1
|
Isinkaralar O, Świsłowski P, Isinkaralar K, Rajfur M. Moss as a passive biomonitoring tool for the atmospheric deposition and spatial distribution pattern of toxic metals in an industrial city. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:513. [PMID: 38709416 DOI: 10.1007/s10661-024-12696-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
Anthropogenic pollution impacts human and environmental health, climate change, and air quality. Karabük, an industrial area from the Black Sea Region in northern Türkiye, is vulnerable to environmental pollution, particularly soil and air. In this research on methodological aspects, we analyzed the concentrations of six potential toxic metals in the atmospheric deposition of the city using the passive method of moss biomonitoring. The ground-growing terrestrial moss, Hypnum cupressiforme Hedw., was collected during the dry season of August 2023 at 20 urban points. The concentrations of Cr, Cu, Cd, Ni, Pb, and Co were determined in mosses by the ICP-MS method. Descriptive statistical analysis was employed to evaluate the status and variance in the spatial distribution of the studied metals, and multivariate analysis, Pearson correlation, and cluster analysis were used to investigate the associations of elements and discuss the most probable sources of these elements in the study area. Cd and Co showed positive and significant inter-element correlations (r > 0.938), representing an anthropogenic association mostly present in the air particles emitted from several metal plants. The results showed substantial impacts from local industry, manufactured activity, and soil dust emissions. Steel and iron smelter plants and cement factories are the biggest emitters of trace metals in the Karabük area and the primary sources of Cr, Cd, Ni, and Co deposition.
Collapse
Affiliation(s)
- Oznur Isinkaralar
- Department of Landscape Architecture, Faculty of Engineering and Architecture, Kastamonu University, 37150, Kastamonu, Türkiye.
| | - Paweł Świsłowski
- Institute of Biology, University of Opole, Kominka St. 6, 6a, 45-032, Opole, Poland
| | - Kaan Isinkaralar
- Department of Environmental Engineering, Faculty of Engineering and Architecture, Kastamonu University, 37150, Kastamonu, Türkiye
| | - Małgorzata Rajfur
- Institute of Biology, University of Opole, Kominka St. 6, 6a, 45-032, Opole, Poland
| |
Collapse
|
2
|
Vázquez-Arias A, Giráldez P, Martínez-Abaigar J, Núñez-Olivera E, Aboal JR, Fernández JÁ. Fine-tuning the use of moss transplants to map pollution by Potentially Toxic Elements (PTEs) in urban areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171601. [PMID: 38461972 DOI: 10.1016/j.scitotenv.2024.171601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Mosspheres are a kind of moss transplants which offer a novel approach for detecting atmospheric pollution using devitalized mosses, as they reflect the atmospheric deposition of certain elements and polycyclic hydrocarbons. However, due to the unique features of the mosspheres such as the low elemental concentrations in the cultured material, the data treatment needs to be different from that of conventional biomonitoring studies. In this article, our objectives are to identify the best parameter for expressing the levels of chemical elements accumulated by mosspheres, and to apply a recently developed method to assess the probability of pollution of each sample and of the study area. To do this, we used data from a study in which 81 mosspheres were exposed in a medium-sized city in southwestern Europe. Comparing different pollution indices, we selected the enrichment rate (ER) as the most useful, as it is resilient to fluctuations in the initial concentrations and takes into account the time factor, allowing for greater comparability among studies. Then, we determined that the statistical distribution of the ERs of most elements fitted a normal distribution, showing that most samples did not differ significantly from the background concentrations for these elements. On the other hand, for Ni, Pb and Zn there was a subpopulation of samples above background values. In these cases, we determined the probability of pollution of each sample. Finally, we used indicator kriging to calculate the probability of pollution across the study area, identifying the polluted areas, which for some elements match the distribution of the main industries and highways, indicating that this is a suitable protocol to map elemental pollution in urban areas.
