1
|
Li Q, Lan Y, Yang Y, Kang S, Wang X, Jiang J, Liu S, Wang Q, Zhang W, Zhang L. Effect of luminescent materials on the biochemistry, ultrastructure, and rhizobial microbiota of Spirodela polyrhiza. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108427. [PMID: 38367389 DOI: 10.1016/j.plaphy.2024.108427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/13/2024] [Accepted: 02/05/2024] [Indexed: 02/19/2024]
Abstract
Fluorescent materials and technologies have become widely used in scientific research, and due to the ability to convert light wavelengths, their application to photosynthetic organisms can affect their development by altering light quality. However, the impacts of fluorescent materials on aquatic plants and their environmental risks remain unclear. To assess the effects of luminescent materials on floating aquatic macrophytes and their rhizosphere microorganisms, 4-(di-p-tolylamino)benzaldehyde-A (DTB-A) and 4-(di-p-tolylamino)benzaldehyde-M (DTB-M) (emitting blue-green and orange-red light, respectively) were added individually and jointly to Spirodela polyrhiza cultures and set at different concentrations (1, 10, and 100 μM). Both DTB-A and DTB-M exhibited phytotoxicity, which increased with concentration under separate treatment. Moreover, the combined group exhibited obvious stress relief at 10 μM compared to the individually treated group. Fluorescence imaging showed that DTB-A and DTB-M were able to enter the cell matrix and organelles of plant leaves and roots. Peroxidation induced cellular damage, contributing to a decrease in superoxide dismutase (SOD) and peroxidase (POD) activities and malondialdehyde (MDA) accumulation. Decomposition of organelle structures, starch accumulation in chloroplasts, and plasmolysis were observed under the ultrastructure, disrupting photosynthetic pigment content and photosynthesis. DTB-A and DTB-M exposure resulted in growth inhibition, dry weight loss, and leaf yellowing in S. polyrhiza. A total of 3519 Operational Taxonomic Units (OTUs) were identified in the rhizosphere microbiome. The microbial communities were dominated by Alphaproteobacteria, Oxyphotobacteria, and Gammaproteobacteria, with the abundance and diversity varied significantly among treatment groups according to Shannon, Simpson, and Chao1 indices. This study revealed the stress defense response of S. polyrhiza to DTB-A and DTB-M exposures, which provides a broader perspective for the bioremediation of pollutants using aquatic plants and supports the further development of fluorescent materials for applications.
Collapse
Affiliation(s)
- Qi Li
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China.
| | - Yiyang Lan
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Yixia Yang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Shiyun Kang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Xin Wang
- The Chinese University of Hong Kong, Shenzhen, 518172, PR China
| | - Jiarui Jiang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Shengyue Liu
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| | | | - Weizhen Zhang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Liping Zhang
- The Chinese University of Hong Kong, Shenzhen, 518172, PR China.
| |
Collapse
|
2
|
Agathokleous E, Zhou B, Geng C, Xu J, Saitanis CJ, Feng Z, Tack FMG, Rinklebe J. Mechanisms of cerium-induced stress in plants: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158352. [PMID: 36063950 DOI: 10.1016/j.scitotenv.2022.158352] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/12/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
A comprehensive evaluation of the effects of cerium on plants is lacking even though cerium is extensively applied to the environment. Here, the effects of cerium on plants were meta-analyzed using a newly developed database consisting of approximately 8500 entries of published data. Cerium affects plants by acting as oxidative stressor causing hormesis, with positive effects at low concentrations and adverse effects at high doses. Production of reactive oxygen species and its linked induction of antioxidant enzymes (e.g. catalase and superoxide dismutase) and non-enzymatic antioxidants (e.g. glutathione) are major mechanisms driving plant response mechanisms. Cerium also affects redox signaling, as indicated by altered GSH/GSSG redox pair, and electrolyte leakage, Ca2+, K+, and K+/Na+, indicating an important role of K+ and Na+ homeostasis in cerium-induced stress and altered mineral (ion) balance. The responses of the plants to cerium are further extended to photosynthesis rate (A), stomatal conductance (gs), photosynthetic efficiency of PSII, electron transport rate, and quantum yield of PSII. However, photosynthesis response is regulated not only by physiological controls (e.g. gs), but also by biochemical controls, such as via changed Hill reaction and RuBisCO carboxylation. Cerium concentrations <0.1-25 mg L-1 commonly enhance chlorophyll a and b, gs, A, and plant biomass, whereas concentrations >50 mg L-1 suppress such fitness-critical traits at trait-specific concentrations. There was no evidence that cerium enhances yields. Observations were lacking for yield response to low concentrations of cerium, whereas concentrations >50 mg Kg-1 suppress yields, in line with the response of chlorophyll a and b. Cerium affects the uptake and tissue concentrations of several micro- and macro-nutrients, including heavy metals. This study enlightens the understanding of some mechanisms underlying plant responses to cerium and provides critical information that can pave the way to reducing the cerium load in the environment and its associated ecological and human health risks.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China.
