1
|
Chawla H, Singh SK, Haritash AK. Reversing the damage: ecological restoration of polluted water bodies affected by pollutants due to anthropogenic activities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:127-143. [PMID: 38044406 DOI: 10.1007/s11356-023-31295-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
Aquatic ecosystems provide a large number of cultural, regulating, and supporting services to humans and play a pivotal role in sustaining freshwater-dependent ecosystems. However, an increase in human population coupled with economic growth in the last few decades has severely affected their functioning and ecological health. This has led to an increase in concentrations of pollutants originating from anthropogenic activities such as heavy metals, plastics, semi-volatile organic compounds, and endocrine disruptors. These pollutants provoke deleterious impacts on aquatic biodiversity and affect the water quality and functioning. In this paper, we discuss the sources and impacts of such pollutants as well as restoration techniques for reducing their impact on aquatic ecosystems. Several physical and chemical ecological restoration techniques, such as dredging, sediment capping, water diversion, adsorption, aeration, and flushing, can be employed to improve the water quality of water bodies. Additionally, biological techniques such as phytoremediation, phycoremediation, the use of biomembranes, and the construction of ecological floating beds can be employed to increase the population of aquatic organisms and improve the overall ecological health of aquatic ecosystems. Restoration techniques can effectively reduce the concentrations of suspended solids and dissolved phosphorus and increase the levels of dissolved oxygen. The restoration techniques for improving the ecological health of water bodies should not be limited to simply improving the water quality but should also focus on improving the biological processes and ecosystem functioning since it is essential to mitigate the adverse effects of pollutants and restore the vital ecosystem services provided by water bodies for future generations.
Collapse
Affiliation(s)
- Harshit Chawla
- Department of Environmental Engineering, Delhi Technological University, Delhi, 110042, India.
| | - Santosh Kumar Singh
- Department of Environmental Engineering, Delhi Technological University, Delhi, 110042, India
| | - Anil Kumar Haritash
- Department of Environmental Engineering, Delhi Technological University, Delhi, 110042, India
| |
Collapse
|
2
|
Toušová Z, Priebojová J, Javůrek J, Večerková J, Lepšová-Skácelová O, Sychrová E, Smutná M, Hilscherová K. Estrogenic and retinoid-like activity in stagnant waters with mass occurrence of water blooms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158257. [PMID: 36037903 DOI: 10.1016/j.scitotenv.2022.158257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Stagnant freshwaters can be affected by anthropogenic pollution and eutrophication that leads to massive growth of cyanobacteria and microalgae forming complex water blooms. These can produce various types of bioactive compounds, some of which may cause embryotoxicity, teratogenicity, endocrine disruption and impair animal or human health. This study focused on potential co-occurrence of estrogenic and retinoid-like activities in diverse stagnant freshwaters affected by phytoplankton blooms with varying taxonomic composition. Samples of phytoplankton bloom biomass and its surrounding water were collected from 17 independent stagnant water bodies in the Czech Republic and Hungary. Total estrogenic equivalents (EEQ) of the most potent samples reached up to 4.9 ng·g-1 dry mass (dm) of biomass extract and 2.99 ng·L-1 in surrounding water. Retinoic acid equivalent (REQ) measured by in vitro assay reached up to 3043 ng·g-1 dm in phytoplankton biomass and 1202 ng·L-1in surrounding water. Retinoid-like and estrogenic activities at some sites exceeded their PNEC and effect-based trigger values, respectively. The observed effects were not associated with any particular species of cyanobacteria or algae dominating the water blooms nor related to phytoplankton density. We found that taxonomically diverse phytoplankton communities can produce and release retinoid-like compounds to surrounding water, while estrogenic potency is likely related to estrogens of anthropogenic origin adsorbed to phytoplankton biomass. Retinoids occurring in water blooms are ubiquitous signalling molecules, which can affect development and neurogenesis. Selected water bloom samples (both water and biomass extracts) with retinoid-like activity caused effects on neurodifferentiation in vitro corresponding to those of equivalent all-trans-retinoic acid concentrations. Co-occurrence of estrogenic and retinoid-like activities in stagnant water bodies as well as the potential of compounds produced by water blooms to interfere with neural differentiation should be considered in the assessment of risks associated with water blooms, which can comprise complex mixtures of natural and anthropogenic bioactive compounds.