Collapse
Affiliation(s)
- Antón Vázquez-Arias
- CRETUS Institute, Ecology Area, Department of Functional Biology, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - Pablo Giráldez
- CRETUS Institute, Ecology Area, Department of Functional Biology, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Javier Martínez-Abaigar
- Faculty of Science and Technology, Universidad de La Rioja, Madre de Dios 53, Logroño 26006, Spain
| | | | - Jesús R Aboal
- CRETUS Institute, Ecology Area, Department of Functional Biology, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - J Ángel Fernández
- CRETUS Institute, Ecology Area, Department of Functional Biology, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| |
Collapse
|
3
|
Vázquez-Arias A, Aboal JR, Fernández JÁ. What dead seaweeds can tell us about metal uptake and their application to control marine pollution. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132216. [PMID: 37586241 DOI: 10.1016/j.jhazmat.2023.132216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/22/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023]
Abstract
The mechanisms of trace element uptake by seaweeds are still unknown, despite being key to understand the impact of pollution in coastal environments. This knowledge gap, in addition to the lack of standardization, have also hindered the use of seaweeds to monitor seawater pollution. To address these shortcomings, we tested the use of devitalization as a pre-exposure treatment for brown seaweed transplants, and we compared devitalized and fresh transplants to gain some insights into the mechanisms of element uptake. We exposed four types of Fucus vesiculosus transplants in 6 sites for 4, 8 and 20 days: fresh and devitalized (dried or boiled) algal segments held in mesh bags, and whole algal thalli imitating natural conditions. We then determined he concentrations of 11 trace elements in the algal tissues. The element concentrations were highest in the devitalized transplants, but the material lost consistency and weight throughout the exposure period, limiting their use to short periods. We proposed several factors that may contribute to the different accumulation patterns between treatments, and examined the implications for the uptake mechanisms, revealing that two of the most important are surface adsorption of sediment particles and chemical bounds to extracellular components.
Collapse
Affiliation(s)
- Antón Vázquez-Arias
- CRETUS Institute, Ecology Area, Department of Functional Biology, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - Jesús R Aboal
- CRETUS Institute, Ecology Area, Department of Functional Biology, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - J Ángel Fernández
- CRETUS Institute, Ecology Area, Department of Functional Biology, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| |
Collapse
|
4
|
Sheng X, Zhaohui Z, Zhihui W. Potentially toxic elements have adverse effects on moss communities in the manganese mines of Southern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119255. [PMID: 35395347 DOI: 10.1016/j.envpol.2022.119255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/27/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the distribution of moss species, physiological parameters (superoxide dismutase, peroxide, catalase, and total chlorophyll), and concentrations of potentially toxic elements (Mn, Cr, Zn, Cu, Pb, and Cd) in moss communities and topsoil at the Huayuan manganese mine, Xiangjiang manganese mine, and Nancha manganese mine (Southern China). Partial least squares path modeling (PLS-PM) was then performed to determine the relationship between the indicators. Cd, Mn, and Zn were the main topsoil pollutants, followed by Pb, Cr, and Cu. A total of 73 moss species, comprising 31 genera from 17 families, and 8 community functional groups were identified. The most dominant families were Pottiaceae (30.14%) and Bryaceae (21.92%). PLS-PM revealed that increasing topsoil Mn, Cr, Zn, Cu, Pb, and Cd significantly reduced species diversity and functional diversity. These potentially toxic elements in the topsoil impeded vegetation growth by deteriorating soil conditions and subsequently altering the microenvironment of the moss communities. The community-weighted means demonstrated that functional traits of turfs and warty leaves were the adaptation of the moss communities to an increasingly dry and exposed microenvironment. Moss species with curly and narrow leaves were used to reduce contact with particulate pollutants. PLS-PM also indicated that Mn, Cr, Pb, and Cd may have a detrimental effect on superoxide dismutase, peroxide, catalase, and total chlorophyll, although further validation studies are needed.