| | - Boya Zhou
- School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China; Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK
| | - Caiyu Geng
- School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China
| | - Jianing Xu
- School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China
| | - Costas J Saitanis
- Lab of Ecology and Environmental Science, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Zhaozhong Feng
- School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China.
| | - Filip M G Tack
- Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Wuppertal, Germany
| |
Collapse
|
3
|
Wu D, Hou Y, Cheng J, Han T, Hao N, Zhang B, Fan X, Ji X, Chen F, Gong D, Wang L, McGinn P, Zhao L, Chen S. Transcriptome analysis of lipid metabolism in response to cerium stress in the oleaginous microalga Nannochloropsis oculata. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156420. [PMID: 35660445 DOI: 10.1016/j.scitotenv.2022.156420] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Nannochloropsis oculata can accumulate large amounts of lipids under rare earth element (REE) conditions. However, the lipid accumulation mechanism responsible for REE stress has not been elucidated. In this study, the effects of cerium (the most abundant REE) on the growth and lipid accumulation of N. oculata were investigated. The de novo transcriptome data of N. oculata under cerium conditions were subsequently collected and analyzed. The results showed that N. oculata exhibited good cerium-resistance ability, showed slightly decrease in biomass but significantly increase in lipid content (55.8 % dry cell weight) under 6.0 mg/L cerium condition. Meanwhile, about 83.4 % cerium was biological fixated. Through transcriptome analysis, we found that the inhibited photosynthesis and carbon fixation pathways coupled with the stress-sensitive expression of ribosome biogenesis genes acclimatized the cells to REE stress. The active glycolysis pathway accelerated carbon flux to pyruvate and acetyl-CoA, and the upregulation of glycerol kinase and phosphatidate cytidylyltransferase genes further induced lipid accumulation. In addition, cerium downregulated the acyl-CoA oxidase and triacylglycerol lipase genes, which inhibited the degradation of lipids. Therefore, different responses to cerium demonstrate how N. oculata cells adapt to REE stress, and this knowledge may be used to extend our understanding of triacylglycerol (TAG) and the synthesis of other important metabolites.
Collapse
Affiliation(s)
- Di Wu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Yuyong Hou
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Jie Cheng
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Tong Han
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Nahui Hao
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Bingjie Zhang
- Department of Food Engineering, Anhui Science and Technology Trade School, Bengbu 233080, China
| | - Xiang Fan
- Department of Food Engineering, Anhui Science and Technology Trade School, Bengbu 233080, China
| | - Xiang Ji
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China.
| | - Fangjian Chen
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China.
| | - Donghui Gong
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Lei Wang
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Patrick McGinn
- National Research Council Canada, 1200 Montreal Road, Building M-58, Ottawa, Ontario K1A 0R6, Canada
| | - Lei Zhao
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China.