Collapse
Affiliation(s)
- Zuzana Toušová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Jana Priebojová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Jakub Javůrek
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Jaroslava Večerková
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Olga Lepšová-Skácelová
- Department of Botany, Faculty of Science, University of South Bohemia, Na Zlaté stoce 1, České Budějovice, Czech Republic
| | - Eliška Sychrová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Marie Smutná
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Klára Hilscherová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
| |
Collapse
|
3
|
Hu Z, He L, Wei J, Su Y, Wang W, Fan Z, Xu J, Zhang Y, Wang Y, Peng M, Zhao K, Zhang H, Liu C. tmbim4 protects against triclocarban-induced embryonic toxicity in zebrafish by regulating autophagy and apoptosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 277:116873. [PMID: 33714789 DOI: 10.1016/j.envpol.2021.116873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/04/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Triclocarban (TCC), an antibacterial agent widely used in personal care products, can affect embryonic development. However, the specific molecular mechanism of TCC-induced embryonic developmental damage remains unclear. In this study, TCC exposure was found to increase the expression of tmbim4 gene in zebrafish embryos. The tmbim4 mutant embryos are more susceptible to TCC exposure than wild-type (WT) embryos, with tmbim4 overexpression reducing TCC-induced embryonic death in the former. Exposure of tmbim4 mutant larvae to 400 μg/L TCC substantially increased apoptosis in the hindbrain and eyes. RNA-sequencing of WT and tmbim4 mutant larvae indicated that knockout of the tmbim4 gene in zebrafish affects the autophagy pathway. Abnormalities in autophagy can increase apoptosis and TCC exposure caused abnormal accumulation of autophagosomes in the hindbrain of tmbim4 mutant zebrafish embryos. Pretreatment of TCC-exposed tmbim4 mutant zebrafish embryos with autophagosome formation inhibitors, substantially reduced the mortality of embryos and apoptosis levels. These results indicate that defects in the tmbim4 gene can reduce zebrafish embryo resistance to TCC. Additionally, apoptosis induced by abnormal accumulation of autophagosomes is involved in this process.
Collapse
Affiliation(s)
- Zhiyong Hu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Liting He
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Jiajing Wei
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Yufang Su
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Wei Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Zunpan Fan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Jia Xu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Yuan Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Yongfeng Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Meilin Peng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Kai Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Huiping Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Chunyan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China.