Collapse
Affiliation(s)
- Xu Sheng
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China
| | - Zhang Zhaohui
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China.
| | - Wang Zhihui
- School of Life Sciences, Guizhou Normal University, Guiyang 550001, China
| |
Collapse
|
5
|
Świsłowski P, Nowak A, Rajfur M. Comparison of Exposure Techniques and Vitality Assessment of Mosses in Active Biomonitoring for Their Suitability in Assessing Heavy Metal Pollution in Atmospheric Aerosol. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1429-1438. [PMID: 35213067 DOI: 10.1002/etc.5321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/22/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
The most widespread and used technique is the moss-bag method in active biomonitoring of air pollution using mosses. In the literature, we can find various studies on the standardization of this method, including attempts to standardize treatments and preparation procedures for their universal application. Few works comprehensively focus on other methods or compare other techniques used in active biomonitoring with mosses, especially including measurements of their vital parameters. Our experiment aimed to assess air pollution by selected heavy metals (Cu, Zn, Cd, Pb, Mn, Fe, and Hg) using three moss species (Pleurozium schreberi, Sphagnum fallax, and Dicranum polysetum) during a 12-week exposure in an urban area. Mosses were exposed simultaneously using four techniques: moss bag in three variants (exposed to air for total deposition of heavy metals, exposed to air for only dry deposition, and sheltered from the wind) and transplants in boxes. Increases in heavy metal concentrations in mosses were determined using the relative accumulation factor (RAF). The actual quantum yield of photosystem II photochemical was also analyzed as the main vitality parameter. The results indicate that all moss species during the changing environmental conditions survived and retained their vitality, although it decreased by >50% during the exposure. The best biomonitor was the moss P. schreberi, whose RAF increments were the highest throughout the study period for the majority of elements. The moss-bag technique had a statistically significant effect (almost 40%) on the concentration value of a given metal for a certain species, and thus it is the most recommended technique that can be applied in air quality monitoring in urban areas. Environ Toxicol Chem 2022;41:1429-1438. © 2022 SETAC.
Collapse
Affiliation(s)
| | - Arkadiusz Nowak
- Institute of Biology, University of Opole, Opole, Poland
- Botanical Garden-Centre for Biodiversity Conservation, Polish Academy of Sciences, Warsaw, Poland
| | - Małgorzata Rajfur
- Institute of Environmental Engineering and Biotechnology, University of Opole, Opole, Poland
| |
Collapse
|
6
|
Varela Z, Real C, Branquinho C, do Paço TA, Cruz de Carvalho R. Optimising Artificial Moss Growth for Environmental Studies in the Mediterranean Area. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112523. [PMID: 34834885 PMCID: PMC8623257 DOI: 10.3390/plants10112523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/26/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Bryophytes are poikilohydric organisms that play a key role in ecosystems, while some of them are also resistant to drought and environmental disturbances but present a slow growth rate. Moss culture in the laboratory can be a very useful tool for ecological restoration or the development of urban green spaces (roof and wall) in the Mediterranean region. Therefore, we aim to: (i) determine the optimal culture conditions for the growth of four moss species present in the Mediterranean climate, such as Bryum argenteum, Hypnum cupressiforme, Tortella nitida, and Tortella squarrosa; (ii) study the optimal growth conditions of the invasive moss Campylopus introflexus to find out if it can be a threat to native species. Photoperiod does not seem to cause any recognisable pattern in moss growth. However, temperature produces more linear but slower growth at 15 °C than at 20 and 25 °C. In addition, the lower temperature produced faster maximum cover values within 5-8 weeks, with at least 60% of the culture area covered. The study concludes that the culture of moss artificially in the organic gardening substrate without fertilisers is feasible and could be of great help for further use in environmental projects to restore degraded ecosystems or to facilitate urban green spaces in the Mediterranean area. Moreover, this study concludes that C. introflexus could successfully occupy the niche of other native moss species, especially in degraded areas, in a future global change scenario.