| | - Shulin Chen
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
4
|
Zhao XL, Li P, Qu C, Lu R, Li ZH. Phytotoxicity of environmental norfloxacin concentrations on the aquatic plant Spirodela polyrrhiza: Evaluation of growth parameters, photosynthetic toxicity and biochemical traits. Comp Biochem Physiol C Toxicol Pharmacol 2022; 258:109365. [PMID: 35525467 DOI: 10.1016/j.cbpc.2022.109365] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/28/2022] [Accepted: 05/01/2022] [Indexed: 01/12/2023]
Abstract
As an emerging pollutant, the increasing use of antibiotics in wastewater posed a serious threat to non-target organisms in the environment. Duckweed (Spirodela polyrrhiza) is a common higher aquatic plant broadly used in phytotoxicity tests for xenobiotic substances. The aim of this study was to evaluate the chronic toxicity of norfloxacin (NOR) on Spirodela polyrrhiza during 18 days of exposure. Our study investigated the addition of NOR into the medium with environment-related concentrations (0, 0.1, 10, and 1000 μg L-1). Subsequently, biomarkers of toxicity such as growth, pigment, chlorophyll fluorescence parameters, indicators of oxidative stress, and osmotic regulatory substances content were analyzed in duckweed. In response to NOR exposure, obvious chlorosis, declines in growth and photosynthetic pigment, and photosystem II inhibition were noted in a concentration dependent manner. Reactive oxygen species (ROS) and antioxidant activity content increased in the treated fronds, which indicated that oxidative stress was specifically affected by NOR exposure. A slight increase in osmotic regulatory substances in NOR treated setups than in the control represented the increasing stress resistance. These results suggest NOR exerts its toxic effects on the aquatic plant Spirodela polyrrhiza.
Collapse
Affiliation(s)
- Xue-Li Zhao
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Chunfeng Qu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Rong Lu
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| |
Collapse
|
5
|
Liu W, Chu Y, Tan Q, Chen J, Yang L, Ma L, Zhang Y, Wu Z, He F. Cold temperature mediated nitrate removal pathways in electrolysis-assisted constructed wetland systems under different influent C/N ratios and anode materials. CHEMOSPHERE 2022; 295:133867. [PMID: 35143860 DOI: 10.1016/j.chemosphere.2022.133867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/23/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Electrolysis had proven to be useful for the enhanced performance in constructed wetlands (CWs). While at cold temperature, the nitrate removal pathways, plant physiological characteristics and microbial community structure in electrolysis-assisted CWs were unclear. Therefore, the purification performance of three electrolysis-assisted horizontal subsurface-flow constructed wetlands (E-HSCWs) with different anodes and a control system in cold seasons were evaluated in this study. E-HSCWs showed a 2.02-83.21% increase of total nitrogen (TN) removal when compared to control, and the gaps were enlarged with increasing C/N (chemical oxygen demand/total nitrogen, COD/TN) ratios. Nitrite accumulation in E-HSCWs presented a first increase then went down trend with increasing C/N ratios, compared to a steady increase in control system. The optimum C/N ratio was 8 in E-HSCWs for both TN and COD removal. Moreover, Ti|IrO2-Ta2O5 (Ti) anode showed the highest potential for TN and COD removal. Less root weight, shorter root length and reduced TN and total phosphorus (TP) contents in roots were observed in wetland plants (Iris sibirica) of E-HSCWs. In E-HSCWs with Fe and C anodes, the nitrate removal was mainly accomplished by autotrophic denitrifier Hydrogenophaga. While in E-HSCWs with Ti anode, the synergistic effect of autotrophic denitrifier Hydrogenophaga and heterotrophic denitrifiers Acidovorax, Simplicispira, Zoogloea accounted for the nitrate removal. These results showed that E-HSCWs at proper C/N ratio of 8 would be promising for nitrate removal at cold temperature.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yifan Chu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qiyang Tan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jinmei Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Lingli Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Lin Ma