| |
Collapse
|
4
|
Alla LNR, Monshi M, Siddiqua Z, Shields J, Alame K, Wahls A, Akemann C, Meyer D, Crofts EJ, Saad F, El-Nachef J, Antoon M, Nakhle R, Hijazi N, Hamid M, Gurdziel K, McElmurry SP, Kashian DR, Baker TR, Pitts DK. Detection of endocrine disrupting chemicals in Danio rerio and Daphnia pulex: Step-one, behavioral screen. CHEMOSPHERE 2021; 271:129442. [PMID: 33476875 DOI: 10.1016/j.chemosphere.2020.129442] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/15/2020] [Accepted: 12/23/2020] [Indexed: 05/27/2023]
Abstract
Anthropogenic surface and ground water contamination by chemicals is a global problem, and there is an urgent need to develop tools to identify and elucidate biological effects. Contaminants of emerging concern (CECs) are not typically monitored or regulated and those with known or suspected endocrine disrupting potential have been termed endocrine disrupting chemicals (EDCs). Many CECs are known to be neurotoxic (e.g., insecticides) and many are incompletely characterized. Behavioral responses can identify chemicals with neuroactive properties, which can be relevant to EDC mechanisms (e.g., neuroendocrine disturbances). Two freshwater species, Daphnia pulex and Danio rerio, were evaluated for swimming behavior alterations resulting from 24-hr exposure to 9 CECs: triclosan, triclocarban, chlorpyrifos, dieldrin, 4-nonylphenol, bisphenol-A, atrazine, metformin, and estrone. This is the first step in the development of a bioassay for detecting estrogenic and/or anti-androgenic activity with the goal to evaluate complex mixtures of uncharacterized contaminants in water samples. The second step, described in a subsequent report, examines transcriptome alterations following chemical exposure. Significant differences in the swimming behavior response and sensitivity were found across chemicals within a species and across species for a given chemical in this unique optical bioassay system. In the concentration ranges studied, significant behavioral alterations were detected for 6 of 9 CECs for D. pulex and 4 of 9 CECs for D. rerio. These results underscore the utility of this bioassay to identify behavioral effects of sublethal concentrations of CECs before exploration of transcriptomic alterations for EDC detection.
Collapse
Affiliation(s)
- Lakshmi Neha Reddy Alla
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Manahil Monshi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Zoha Siddiqua
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Jeremiah Shields
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Karim Alame
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Andrea Wahls
- Department of Civil and Environmental Engineering, College of Engineering, Wayne State University, Detroit, MI, USA; Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Camille Akemann
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Danielle Meyer
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Emily J Crofts
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Fadie Saad
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Judy El-Nachef
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Merna Antoon
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Raquel Nakhle
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Nemer Hijazi
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Maha Hamid
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | | | - Shawn P McElmurry
- Department of Civil and Environmental Engineering, College of Engineering, Wayne State University, Detroit, MI, USA
| | - Donna R Kashian
- Department of Biological Sciences, College of Liberal Arts, Wayne State University, Detroit, MI, USA
| | - Tracie R Baker
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA; Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - David K Pitts
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
5
|
Walker C, Garza S, Papadopoulos V, Culty M. Impact of endocrine-disrupting chemicals on steroidogenesis and consequences on testicular function. Mol Cell Endocrinol 2021; 527:111215. [PMID: 33657436 DOI: 10.1016/j.mce.2021.111215] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/26/2022]
Abstract
Testicular steroidogenesis is a tightly regulated process that produces the androgens important for the development, maintenance and function of the male reproductive system. These androgens are also essential for overall health, and well-being. Disruptions in the ability of the testis to form steroids can result in developmental abnormalities, dysfunction, and infertility. Endocrine-disrupting chemicals (EDCs) can interfere with the intricate signaling and metabolizing networks that produce androgens and promote their dysfunction. These chemicals are found ubiquitously in our environment, as they are integral components of products that are used every day. The effects of EDCs, such as bisphenols, phthalates, and alkyl chemicals, have been studied independently, revealing deleterious effects; but the combined influence of these structures on steroidogenesis has yet to be completely elucidated. This manuscript presents an updated review on EDC mixtures and their impact on testicular function and fertility, highlighting new findings that illustrate the anti-androgenic capabilities of EDC mixtures.