Collapse
Affiliation(s)
- Zulema Varela
- CRETUS, Ecology Unit, Department Functional Biology, Facultade de Bioloxía, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, University of Lisbon, 1749-016 Lisbon, Portugal; (C.B.); (R.C.d.C.)
| | - Carlos Real
- Ecology Unit, Department Functional Biology, Escola Politécnica Superior de Enxeñaría (EPSE), Universidade de Santiago de Compostela, Rúa Benigno Ledo, Campus Terra, 27002 Lugo, Spain;
| | - Cristina Branquinho
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, University of Lisbon, 1749-016 Lisbon, Portugal; (C.B.); (R.C.d.C.)
| | - Teresa Afonso do Paço
- LEAF—Linking Landscape, Environment, Agriculture and Food—Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal;
| | - Ricardo Cruz de Carvalho
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, University of Lisbon, 1749-016 Lisbon, Portugal; (C.B.); (R.C.d.C.)
- Marine and Environmental Sciences Centre (MARE), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edifício C2, Piso 5, 1749-016 Lisboa, Portugal
| |
Collapse
|
7
|
Gioda A, Beringui K, Justo EPS, Ventura LMB, Massone CG, Costa SSL, Oliveira SS, Araujo RGO, Nascimento NDM, Severino HGS, Duyck CB, de Souza JR, Saint Pierre TD. A Review on Atmospheric Analysis Focusing on Public Health, Environmental Legislation and Chemical Characterization. Crit Rev Anal Chem 2021; 52:1772-1794. [PMID: 34092145 DOI: 10.1080/10408347.2021.1919985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Atmospheric pollution has been considered one of the most important topics in environmental science once it can be related to the incidence of respiratory diseases, climate change, and others. Knowing the composition of this complex and variable mixture of gases and particulate matter is crucial to understand the damages it causes, help establish limit levels, reduce emissions, and mitigate risks. In this work, the current scenario of the legislation and guideline values for indoor and outdoor atmospheric parameters will be reviewed, focusing on the inorganic and organic compositions of particulate matter and on biomonitoring. Considering the concentration level of the contaminants in air and the physical aspects (meteorological conditions) involved in the dispersion of these contaminants, different approaches for air sampling and analysis have been developed in recent years. Finally, this review presents the importance of data analysis, whose main objective is to transform analytical results into reliable information about the significance of anthropic activities in air pollution and its possible sources. This information is a useful tool to help the government implement actions against atmospheric air pollution.
Collapse
Affiliation(s)
- Adriana Gioda
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| | - Karmel Beringui
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| | - Elizanne P S Justo
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| | - Luciana M B Ventura
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil.,Instituto Estadual do Ambiente (INEA), Rio de Janeiro, RJ, Brazil
| | - Carlos G Massone
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| | - Silvânio Silvério Lopes Costa
- Núcleo de Petróleo e Gás, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil.,Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Salvador, BA, Brazil
| | - Sidimar Santos Oliveira
- Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Salvador, BA, Brazil
| | - Rennan Geovanny Oliveira Araujo
- Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Salvador, BA, Brazil.,Instituto Nacional de Ciência e Tecnologia do CNPq - INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA, Brazil
| | - Nivia de M Nascimento
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil.,Departamento de Geoquímica e Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Hemmely Guilhermond S Severino
- Departamento de Geoquímica e Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Christiane B Duyck
- Departamento de Geoquímica e Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Jefferson Rodrigues de Souza
- Laboratório de Ciências Químicas, Universidade Estadual Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Tatiana D Saint Pierre
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
8
|
Sergeeva A, Zinicovscaia I, Vergel K, Yushin N, Urošević MA. The Effect of Heavy Industry on Air Pollution Studied by Active Moss Biomonitoring in Donetsk Region (Ukraine). ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 80:546-557. [PMID: 33755741 DOI: 10.1007/s00244-021-00834-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/06/2021] [Indexed: 06/12/2023]
Abstract
The active moss biomonitoring technique was applied to assess the environmental pollution in the Donetsk region and to compare the biomonitoring capacity of acrocarpous (Ceratodon purpureus) and pleurocarpous (Brachythecium campestre) moss transplants. Moss bags were exposed for 6 months in the surroundings of two steelworks, a power station, and two parks. The concentrations of 19 elements were determined in the moss transplants by neutron activation analysis and atomic absorption spectrometry. Various environmental indices-relative accumulation factor, contamination factor, pollution load index, enrichment factor, and ecological risk index-were used to quantitatively assess the degree of ambient contamination. The RAF values indicate that the most prevalent elements in Brachythecium campestre and Ceratodon purpureus were Na, Al, Ca, Fe, Ti, V, Cr, Mn, Co, Ni, Zn, Ba, Sr, Pd, and Cd. The results showed a significant difference between metal accumulation by Ceratodon purpureus and Brachythecium campestre indicating various mechanisms of uptake. All elements were highly correlated in Ceratodon purpureus. The main air pollution sources in the region are the Zuivska power station (Zuivska TES), Donetsk Metallurgical Plant, and Yenakiieve Iron and Steel Works.