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Yi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Feng He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| |
Collapse
|
6
|
Vishnu Priyan V, Kumar N, Narayanasamy S. Development of Fe 3O 4/CAC nanocomposite for the effective removal of contaminants of emerging concerns (Ce 3+) from water: An ecotoxicological assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117326. [PMID: 34049131 DOI: 10.1016/j.envpol.2021.117326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/09/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Contaminants of emerging concerns present in the ecosystems causes various adverse effects on all living organisms. In current study, removal of Ce3+ from water was performed using Fe3O4/CAC nanocomposite (MCAC) synthesized by co-precipitation technique. The synthesized MCAC was characterized using various analytical techniques. The magnetic behavior of the nanocomposite which is a crucial advantage in separation of MCAC after adsorption of Ce3+ from water was determined using vibrating sample magnetometer. MCAC was polycrystalline comprising both amorphous and crystalline regions with elements like C, O, Fe and N. The influence of process parameters was optimized through batch mode with the adsorption capacity of 86.206 mg/g. Ecotoxicological studies were performed using Danio rerio (Zebra fish) and seeds of Vigna mungo and Vigna radiata to assess the harmful effects of Ce3+ before and after adsorption process. The phytotoxicity studies on seeds revealed that inhibition of growth ranges from 50.39% to 12.55% (before adsorption) and 28.57%-3.89% (after adsorption). After 96 h the LC50 value of Ce3+ on the Danio rerio before and after adsorption was 2.44 and 77.85 mg/L. Thus, the current study investigated the effective removal of Ce3+ by MCAC and evaluates its ecotoxicological effects.
Collapse
Affiliation(s)
- V Vishnu Priyan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Nitesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Selvaraju Narayanasamy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
7
|
Shi H, Duan M, Li C, Zhang Q, Liu C, Liang S, Guan Y, Kang X, Zhao Z, Xiao G. The change of accumulation of heavy metal drive interspecific facilitation under copper and cold stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 225:105550. [PMID: 32593114 DOI: 10.1016/j.aquatox.2020.105550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 06/06/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
Plant diversity has important functions in ecosystem productivity overyielding and community stability. Little is known about the mechanism causing productivity overyielding and stability under harsh conditions. This study investigated the photosynthetic response and subcellular distribution of uni- and co-cultured duckweeds (Lemna aequinoctialis and Spirodela polyrhiza) under excess copper (1.0 mg/L) and low temperature (5 °C) conditions. The results showed that the growth of uni-cultured L. aequinoctialis was not different from that of uni-cultured S. polyrhiza across copper treatments at control temperature (25 °C). The growth rate of L. aequinoctialis increased by 55.5 % under excess copper concentration when it coexisted with S. polyrhiza, compared with uni-culture. Subcellular distributions of copper were predominantly distributed in cell walls. S. polyrhiza accumulated more copper in cell walls than L. aequinoctialis under uni-cultured condintion at excess copper concentration. Co-cultured S. polyrhiza increased copper accumulation in cell walls of co-cultured L. aequinoctialis to decrease toxicity at excess copper concentration, compared with L. aequinoctialis. Low temperature increased copper toxicity, with duckweeds having lower growth rate and photosynthetic activities (Fv/Fm). The L. aequinoctialis growth rate in co-culture was higher than in uni-culture under excess copper concentration and low temperature conditions, indicating that S. polyrhiza decreased the copper toxicity for L. aequinoctialis. The photosynthetic activity (Fv/Fm) of co-cultured L. aequinoctialis was higher than that of uni-cultured L. aequinoctialis exposed to excess copper concentration at low temperature. The community that formed by co-culturing S. polyrhiza and L. aequinoctialis produced more biomass by avoiding the toxicity of excess copper through heavy metal compartmentalization and photosynthetic activities.