Collapse
Affiliation(s)
- Casandra Walker
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Samuel Garza
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Martine Culty
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Xu J, Qian Q, Xia M, Wang X, Wang H. Trichlorocarban induces developmental and immune toxicity to zebrafish (Danio rerio) by targeting TLR4/MyD88/NF-κB signaling pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116479. [PMID: 33460871 DOI: 10.1016/j.envpol.2021.116479] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Trichlorocarban (TCC) is ubiquitously detected in environmental matrices, while there is a paucity of information regarding its systemic toxicity. In the present study, we observed that TCC exposure led to high embryo mortality, delayed hatching and yolk absorption, as well as increased malformations, such as closure of swim sac and yolk sac edema. Meanwhile, TCC affected the formation and branch of subintestinal veins (SIVs), intersegmental vessels and posterior cardinal veins. Especially, the SIVs were shrunk, and their branches were reduced or even broken along with reduced coverage area. TCC-induced oxidative stress and excessive apoptosis resulted from abnormal expression of the anti/pro-apoptotic genes. Significant reduction in the number and aggregation function of immune cells proved that TCC had prominent immunotoxicity to zebrafish. TCC-targeted TLR4 signaling pathway was demonstrated by abnormal expression of the marker genes (tlr4, MyD88 and nf-κb) and release of the downstream inflammatory factors (TNF-α, IL-6, etc.). Inhibition of TLR4/MyD88/NF-κB pathway by an inhibitor (CA-4948) rescued the decreasing trend of the immune cells induced by TCC. Molecular docking results demonstrated that TCC could stably bind to TLR4 receptor to form hydrogen bonds and hydrophobic interactions with amino acids. Overall, these findings reveal the underlying molecular mechanisms on TCC-induced developmental and immune toxicity to zebrafish.
Collapse
Affiliation(s)
- Jiaqi Xu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Qiuhui Qian
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Min Xia
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xuedong Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Huili Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
7
|
Chen Q, An J, Xie D, Gong S, Lian X, Liu Z, Shen Y, Li Y. Suppression and recovery of reproductive behavior induced by early life exposure to mercury in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2021; 239:108876. [PMID: 32835856 DOI: 10.1016/j.cbpc.2020.108876] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 12/19/2022]
Abstract
While mercury (Hg)-induced reproductive impairments have been demonstrated in fishes, the effects of exposure to Hg2+ during early life stages on the reproductive behavior in adulthood and the persistency of these effects in the next generation remain largely unknown. In this study, zebrafish embryos were exposed to 0.6, 3, or 15 μg·L-1 Hg2+ for 5 days and then reared for an additional 115 days in clean water, from which embryos were obtained and cultured in clean water for 120 days as the F1 generation. Increased Hg levels in brains and decreased survival and growth were observed in individuals exposed to Hg2+ during early life stages. Early life exposure to Hg2+ reduced the frequency of touching in males as well as the frequency and duration of visits to the spawning area by females, males, or both sexes simultaneously, and resulted in lesser spawning and fertilization. Moreover, early life exposure to Hg2+ interfered with the transcription of genes encoding neuropeptides and hormones related to reproduction, which could be responsible for diminished sexual behavior and reduced reproductive outcomes. In the F1 generation, such alterations were not observed in either females or males, indicating that the disruption of normal patterns of reproductive behavior caused by early life exposure to Hg2+ did not persist and was recovered. Overall, this study demonstrated that exposure to Hg2+ during early life stages suppressed the reproductive behavior of adult fish but this disruption could be recovered in the F1 generation.
Collapse
Affiliation(s)
- Qiliang Chen
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Jingjing An
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Dongmei Xie
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Shiling Gong
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Xiaolong Lian
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Zhihao Liu
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Yanjun Shen
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Yingwen Li
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
8
|
Xie D, Chen Q, Gong S, An J, Li Y, Lian X, Liu Z, Shen Y, Giesy JP. Exposure of zebrafish to environmentally relevant concentrations of mercury during early life stages impairs subsequent reproduction in adults but can be recovered in offspring. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 229:105655. [PMID: 33099036 DOI: 10.1016/j.aquatox.2020.105655] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
Mercury (Hg) is a global pollutant that poses potential threats to health of fishes. Although effects of Hg on reproduction of fishes have been documented, little is known about effects of exposure to Hg2+ during early life stages on subsequent reproductive fitness of adults or whether these effects can be transferred to offspring. In this study, zebrafish embryos were exposed to environmentally relevant concentrations of Hg2+ (0.6, 3 or 15 μg/L) for 5 days and then depurated in clean water for another 115 days. Exposure to Hg2+ during early life stages disturbed the balance of sex hormones and gametogenesis by altering expression of mRNA for genes involved in the hypothalamic-pituitary-gonadal axis, which resulted in delayed gonadal development and lesser gonado-somatic index, thereby resulting in lesser fecundity. A similar, but less pronounced effect was observed in F1 females that were not exposed directly to Hg, whereas such damage was neither observed in F1 males nor either sex during the F2 generation. Exposure to Hg2+ during early life can impair subsequent reproduction in adults and has intergenerational effects on F1 females, but this reproductive damage can be recovered in F1 males and in F2 females.