Collapse
Affiliation(s)
- Anastasiya Sergeeva
- Joint Institute for Nuclear Research, 6 Joliot-Curie, Dubna, Moscow Region, Russia, 141980.
| | - Inga Zinicovscaia
- Joint Institute for Nuclear Research, 6 Joliot-Curie, Dubna, Moscow Region, Russia, 141980
- Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului Str. MG-6, 041713, Bucharest-Magurele, Romania
| | - Konstantin Vergel
- Joint Institute for Nuclear Research, 6 Joliot-Curie, Dubna, Moscow Region, Russia, 141980
| | - Nikita Yushin
- Joint Institute for Nuclear Research, 6 Joliot-Curie, Dubna, Moscow Region, Russia, 141980
| | - Mira Aničić Urošević
- Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080, Belgrade, Serbia
| |
Collapse
|
9
|
Aboal JR, Concha-Graña E, De Nicola F, Muniategui-Lorenzo S, López-Mahía P, Giordano S, Capozzi F, Di Palma A, Reski R, Zechmeister H, Martínez-Abaigar J, Fernández JA. Testing a novel biotechnological passive sampler for monitoring atmospheric PAH pollution. JOURNAL OF HAZARDOUS MATERIALS 2020; 381:120949. [PMID: 31387076 DOI: 10.1016/j.jhazmat.2019.120949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 07/12/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
In this study we evaluated a new type of passive air sampler, the "mossphere" device, filled with a Sphagnum palustre clone. For this purpose, we compared the atmospheric levels of polyaromatic hydrocarbons (PAHs) collected using this device and those collected in conventional bulk deposition and particulate matter (PM10) samplers. All three types of samplers were exposed at 10 sites affected by different levels of pollution and located in two different climate zones. The bulk deposition/ mossphere comparison yielded a greater number of significant regressions with higher coefficients of determination than the PM10/ mossphere comparison. No significant regressions were observed for 3-ring PAHs in either comparison. The mosspheres explain ca. 50% of the variability of the concentrations of 4-, 5- and 6-ring PAHs and total PAHs detected in PM10 and ca. 70% of the corresponding concentrations detected in the bulk deposition. The use of the Sphagnum clone enables standardization of the set-up, thus making the mossphere device a good sampling tool for monitoring 4-, 5- and 6-ring and total PAHs, especially those associated with bulk deposition. The findings indicate the potential usefulness of this innovative technology for mapping PAH levels.