Collapse
Affiliation(s)
- Huijuan Shi
- Museum, Hebei University, Baoding, Hebei, China; College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Mengge Duan
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Chunchen Li
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Qi Zhang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Cunqi Liu
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Shuxuan Liang
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei, China
| | - Yueqiang Guan
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Xianjiang Kang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Zhao Zhao
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China.
| | - Guohua Xiao
- Hebei Key Laboratory of Marine Biological Resources and Environment, Hebei Ocean and Fisheries Science Reseach Institute, Qinhuangdao, Hebei, China.
| |
Collapse
|
8
|
Blinova I, Muna M, Heinlaan M, Lukjanova A, Kahru A. Potential Hazard of Lanthanides and Lanthanide-Based Nanoparticles to Aquatic Ecosystems: Data Gaps, Challenges and Future Research Needs Derived from Bibliometric Analysis. NANOMATERIALS 2020; 10:nano10020328. [PMID: 32075069 PMCID: PMC7075196 DOI: 10.3390/nano10020328] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 12/16/2022]
Abstract
Lanthanides (Ln), applied mostly in the form of nanoparticles (NPs), are critical to emerging high-tech and green energy industries due to their distinct physicochemical properties. The resulting anthropogenic input of Ln and Ln-based NPs into aquatic environment might create a problem of emerging contaminants. Thus, information on the biological effects of Ln and Ln-based NPs is urgently needed for relevant environmental risk assessment. In this mini-review, we made a bibliometric survey on existing scientific literature with the main aim of identifying the most important data gaps on Ln and Ln-based nanoparticles' toxicity to aquatic biota. We report that the most studied Ln for ecotoxicity are Ce and Ln, whereas practically no information was found for Nd, Tb, Tm, and Yb. We also discuss the challenges of the research on Ln ecotoxicity, such as relevance of nominal versus bioavailable concentrations of Ln, and point out future research needs (long-term toxicity to aquatic biota and toxic effects of Ln to bottom-dwelling species).
Collapse
Affiliation(s)
- Irina Blinova
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn 12618, Estonia; (I.B.); (M.M.); (M.H.); (A.L.)
| | - Marge Muna
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn 12618, Estonia; (I.B.); (M.M.); (M.H.); (A.L.)
| | - Margit Heinlaan
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn 12618, Estonia; (I.B.); (M.M.); (M.H.); (A.L.)
| | - Aljona Lukjanova
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn 12618, Estonia; (I.B.); (M.M.); (M.H.); (A.L.)
| | - Anne Kahru
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn 12618, Estonia; (I.B.); (M.M.); (M.H.); (A.L.)
- Estonian Academy of Sciences, Tallinn 10130, Kohtu 6, Estonia
- Correspondence: ; Tel.: +372-6398373
| |
Collapse
|
9
|
Ziegler P, Sree KS, Appenroth KJ. Duckweed biomarkers for identifying toxic water contaminants? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:14797-14822. [PMID: 30397749 DOI: 10.1007/s11356-018-3427-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/08/2018] [Indexed: 06/08/2023]
Abstract
Surface or ground waters can be contaminated with numerous toxic substances. The duckweeds Lemna minor and Lemna gibba are widely used for assaying waterborne toxicity to higher plants in terms of growth inhibition and photosynthetic pigment reduction. These tests cannot, however, in themselves determine the nature of the agents responsible for toxicity. Morphological, developmental, physiological, biochemical, and genetic responses of duckweeds to exposure to toxic water contaminants constitute biomarkers of toxic effect. In principle, the very detection of these biomarkers should enable the contaminants having elicited them (and being responsible for the toxicity) to be identified. However, in practice, this is severely compromised by insufficient specificity of biomarkers for their corresponding toxicants and by the lack of documentation of biomarker/toxin relationships. The present contribution illustrates the difficulties of using known water contaminant-related duckweed biomarkers to identify toxins, and discusses possibilities for achieving this goal.