Collapse
Affiliation(s)
- Dongmei Xie
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Qiliang Chen
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing, 401331, China.
| | - Shiling Gong
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Jingjing An
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Yingwen Li
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Xiaolong Lian
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Zhihao Liu
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Yanjun Shen
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada; Department of Environmental Sciences, Baylor University, Waco, TX, 76706, United States
| |
Collapse
|
9
|
Rodrigues GZP, Finkler M, Garcia ALH, Gehlen G. Evaluation of transgenerational effects caused by metals as environmental pollutants in Daphnia magna. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:755. [PMID: 33170361 DOI: 10.1007/s10661-020-08713-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
The present study aimed to evaluate the acute and chronic toxicity of environmentally relevant concentrations of metals (Mn, Al, Fe, and Pb) in Daphnia magna and the generational transposition of reproductive and morphological damages. The effective concentration for 10% of the organisms from each metal was obtained by the acute toxicity test (96 hours); then, another five concentrations lower than this one were defined for the chronic experimentation (21 days), in which the number of neonates generated by each individual was checked daily. At the end of the exposition, the lengths and number of morphological damages were recorded in each adult daphnid. During this, the molt generated on the 14th and 21st days were collected and cultivated for posterior evaluation of the same parameters. Alterations in the reproductive performance were observed in the organisms exposed to manganese and aluminum (4.0 and 0.5 mg L-1, respectively). Organisms exposed to aluminum (0.05 mg L-1) and iron (0.27 mg L-1) showed a reduction in body length. It is also noteworthy that the molt of these adults and their respective offspring also presented reproductive alterations, especially the molt from the 14th day of lead exposure (0.02 mg L-1) and the 21st day of manganese exposure (4.0 mg L-1). Such effects allow us to conclude that environments polluted by metals can reduce the ability of the species to maintain themselves in the ecosystem. In addition, there is a need to increase the control and monitoring of metals, such as aluminum, which present risks even in low concentrations.
Collapse
Affiliation(s)
| | | | - Ana Letícia Hilario Garcia
- Post Graduation Program in Cellular and Molecular Biology Applied to Health, ULBRA - Lutheran University of Brazil, Farroupilha Avenue, 8001, Canoas, Brazil
| | - Günther Gehlen
- Post Graduation Program in Environmental Quality, Feevale University, ERS-239, 2755, Novo Hamburgo, 93525-075, Brazil
| |
Collapse
|
10
|
Erasmus VN, Iitembu JA, Hamutenya S, Gamatham J. Evidences of possible influences of methylmercury concentrations on condition factor and maturation of Lophius vomerinus (Cape monkfish). MARINE POLLUTION BULLETIN 2019; 146:33-38. [PMID: 31426164 DOI: 10.1016/j.marpolbul.2019.05.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 06/10/2023]
Abstract
Muscle and liver tissues of Lophius vomerinus off the coast of Namibia were analysed to investigated the influence of MeHg on the biological parameters of L.vomerinus by (i) determining if the variability in total MeHg concentrations is influenced by length, maturity status and sex, and (ii) assessing if there is a relationship between biological indices (Condition factor (K), Gonadosomatic Index (GSI) Hepatosomatic Index (HSI)) and MeHg concentrations. Correlations between total MeHg concentrations and fish length, K and HSI were observed. A weak positive correlation was observed between total MeHg and GSI for combined sex. Total MeHg concentration in tissues of L. vomerinus is significantly dependent on the maturity stages (p < 0.05). K was significantly inversely correlated with total MeHg in tissues of L. vomerinus. The evidence presented in this study suggests that MeHg in L. vomerinus tissues could be detrimental to both its physiology and population dynamics.
