07/26/2018] [Indexed: 06/08/2023]
Abstract
Innate immunomarkers reflect both environmental contamination and fish health status, providing useful information in environmental risk assessment studies. Nevertheless, the lack of knowledge about the effect of confounding factors can lead to data misinterpretation and false diagnoses. The aim of this study was to evaluate the impact of three confounding factors (season, sex and body size) on three-spined stickleback innate immunomarkers in laboratory conditions. Results shown strong seasonal variations in stickleback innate immunomarkers, with higher immune capacities in late winter-early spring and a disturbance during the spawning period in late spring-summer. Sex and body size had a season dependant effect on almost all tested immunomarkers. Reference ranges were established in laboratory-controlled conditions (i.e. laboratory reference ranges) and compared with data obtained from in vivo chemical expositions. The predictive power of the statistical model depended on the immunomarker, but the control data of the in vivo experiments, realized in same laboratory conditions, were globally well include in the laboratory reference ranges. Moreover, some statistical effects of the in vivo exposures were correlated with an augmentation of values outside the reference ranges, indicating a possible harmful effect for the organisms. As confounding factors influence is a major limit to integrate immunomarkers in biomonitoring programs, modelling their influence on studied parameter may help to better evaluated environmental contaminations.
Collapse
Affiliation(s)
- Adrien Marchand
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France; Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, Moulin de la Housse, B.P. 1039, 51687 Reims, France
| | - Cleo Tebby
- INERIS, Unit of Models for Ecotoxicology and Toxicology (METO), Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France
| | - Rémy Beaudouin
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France; INERIS, Unit of Models for Ecotoxicology and Toxicology (METO), Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France
| | - Younes M I Hani
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, Moulin de la Housse, B.P. 1039, 51687 Reims, France
| | - Jean-Marc Porcher
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France
| | - Cyril Turies
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France
| | - Anne Bado-Nilles
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France.
| |
Collapse
|
4
|
Samaï HC, Rioult D, Bado-Nilles A, Delahaut L, Jubréaux J, Geffard A, Porcher JM, Betoulle S. Procedures for leukocytes isolation from lymphoid tissues and consequences on immune endpoints used to evaluate fish immune status: A case study on roach (Rutilus rutilus). FISH & SHELLFISH IMMUNOLOGY 2018; 74:190-204. [PMID: 29288813 DOI: 10.1016/j.fsi.2017.12.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/13/2017] [Accepted: 12/22/2017] [Indexed: 06/07/2023]
Abstract
The effects of two protocols (density gradient versus hypotonic lysis) used for leukocyte isolation from three major lymphoid tissue of fish (head-kidney, spleen and blood) were examined on some cell functional activities (tissue leucocytes distributions, phagocytosis, basal and burst oxidative activities) classically used to estimate the fish immune status. Experiments were conducted on roach (Rutilus rutilus), a cyprinid fish model often studied in different eco-physiological contexts (aquaculture, ecotoxicology …). All of immune endpoints were assessed either immediately after cell isolation or after a 12 h of incubation in order to observe if a post-isolation incubation may influence the leukocytes activities. Compared to the density gradient, hypotonic lysis is associated with granulocytes enrichments of cell suspensions. This is particularly true for leukocyte suspensions isolated from head kidney where granulocytes are naturally abundant. However, important variabilities in leukocyte distributions were observed in head kidney and spleen cells samples obtained by the use of hypotonic lysis for two incubation conditions used (no incubation or 12 h of incubation at 4 °C). The density gradient protocol leads to a transitory increase in basal ROS production in spleen lymphocytes and macrophages The blood leukocytes isolated by this same method exhibit high basal oxidative activities after 12 h of incubation at 4 °C and for the three leukocyte types (lymphocytes, monocytes and granulocytes). The hypotonic lysis is associated with an increase in PMA-induced ROS production especially in head kidney leukocytes. The increases in cell oxidative activities are consistent with increases in granulocyte proportions observed in leukocyte suspensions obtained by hypotonic lysis. Finally, the two protocols have no effect on leukocyte mortality and phagocytic activity. Within limits of our experimental conditions, the spleen is the organ whose leukocyte oxidative activities (stimulated or not) are only slightly influenced by the methods used for leukocyte isolation. This is also the case for the anterior kidney, but for this tissue, it is necessary to incubate the isolated cells for 12 h at 4 °C before functional analyses. Each of the two methodologies used has advantages and disadvantages. The hypotonic lysis allows to isolate a greater variety of leukocytes types whereas the density gradient used ensures a better stability of cells distributions over time. However, for the same fish species and for the same tissue, the method used to isolate leukocytes influences results and must be taken into consideration during acquired data analysis for evaluation of fish immune status.