Collapse
Affiliation(s)
- J R Aboal
- Área de Ecología, Dept. de Biología Funcional, Facultad de Biología, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - E Concha-Graña
- Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Centro de Investigaciones Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, 15071 A, Coruña, Spain
| | - F De Nicola
- Department of Sciences and Technologies, University of Sannio, via F. De Sanctis SNC, 82100, Benevento, Italy
| | - S Muniategui-Lorenzo
- Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Centro de Investigaciones Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, 15071 A, Coruña, Spain
| | - P López-Mahía
- Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Centro de Investigaciones Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, 15071 A, Coruña, Spain
| | - S Giordano
- Department of Biology, University of Naples Federico II, Campus Monte S. Angelo, Via Cinthia 4, 80126, Naples, Italy
| | - F Capozzi
- Department of Biology, University of Naples Federico II, Campus Monte S. Angelo, Via Cinthia 4, 80126, Naples, Italy
| | - A Di Palma
- Department of Agricultural Sciences, University of Naples Federico II, Via Universita, 100, 80055, Portici, NA, Italy
| | - R Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany; BIOSS - Centre for Biological Signalling Studies, 79104, Freiburg, Germany
| | - H Zechmeister
- Dept. Conservation, Vegetation and Landscape Biology, University of Vienna, Rennweg 14, 1030, Vienna, Austria
| | - J Martínez-Abaigar
- Edificio Científico-Tecnológico, Universidad de La Rioja, Avd. Madre de Dios 51, 26006, Logroño, Spain
| | - J A Fernández
- Área de Ecología, Dept. de Biología Funcional, Facultad de Biología, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
10
|
Mahapatra B, Dhal NK, Dash AK, Panda BP, Panigrahi KCS, Pradhan A. Perspective of mitigating atmospheric heavy metal pollution: using mosses as biomonitoring and indicator organism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:29620-29638. [PMID: 31463756 DOI: 10.1007/s11356-019-06270-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
Mosses were proved as an ideal and reliable biomonitor as well as an indicator of atmospheric trace metal pollution. They are used as model indicator species of air pollution since long back due to their simple structure, genetic diversity, totipotency, rapid colony-forming ability, and high metal resistance behavior. Bryomonitoring technique is gradually being popularized as an economically viable procedure for estimating the degrees of environmental health and evaluating the toxic pollutants in biosphere. Thus, in the present scenario, many parts of the world use these organisms for monitoring the air pollution. This article describes an overview of the relationship of terrestrial mosses with trace metals with respect to their uptake, accumulation, and toxification as well as detoxification and tolerance mechanisms. The review article explicitly expresses the caliber of the cryptogamic mosses in establishing the pristine environment around the world. It also highlights the underpinning mechanisms and potential for future research directions. We have referred more than 250 articles, which deals with the assessment and impact of different heavy metals on 52 numbers of different moss species belongs to different climatic zones. The present review covers the research work in this area carried out worldwide since 1965.
Collapse
Affiliation(s)
- Biswajita Mahapatra
- Environmental Sciences, Department of Chemistry, Institute of Technical Education and Research, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India
| | - Nabin Kumar Dhal
- Department of Environment and Sustainability, Council of Scientific and Industrial Research (CSIR)-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha, 751013, India
| | - Aditya Kishore Dash
- Biofuel and Bioprocessing Research Centre, Institute of Technical Education and Research, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India
| | - Bibhu Prasad Panda
- Environmental Sciences, Department of Chemistry, Institute of Technical Education and Research, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India
| | | | - Abanti Pradhan
- Biofuel and Bioprocessing Research Centre, Institute of Technical Education and Research, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India.
| |
Collapse
|
11
|
Francová A, Chrastný V, Šillerová H, Kocourková J, Komárek M. Suitability of selected bioindicators of atmospheric pollution in the industrialised region of Ostrava, Upper Silesia, Czech Republic. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:478. [PMID: 28852908 DOI: 10.1007/s10661-017-6199-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Abstract
This study is a continuation of our preceding research identifying suitable environmental samples for the tracing of atmospheric pollution in industrial areas. Three additional types of environmental samples were used to characterise contamination sources in the industrial area of Ostrava city, Czech Republic. The region is known for its extensive metallurgical and mining activities. Fingerprinting of stable Pb isotopes was applied to distinguish individual sources of anthropogenic Pb. A wide range of 206Pb/207Pb ratios was observed in the investigated samples: 206Pb/207Pb = 1.168-1.198 in mosses; 206Pb/207Pb = 1.167-1.215 in soils and 206Pb/207Pb = 1.158-1.184 in tree cores. Black and brown coal combustion, as well as metallurgical activities, is the two main sources of pollution in the area. Fossil fuel burning in industry and households seems to be a stronger source of Pb emissions than from the metallurgical industry. Concentration analyses of tree rings showed that a significant increase in As concentrations occurred between 1999 and 2016 (from 0.38 mg kg-1 to 13.8 mg kg-1). This shift corresponds to the use of brown coal from Bílina, Czech Republic, with an increased As concentration. The burning of low-quality fuels in households remains a problem in the area, as small ground sources have a greater influence on the air quality than do industrial sources.