Collapse
Affiliation(s)
- Victoria Ndinelago Erasmus
- National Marine Information and Research Centre (NatMIRC), Ministry of Fisheries and Marine Resources, Strand Street, Box 912, Swakopmund, Namibia.
| | - Johannes Angala Iitembu
- Department of Fisheries and Aquatic Sciences, University of Namibia, Private Bag 462, Hentiesbay, Namibia
| | - Steve Hamutenya
- National Marine Information and Research Centre (NatMIRC), Ministry of Fisheries and Marine Resources, Strand Street, Box 912, Swakopmund, Namibia
| | - Johny Gamatham
- National Marine Information and Research Centre (NatMIRC), Ministry of Fisheries and Marine Resources, Strand Street, Box 912, Swakopmund, Namibia
| |
Collapse
|
11
|
Zhou T, Wei J, Su Y, Hu Z, Li Y, Yuan H, Zhao K, Liu C, Zhang H. Triclocarban at environmentally relevant concentrations induces the endoplasmic reticulum stress in zebrafish. ENVIRONMENTAL TOXICOLOGY 2019; 34:223-232. [PMID: 30592132 DOI: 10.1002/tox.22675] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/14/2018] [Accepted: 10/20/2018] [Indexed: 06/09/2023]
Abstract
Triclocarban (TCC) is an antibacterial agent commonly found in environmental, wildlife, and human samples. However, with in-depth study of TCC, its negative effects are increasingly presented. Toxicological studies of TCC at environmentally relevant concentrations have been conducted in zebrafish embryos and indicated that TCC leads to deformity of development causes developmental deformities. However, the molecular mechanisms underlying the toxicity of TCC in zebrafish embryos have not been entirely elucidated. We investigated whether exposure to TCC at environmentally relevant concentrations induces endoplasmic reticulum (ER) stress and unfolded protein response (UPR) in zebrafish. Zebrafish embryos were grown to 32 hours post fertilization and exposed to 2.5, 5, and 10 μg/L TCC and used in whole-mount in situ hybridization to visualize the expression of ER chaperone hspa5 and ER stress-related apoptosis factor chop. Zebrafish livers were exposed to different concentrations of TCC to elaborate the relationships between fatty degeneration and ER stress. Then, a human hepatic cell line (HL-7702) was used to test whether TCC induced ER stress in human livers similar to those of zebrafish. In zebrafish embryos, TCC induced high hspa5 expression, which could defend against external stimulations. Furthermore, hapa5, hsp90b1, and chop exhibited ectopic expressions in the neuromast, intestinal tract, and tail tip of zebrafish embryos. On the one hand, significant differences were observed in the mRNA and protein expressions of the ER stress molecular chaperone pPERK-pEIF2a-ATF4 and ATF6 pathways in HL-7702 cells exposed to TCC. On the other hand, lipid droplet accumulation slightly increased in zebrafish livers exposed to 10 μg/L TCC in vitro. These results demonstrate that TCC not only damages the development of zebrafish embryos and structure of zebrafish liver but also influences human hepatic cells by activating ER stress and the UPR signaling pathway.
