1
|
Ebrahimi A, Ebrahimpour K, Mohammadi F, Moazeni M. Ecotoxicological and human health risk assessment of triclosan antibacterial agent from municipal wastewater treatment plants. JOURNAL OF WATER AND HEALTH 2024; 22:36-51. [PMID: 38295071 PMCID: wh_2023_070 DOI: 10.2166/wh.2023.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
In this study, the occurrence and environmental risks related to triclosan (TCS) in the two wastewater treatment plants (WWTPs) were investigated in Isfahan, Iran. Influent and effluent samples were collected and analyzed by dispersive liquid-liquid microextraction (DLLME)-GC-MS method with derivatization. Moreover, the risk of TCS exposure was conducted for aquatic organisms (algae, crustaceans, and fishes) and humans (males and females). TCS mean concentrations in influent and effluent of WWTPs were in the range of 3.70-52.99 and 0.83-1.09 μg/L, respectively. There were also no differences in the quantity of TCS and physicochemical parameters among the two WWTPs. The mean risk quotient (RQ) for TCS was higher than 1 (in algae) with dilution factors (DFs) equal to 1 in WWTP1. Moreover, the RQ value was higher than 1 for humans based on the reference dose of MDH (RFDMDH) in WWTP1. Furthermore, TCS concentration in wastewater effluent was the influential factor in varying the risk of TCS exposure. The results of the present study showed the risk of TCS exposure from the discharge of effluent of WWTP1 was higher than WWTP2. Moreover, the results of this study may be suitable for promoting WWTP processes to completely remove micropollutants.
Collapse
Affiliation(s)
- Afshin Ebrahimi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran E-mail: ;
| | - Karim Ebrahimpour
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzaneh Mohammadi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Malihe Moazeni
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Moazeni M, Ebrahimpour K, Mohammadi F, Heidari Z, Ebrahimi A. Human health risk assessment of Triclosan in water: spatial analysis of a drinking water system. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1171. [PMID: 37682384 DOI: 10.1007/s10661-023-11789-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/24/2023] [Indexed: 09/09/2023]
Abstract
Triclosan (TCS) has been increased in the water during the COVID-19 pandemic because it cannot remove by conventional water treatment. In addition, it can accumulate in the human body over time through long-term exposure. Therefore, the occurrence of TCS in the water treatment plant (WTP) and tap water, and its human health risk assessment through tap water ingestion, dermal absorption, and inhalation routes in Isfahan, Iran, were investigated. Moreover, spatial regression methods were used for the prediction of water quality parameters, TCS concentration, and total hazard quotient (HQ). The average TCS concentration in the influent and effluent of WTP and tap water was 1.6, 1.4, and 0.4 μg/L, respectively. Conventional WTP has low efficiency in the removal of TCS (12.6%) from water. The average values of total HQ for males were 7.79×10-5, 4.97×10-4, and 4.97×10-5 and for females were 3.31×10-5, 2.11×10-4, and 2.11×10-5 based on RfDEPA, RfDMDH, and RfDRodricks, respectively that were in the low-risk levels (HQ<1). Furthermore, TCS concentration in tap water and the ingestion rate of drinking water had the highest effect on the risk of TCS exposure from tap water. The non-carcinogenic health risk of TCS in water was low. The results of this study may be useful for promoting WTP processes to remove emerging pollutants.
Collapse
Affiliation(s)
- Malihe Moazeni
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Karim Ebrahimpour
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzaneh Mohammadi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Heidari
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Afshin Ebrahimi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
3
|
Huang W, Zhu L, Cao G, Xie P, Song Y, Huang J, Chen X, Cai Z. Integrated Proteomics and Metabolomics Assessment Indicated Metabolic Alterations in Hypothalamus of Mice Exposed to Triclosan. Chem Res Toxicol 2021; 34:1319-1328. [PMID: 33611912 DOI: 10.1021/acs.chemrestox.0c00514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Triclosan (TCS) is a ubiquitous antimicrobial used in many daily consumer products. It has been reported to induce endocrine disrupting effects at low doses in mammals, disturbing sex hormone function and thyroid function. The hypothalamus plays a crucial role in the maintenance of neuroendocrine function and energy homeostasis. We speculated that the adverse effects of TCS might be related to the disturbance of metabolic processes in hypothalamus. The present study aimed at investigating the effects of TCS exposure on the protein and metabolite profiles in hypothalamus of mice. Male C57BL/6 mice were orally exposed to TCS at the dosage of 10 mg/kg/d for 13 weeks. The hypothalamus was isolated and processed for mass spectrometry (MS)-based proteomics and metabolomics analyses. The results showed that a 10.6% decrease (P = 0.066) in body weight gain was observed in the TCS exposure group compared with vehicle control group. Differential analysis defined 52 proteins and 57 metabolites that delineated TCS exposed mice from vehicle controls. Among the differential features, multiple proteins and metabolites were found to play vital roles in neuronal signaling and function. Bioinformatics analysis revealed that these differentially expressed proteins and metabolites were involved in four major biological processes, including glucose metabolism, purine metabolism, neurotransmitter release, and neural plasticity, suggesting the disturbance of homeostasis in energy metabolism, mitochondria function, neurotransmitter system, and neuronal function. Our results may provide insights into the neurotoxicity of TCS and extend our understanding of the biological effects induced by TCS exposure.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China.,School of Environment, Jinan University, Guangzhou 510632, China
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China
| | - Guodong Cao
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China