Collapse
Affiliation(s)
- Anna Francová
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21, Prague 6, Suchdol, Czech Republic.
| | - Vladislav Chrastný
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21, Prague 6, Suchdol, Czech Republic
| | - Hana Šillerová
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21, Prague 6, Suchdol, Czech Republic
| | - Jana Kocourková
- Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21, Prague 6, Suchdol, Czech Republic
| | - Michael Komárek
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21, Prague 6, Suchdol, Czech Republic
| |
Collapse
|
12
|
Vuković G, Urošević MA, Škrivanj S, Vergel K, Tomašević M, Popović A. The first survey of airborne trace elements at airport using moss bag technique. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:15107-15115. [PMID: 28493193 DOI: 10.1007/s11356-017-9140-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 04/27/2017] [Indexed: 06/07/2023]
Abstract
Air traffic represents an important way of social mobility in the world, and many ongoing discussions are related to the impacts that air transportation has on local air quality. In this study, moss Sphagnum girgensohnii was used for the first time in the assessment of trace element content at the international airport. The moss bags were exposed during the summer of 2013 at four sampling sites at the airport 'Nikola Tesla' (Belgrade, Serbia): runway (two), auxiliary runway and parking lot. According to the relative accumulation factor (RAF) and the limit of quantification of the moss bag technique (LOQT), the most abundant elements in the samples were Zn, Na, Cr, V, Cu and Fe. A comparison between the element concentrations at the airport and the corresponding values in different land use classes (urban central, suburban, industrial and green zones) across the city of Belgrade did not point out that the air traffic and associated activities significantly contribute to the trace element air pollution. This study emphasised an easy operational and robust (bio)monitoring, using moss bags as a suitable method for assessment of air quality within various microenvironments with restriction in positioning referent instrumental devices.
Collapse
Affiliation(s)
- Gordana Vuković
- Institute of Physics, University of Belgrade, Pregrevica 118, Belgrade, 11080, Serbia.
| | - Mira Aničić Urošević
- Institute of Physics, University of Belgrade, Pregrevica 118, Belgrade, 11080, Serbia
| | - Sandra Škrivanj
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, 11000, Serbia
| | - Konstantin Vergel
- Joint Institute for Nuclear Research, Joliot Curie 6, Dubna, Russian Federation, 141980
| | - Milica Tomašević
- Institute of Physics, University of Belgrade, Pregrevica 118, Belgrade, 11080, Serbia
| | - Aleksandar Popović
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, 11000, Serbia
| |
Collapse
|
13
|
Weerasundara L, Amarasekara RWK, Magana-Arachchi DN, Ziyath AM, Karunaratne DGGP, Goonetilleke A, Vithanage M. Microorganisms and heavy metals associated with atmospheric deposition in a congested urban environment of a developing country: Sri Lanka. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 584-585:803-812. [PMID: 28185730 DOI: 10.1016/j.scitotenv.2017.01.121] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 06/06/2023]
Abstract
The presence of bacteria and heavy metals in atmospheric deposition were investigated in Kandy, Sri Lanka, which is a typical city in the developing world with significant traffic congestion. Atmospheric deposition samples were analyzed for Al, Cr, Mn, Fe, Ni, Cu, Zn, Cd and Pb which are heavy metals common to urban environments. Al and Fe were found in high concentrations due to the presence of natural sources, but may also be re-suspended by vehicular traffic. Relatively high concentrations of toxic metals such as Cr and Pb in dissolved form were also found. High Zn loads can be attributed to vehicular emissions and the wide use of Zn coated roofing materials. The metal loads in wet deposition showed higher concentrations compared to dry deposition. The metal concentrations among the different sampling sites significantly differ from each other depending on the traffic conditions. Industrial activities are not significant in Kandy City. Consequently, the traffic exerts high influence on heavy metal loadings. As part of the bacterial investigations, nine species of culturable bacteria, namely; Sphingomonas sp., Pseudomonas aeruginosa, Pseudomonas monteilii, Klebsiella pneumonia, Ochrobactrum intermedium, Leclercia adecarboxylata, Exiguobacterium sp., Bacillus pumilus and Kocuria kristinae, which are opportunistic pathogens, were identified. This is the first time Pseudomonas monteilii and Ochrobactrum intermedium has been reported from a country in Asia. The culturable fraction constituted ~0.01 to 10%. Pigmented bacteria and endospore forming bacteria were copious in the atmospheric depositions due to their capability to withstand harsh environmental conditions. The presence of pathogenic bacteria and heavy metals creates potential human and ecosystem health risk.