Collapse
Affiliation(s)
- Hakim C Samaï
- Université de Reims Champagne-Ardenne, UMR-I 02 SEBIO Stress Environnementaux et Biosurveillance des Milieux Aquatiques, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, BP 1039, 51687 Reims Cedex 2, France.
| | - Damien Rioult
- Université de Reims Champagne-Ardenne/INERIS, Plateau Technique Mobile en Cytométrie Environnementale MOBICYTE, UFR des Sciences Exactes et Naturelles, BP 1039, 51687 Reims Cedex 2, France
| | - Anne Bado-Nilles
- Institut National de l'Environnement Industriel et des Risques, UMR-I 02 SEBIO Stress Environnementaux et Biosurveillance des Milieux Aquatiques, 60550 Verneuil-en-Halatte, France
| | - Laurence Delahaut
- Université de Reims Champagne-Ardenne, UMR-I 02 SEBIO Stress Environnementaux et Biosurveillance des Milieux Aquatiques, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, BP 1039, 51687 Reims Cedex 2, France
| | - Justine Jubréaux
- Université de Reims Champagne-Ardenne, UMR-I 02 SEBIO Stress Environnementaux et Biosurveillance des Milieux Aquatiques, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, BP 1039, 51687 Reims Cedex 2, France
| | - Alain Geffard
- Université de Reims Champagne-Ardenne, UMR-I 02 SEBIO Stress Environnementaux et Biosurveillance des Milieux Aquatiques, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, BP 1039, 51687 Reims Cedex 2, France
| | - Jean-Marc Porcher
- Institut National de l'Environnement Industriel et des Risques, UMR-I 02 SEBIO Stress Environnementaux et Biosurveillance des Milieux Aquatiques, 60550 Verneuil-en-Halatte, France
| | - Stéphane Betoulle
- Université de Reims Champagne-Ardenne, UMR-I 02 SEBIO Stress Environnementaux et Biosurveillance des Milieux Aquatiques, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, BP 1039, 51687 Reims Cedex 2, France
| |
Collapse
|
5
|
Gagnaire B, Adam-Guillermin C, Festarini A, Cavalié I, Della-Vedova C, Shultz C, Kim SB, Ikert H, Dubois C, Walsh S, Farrow F, Beaton D, Tan E, Wen K, Stuart M. Effects of in situ exposure to tritiated natural environments: A multi-biomarker approach using the fathead minnow, Pimephales promelas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:597-611. [PMID: 28494285 DOI: 10.1016/j.scitotenv.2017.04.210] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/14/2017] [Accepted: 04/27/2017] [Indexed: 06/07/2023]
Abstract
Aquatic ecosystems are chronically exposed to radionuclides as well as other pollutants. Increased concentrations of pollutants in aquatic environments can present a risk to exposed organisms, including fish. The goal of this study was to characterize the effects of tritium, in the context of natural environments, on the health of fathead minnow, Pimephales promelas. Fish were exposed to tritium (activity concentrations ranging from 2 to 23,000Bq/L) and also to various concentrations of several metals to replicate multiple-stressor environments. Fish were exposed for 60days, then transferred to the tritium background site where they stayed for another 60days. Tritium, in the forms of tritiated water (HTO) and organically bound tritium (OBT), and a series of fish health indicators were measured in fish tissues at seven time points throughout the 120days required to complete the exposure and the depuration phases. Results showed effects of environmental exposure following the increase of