Collapse
Affiliation(s)
- Ting Zhou
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Jiajing Wei
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Yufang Su
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Zhiyong Hu
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Ying Li
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Hongfang Yuan
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Kai Zhao
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Chunyan Liu
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Huiping Zhang
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| |
Collapse
|
12
|
Carnevali O, Santangeli S, Forner-Piquer I, Basili D, Maradonna F. Endocrine-disrupting chemicals in aquatic environment: what are the risks for fish gametes? FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:1561-1576. [PMID: 29948447 DOI: 10.1007/s10695-018-0507-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Over the past 25 years, extensive research in vertebrate species has identified several genomic pathways altered by exposures to anthropogenic chemicals with hormone-like activity mediated by their interaction with nuclear receptors. In addition, many pollutants have been shown to interfere with non-genomic (non-classical) pathways, but this mechanism of endocrine disruption is still poorly understood. Recently, the number of publications describing the effects of Endocrine disrupting chemicals (EDCs) on fish reproduction, focusing on the deregulation of the hypothalamus-pituitary-gonadal axis as well as on gamete quality, significantly increased. Depending on their ability to mimic endogenous hormones, the may differently affect male or female reproductive physiology. Inhibition of gametogenesis, development of intersex gonads, alteration of the gonadosomatic index, and decreased fertility rate have been largely documented. In males, alterations of sperm density, motility, and fertility have been observed in several wild species. Similar detrimental effects were described in females, including negative outcomes on oocyte growth and maturation plus the occurrence of apoptotic/autophagic processes. These pathways may affect gamete viability considered as one of the major indicators of reproductive endocrine disruption. Pollutants act also at DNA level producing DNA mutations and changes in epigenetic pathways inducing specific mechanisms of toxicity and/or aberrant cellular responses that may affect subsequent generation(s) through the germline. In conclusion, this review summarizes the effects caused by EDC exposure on fish reproduction, focusing on gametogenesis, giving a general overview of the different aspects dealing with this issue, from morphological alteration, deregulation of steroidogenesis, hormonal synthesis, and occurrence of epigenetic process.
Collapse
Affiliation(s)
- Oliana Carnevali
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
- INBB Consorzio Interuniversitario di Biostrutture e Biosistemi, 00136, Rome, Italy.
| | - Stefania Santangeli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
- INBB Consorzio Interuniversitario di Biostrutture e Biosistemi, 00136, Rome, Italy
| | - Isabel Forner-Piquer
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Danilo Basili
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Francesca Maradonna
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
- INBB Consorzio Interuniversitario di Biostrutture e Biosistemi, 00136, Rome, Italy.
| |
Collapse
|
13
|
Vingskes AK, Spann N. The toxicity of a mixture of two antiseptics, triclosan and triclocarban, on reproduction and growth of the nematode Caenorhabditis elegans. ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:420-429. [PMID: 29411206 DOI: 10.1007/s10646-018-1905-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/18/2018] [Indexed: 06/08/2023]
Abstract
Many widely used healthcare products contain antiseptics, whose persistence in aquatic environments, soils, and sediments leads to the contamination of ecosystems and adversely affects wildlife. Recently, the impact not only of high but also low doses of contaminants and mixtures of several chemicals has become a focus of concern. In this study, toxicity tests of the antiseptics triclosan (TCS) and triclocarban (TCC) were performed in an aquatic test medium using the nematode Caenorhabditis elegans. Nominal concentrations of TCS and TCC were tested in separate single-substance toxicity tests (96-h-exposure), focussing on growth and reproduction endpoints. Median effective concentrations (EC50s) from the single-substance tests were subsequently used to set up five different ratios of TCS:TCC mixtures leading to the same toxicity. Six dilutions of each mixture ratio were tested for effon reproduction of C. elegans. In the single-substance tests, TCC was about 30 times more toxic than TCS when considering effects on growth and concerning reproduction, TCC was about 50 times more toxic than TCS. For both substances, the toxic effect on reproduction was more pronounced than the one on growth. Low doses of TCS (1-10 µmol L-1) stimulated reproduction by up to 301% compared to the control, which might be due to endocrine disruption or other stress-related compensation responses (hormesis). Neither antiseptic stimulated growth. In the mixtures, increasing amounts of TCC inhibited the stimulatory effects of TCS on reproduction. In addition, the interactions of TCS and TCC were antagonistic, such that mixtures displayed lower toxicity than would have been expected when TCS and TCC mixtures adhered to the principle of concentration addition.