Collapse
Affiliation(s)
- Lakshika Weerasundara
- Environmental Chemodynamics Project, National Institute of Fundamental Studies, Kandy, Sri Lanka
| | - R W K Amarasekara
- Cell Biology, National Institute of Fundamental Studies, Kandy, Sri Lanka
| | | | - Abdul M Ziyath
- Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Australia
| | - D G G P Karunaratne
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Peradeniya, Sri Lanka
| | - Ashantha Goonetilleke
- Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Australia
| | - Meththika Vithanage
- Environmental Chemodynamics Project, National Institute of Fundamental Studies, Kandy, Sri Lanka.
| |
Collapse
|
14
|
Angelovska S, Stafilov T, Šajn R, Balabanova B. Geogenic and Anthropogenic Moss Responsiveness to Element Distribution Around a Pb-Zn Mine, Toranica, Republic of Macedonia. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 70:487-505. [PMID: 26888226 DOI: 10.1007/s00244-015-0251-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/06/2015] [Indexed: 06/05/2023]
Abstract
Moss species (Homalothecium lutescens, Hypnum cupressiforme, Brachythecium glareosum, and Campthotecium lutescens) were used as suitable sampling media for biomonitoring the origin of heavy-metal pollution in the lead-zinc (Pb-Zn) mine "Toranica" near the Kriva Palanka town, Eastern Macedonia. The contents of 20 elements-silver (Ag), aluminum (Al), arsenic (As), barium (Ba), calcium (Ca), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), potassium (K), lithium (Li), magnesium (Mg), manganese (Mn), sodium (Na), nickel (Ni), Pb, strontium (Sr), vanadium (V), and (Zn) were determined by atomic emission spectrometry with inductively coupled plasma. Data processing was applied with combinations of multivariate statistical methods: factor analysis, principal component analysis, and cluster analysis. Moss' responsiveness to the atmospheric distribution of the selected elements was investigated in correlation to the specific geology of the region (soil dusting). Lithogenic distribution was characterized with the distribution of three dominant geochemical associations: F1: Al-Li-V-Cr-Ni-Co, F2: Ba-Ca-Sr, and F3: Cd-Zn-Pb-Cu. Spatial distribution was constructed for visualization of the factor deposition. Furthermore, air distribution (passive biomonitoring) versus soil geochemistry of the analyzed elements was examined. Significant correlations were singled out for Pb, Zn, and Cd and for Mg(moss)/Na(soil). Characteristic lithological anomaly characterized the presence of the oldest geological volcanic rocks. Zone 1 (Pb-Zn mine surrounding) presents a unique area with hydrothermal action of Pb-Zn mineralization leading to polymetallic enrichments in soil. This phenomenon strongly affects the environment, which is a natural geochemical imprint in this unique area (described with the strong dominance of the geochemical association Cd-Zn-Pb-Cu).
Collapse
Affiliation(s)
| | - Trajče Stafilov
- Faculty of Natural Sciences and Mathematics, Institute of Chemistry, Ss. Cyril and Methodius University, POB 162, 1000, Skopje, Macedonia.
| | - Robert Šajn
- Geological Survey of Slovenia, Dimičeva ulica 14, 1000, Ljubljana, Slovenia
| | - Biljana Balabanova
- Faculty of Agriculture, Goce Delčev University, POB 201, 2000, Štip, Macedonia
| |
Collapse
|