tritium activity and metals concentrations in water. The internal dose rates of tritium, estimated from tissue HTO and OBT activity concentrations, were consistently low (maximum of 0.2μGy/h) compared to levels at which population effects may be expected (>100μGy/h) and no effects were observed on survival, fish condition, gonado-somatic, hepato-somatic, spleno-somatic and metabolic indices (RNA/DNA, proteins/DNA and protein carbonylation (in gonads and kidneys)). Using multivariate analyses, we showed that several biomarkers (DNA damages, MN frequency, gamma-H2AX, SFA/MUFA ratios, lysosomal membrane integrity, AChE, SOD, phagocytosis and esterase activities) were exclusively correlated with fish tritium internal dose rate, showing that tritium induced genotoxicity, DNA repair activity, changes in fatty acid composition, and immune, neural and antioxidant responses. Some biomarkers were responding to the presence of metals, but overall, more biomarkers were linked to internalized tritium. The results are discussed in the context of multiple stressors involving metals and tritium.
Collapse
Affiliation(s)
- B Gagnaire
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France.
| | - C Adam-Guillermin
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France
| | - A Festarini
- Canadian Nuclear Laboratories (formerly Atomic Energy of Canada Limited), Chalk River Laboratories, 286 Plant Road, Chalk River, ON K0J 1J0, Canada
| | - I Cavalié
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France
| | - C Della-Vedova
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-ENV/SERIS/LRTE, Cadarache, Saint-Paul-lez-Durance 13115, France
| | - C Shultz
- Canadian Nuclear Laboratories (formerly Atomic Energy of Canada Limited), Chalk River Laboratories, 286 Plant Road, Chalk River, ON K0J 1J0, Canada
| | - S B Kim
- Canadian Nuclear Laboratories (formerly Atomic Energy of Canada Limited), Chalk River Laboratories, 286 Plant Road, Chalk River, ON K0J 1J0, Canada
| | - H Ikert
- Canadian Nuclear Laboratories (formerly Atomic Energy of Canada Limited), Chalk River Laboratories, 286 Plant Road, Chalk River, ON K0J 1J0, Canada
| | - C Dubois
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France; Canadian Nuclear Laboratories (formerly Atomic Energy of Canada Limited), Chalk River Laboratories, 286 Plant Road, Chalk River, ON K0J 1J0, Canada
| | - S Walsh
- Canadian Nuclear Laboratories (formerly Atomic Energy of Canada Limited), Chalk River Laboratories, 286 Plant Road, Chalk River, ON K0J 1J0, Canada
| | - F Farrow
- Canadian Nuclear Laboratories (formerly Atomic Energy of Canada Limited), Chalk River Laboratories, 286 Plant Road, Chalk River, ON K0J 1J0, Canada
| | - D Beaton
- Canadian Nuclear Laboratories (formerly Atomic Energy of Canada Limited), Chalk River Laboratories, 286 Plant Road, Chalk River, ON K0J 1J0, Canada
| | - E Tan
- Canadian Nuclear Laboratories (formerly Atomic Energy of Canada Limited), Chalk River Laboratories, 286 Plant Road, Chalk River, ON K0J 1J0, Canada
| | - K Wen
- Canadian Nuclear Laboratories (formerly Atomic Energy of Canada Limited), Chalk River Laboratories, 286 Plant Road, Chalk River, ON K0J 1J0, Canada
| | - M Stuart
- Canadian Nuclear Laboratories (formerly Atomic Energy of Canada Limited), Chalk River Laboratories, 286 Plant Road, Chalk River, ON K0J 1J0, Canada
| |
Collapse
|