Collapse
Affiliation(s)
- Paul Ziegler
- Department of Plant Physiology, University of Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Germany.
| | - Kandregula Sowjanya Sree
- Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periye, 671316, India
| | - Klaus-Jürgen Appenroth
- Matthias-Schleiden Institute, Department of Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743, Jena, Germany
| |
Collapse
|
10
|
Moreira CG, Carvalho TSD, de Oliveira C, Abreu LBD, Castro ACSD, Ribeiro PG, Bispo FHA, Boutin C, Guilherme LRG. Ecological risk assessment of cerium for tropical agroecosystems. CHEMOSPHERE 2019; 221:124-131. [PMID: 30639808 DOI: 10.1016/j.chemosphere.2018.12.195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/27/2018] [Accepted: 12/29/2018] [Indexed: 06/09/2023]
Abstract
Cerium (Ce) is present in high technology materials and in mineral P fertilizers and the use and discharge of such resources may change the natural status of Ce in the soil environment. Brazilian soils in farming areas are significantly exposed to increased levels of unintentionally-added Ce through intensive input of phosphate fertilizers. The aims of this study were to evaluate the ecotoxicological risk to plants growing in tropical soils contaminated with Ce, as well as to create a database to support future legislation regulating the limits of this element in Brazilian and conceivably other tropical soils. Eight crop species (corn, sorghum, rice, wheat, soybeans, sunflower, radish, and beans) were exposed to a Ce concentration gradient in two typical tropical soils (Oxisol and Inceptsol), and an artificial soil. Our findings showed that among the endpoints measured, Ce phytotoxicity was more pronounced on shoot dry matter than on percent germination and germination speed index. Sensitivity of plants is species specific and our data showed that sunflower and radish exposed to Ce were the most sensitive crop species. Soil properties such as pH, cation exchange capacity, and organic carbon may have influenced the severity of Ce phytotoxicity. Because of that, the Oxisol contaminated with this element caused higher phytotoxicity than the other soils tested. Our risk assessment results (hazardous concentration, HC5 = 281.6 mg Ce kg-1) support the idea that unintentional Ce input through P fertilizers does not pose a risk to soils of Brazilian agroecosystems.
Collapse
Affiliation(s)
| | | | - Cynthia de Oliveira
- Department of Soil Science, Federal University of Lavras, Lavras, MG, CEP: 37200-000, Brazil
| | - Lívia Botelho de Abreu
- Department of Soil Science, Federal University of Lavras, Lavras, MG, CEP: 37200-000, Brazil
| | | | - Paula Godinho Ribeiro
- Department of Soil Science, Federal University of Lavras, Lavras, MG, CEP: 37200-000, Brazil
| | | | - Céline Boutin
- Science & Technology Branch, Environment and Climate Change Canada, Ottawa, Ontario K1A 0H3, Canada
| | | |
Collapse
|
11
|
Zicari MA, d'Aquino L, Paradiso A, Mastrolitti S, Tommasi F. Effect of cerium on growth and antioxidant metabolism of Lemna minor L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 163:536-543. [PMID: 30077150 DOI: 10.1016/j.ecoenv.2018.07.113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 05/23/2023]
Abstract
An increasing input rate of rare earth elements in the environment is expected because of the intense extraction of such elements form their ores to face human technological needs. In this study Lemna minor L. plants were grown under laboratory conditions and treated with increasing concentrations of cerium (Ce) ions to investigate the effects on plant growth and antioxidant systems. The growth increased in plants treated with lower Ce concentrations and reduced in plants treated with higher concentrations, compared to control plants. In plants treated with higher Ce concentrations lower levels of chlorophyll and carotenoid and the appearance of chlorotic symptoms were also detected. Increased levels of hydrogen peroxide, antioxidant metabolites and antioxidant activity confirmed that higher Ce concentrations are toxic to L. minor. Ce concentration in plant tissues was also determined and detectable levels were found only in plants grown on Ce-supplemented media. The use of duckweed plants as a tool for biomonitoring of Ce in freshwater is discussed.
Collapse
Affiliation(s)
| | - Luigi d'Aquino
- ENEA Portici Research Centre, Piazzale E. Fermi 1, 80055 Portici, Italy
| | - Annalisa Paradiso
- Department of Biology, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| | | | - Franca Tommasi
- Department of Biology, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy.
| |
Collapse
|