Collapse
Affiliation(s)
| | - Nicole Spann
- Department of Animal Ecology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
14
|
Fernández I, Gavaia PJ, Laizé V, Cancela ML. Fish as a model to assess chemical toxicity in bone. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 194:208-226. [PMID: 29202272 DOI: 10.1016/j.aquatox.2017.11.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/14/2017] [Accepted: 11/22/2017] [Indexed: 06/07/2023]
Abstract
Environmental toxicology has been expanding as growing concerns on the impact of produced and released chemical compounds over the environment and human health are being demonstrated. Among the toxic effects observed in organisms exposed to pollutants, those affecting skeletal tissues (osteotoxicity) have been somehow overlooked in comparison to hepato-, immune-, neuro- and/or reproductive toxicities. Nevertheless, sub-lethal effects of toxicants on skeletal development and/or bone maintenance may result in impaired growth, reduced survival rate, increased disease susceptibility and diminished welfare. Osteotoxicity may occur by acute or chronic exposure to different environmental insults. Because of biologically and technically advantagous features - easy to breed and inexpensive to maintain, external and rapid rate of development, translucent larvae and the availability of molecular and genetic tools - the zebrafish (Danio rerio) has emerged in the last decade as a vertebrate model system of choice to evaluate osteotoxicity. Different experimental approaches in fish species and analytical tools have been applied, from in vitro to in vivo systems, from specific to high throughput methodologies. Current knowledge on osteotoxicity and underlying mechanisms gained using fish, with a special emphasis on zebrafish systems, is reviewed here. Osteotoxicants have been classified into four categories according to the pathway involved in the transduction of the osteotoxic effects: activation/inhibition of membrane and/or nuclear receptors, alteration of redox condition, mimicking of bone constituents and unknown pathways. Knowledge on these pathways is also reported here as it may provide critical insights into the development, production and release of future chemical compounds with none or low osteotoxicity, thus promoting the green/environmental friendly chemistry.
Collapse
Affiliation(s)
- Ignacio Fernández
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal.
| | - Paulo J Gavaia
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal; Department of Biomedical Sciences and Medicine, University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - M Leonor Cancela
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal; Department of Biomedical Sciences and Medicine, University of Algarve, Campus de Gambelas, Faro, Portugal; Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| |
Collapse
|
15
|
Potential Developmental and Reproductive Impacts of Triclocarban: A Scoping Review. J Toxicol 2017; 2017:9679738. [PMID: 29333157 PMCID: PMC5733165 DOI: 10.1155/2017/9679738] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/31/2017] [Indexed: 12/16/2022] Open
Abstract
Triclocarban (TCC) is an antimicrobial agent used in personal care products. Although frequently studied with another antimicrobial, triclosan, it is not as well researched, and there are very few reviews of the biological activity of TCC. TCC has been shown to be a possible endocrine disruptor, acting by enhancing the activity of endogenous hormones. TCC has been banned in the US for certain applications; however, many human populations, in and outside the US, exhibit exposure to TCC. Because of the concern of the health effects of TCC, we conducted a scoping review in order to map the current body of literature on the endocrine, reproductive, and developmental effects of TCC. The aim of this scoping review was to identify possible endpoints for future systematic review and to make recommendations for future research. A search of the literature until August 2017 yielded 32 relevant studies in humans, rodents, fish, invertebrates, and in vitro. Based on the robustness of the literature in all three evidence streams (human, animal, and in vitro), we identified three endpoints for possible systematic review: estrogenic activity, androgenic activity, and offspring growth. In this review, we describe the body of evidence and make recommendations for future research.
Collapse
|