| | - Peisi Xie
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yuanyuan Song
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China
| | - Jialing Huang
- School of Environment, Jinan University, Guangzhou 510632, China
| | - Xiangfeng Chen
- Shandong Analysis and Test Center, Qilu University of Technology, Jinan, Shandong, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
4
|
Zhang M, Zhu R, Zhang L. Triclosan stimulates human vascular endothelial cell injury via repression of the PI3K/Akt/mTOR axis. CHEMOSPHERE 2020; 241:125077. [PMID: 31614311 DOI: 10.1016/j.chemosphere.2019.125077] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/22/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
Triclosan (TCS) has potentially toxic effects on humans and animals. However, the possible roles and mechanisms of TCS in endothelial cells (ECs) are still unknown. Abnormal damage to ECs and vascular function is a critical process in various cardiovascular diseases, including coronary artery disease (CAD), atherosclerosis, stroke, and hypertension. Hence, we explored the potential toxicological roles of TCS in EC functions. Cell Counting Kit-8, apoptosis, transwell, wound healing, and tube-formation experiments were performed to evaluate the effects of TCS on human umbilical vein endothelial cell (HUVEC) function. Additionally, the levels of PI3K, Akt, and mTOR phosphorylation were measured by Western blot. The results indicated that TCS treatment suppressed HUVECs viability, migration and angiogenesis. TCS treatment increased the expression of inflammatory markers and ROS in cultured HUVECs. Moreover, TCS treatment inhibited PI3K/Akt/mTOR expression. All of these results reveal that TCS induces notable vascular injury and affects the viability, migration and angiogenic capacity of HUVECs, at least in part via the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Min Zhang
- Division of Cardiology, TongRen Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| | - Rongrong Zhu
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China
| | - Libin Zhang
- Department of Thoracic Surgery, First People's Hospital of Yunnan Province, Kunming, 650031, China
| |
Collapse
|
5
|
Saleh I, Goktepe I. Health risk assessment of Patulin intake through apples and apple-based foods sold in Qatar. Heliyon 2019; 5:e02754. [PMID: 31844700 PMCID: PMC6895755 DOI: 10.1016/j.heliyon.2019.e02754] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 09/29/2019] [Accepted: 10/28/2019] [Indexed: 01/09/2023] Open
Abstract
This is the first report on assessing the non-carcinogenic health risk associated with Patulin exposure in Qatar. The concentrations of Patulin, as determined in previous studies, in apples, apple juice, and apple-based baby foods sold in Qatar and nearby countries were used to conduct the health risk assessment (HRA). The risk related to Patulin intake by different age groups was calculated using the USEPA risk assessment models. The intake levels (ILs) of various age groups was compared with the international standards. The highest IL in Qatar was for babies between 5-12 months old through ingesting contaminated apple-based baby foods, yet those levels were below the tolerable daily intake of Patulin set by the EU at 0.4 μg/kg BW/d. The results showed that the intake of Patulin in Qatar is lower than that in Tunisia and Iran based on the HRA analysis. The risk caused by chronic exposure to Patulin through ingesting raw apples and apple juice separately was below “1,” indicating that the overall population is not likely to be at risk of Patulin exposure. However, various uncertainties should be considered when adopting these results, mainly the low number of samples and additive exposure to other mycotoxins from different sources.
Collapse
Affiliation(s)
- Iman Saleh
- Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Ipek Goktepe
- Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
6
|
Lu S, Wang N, Ma S, Hu X, Kang L, Yu Y. Parabens and triclosan in shellfish from Shenzhen coastal waters: Bioindication of pollution and human health risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:257-263. [PMID: 30557799 DOI: 10.1016/j.envpol.2018.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/25/2018] [Accepted: 12/01/2018] [Indexed: 06/09/2023]
Abstract
This work aimed to determine the concentrations of parabens and triclosan (TCS) in shellfish from coastal waters of Shenzhen, South China. A method of isotope dilution with high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was used to determine TCS and five paraben analogues, including methyl paraben (MeP), ethyl paraben (EtP), propyl paraben (PrP), butyl paraben (BuP), and benzyl paraben (BeP), in 186 shellfish samples covering eight species. Concentrations of parabens and TCS were 0.13-25.5 ng/g wet weight (ww) and <LOQ-6.51 ng/g ww, respectively, indicating their ubiquitous contamination in Shenzhen coastal waters. MeP was the most predominant paraben, followed by EtP and PrP. These three analogues accounted for more than 95% of the total concentrations of parabens. The "high" estimated daily intakes of parabens and TCS with the 95th percentage concentrations were estimated to be 2.15-26.1 and 0.41-10.3 ng/kg bw/day, respectively, much lower than the acceptable dietary intakes of parabens (1 × 107 ng/kg bw/day) and TCS (200 ng/kg bw/day), indicating no significant human health risks from shellfish consumption in the studied region. To our knowledge, this is the first report on the occurrences of parabens and TCS in shellfish products from Shenzhen coastal waters.
Collapse
Affiliation(s)
- Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, PR China; Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, PR China
| | - Ning Wang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China; Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, PR China
| | - Shengtao Ma
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Xing Hu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Li Kang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, PR China
| | - Yingxin Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China.
| |
Collapse
|
7
|
Du F, Zeng Q, Lai Z, Cheng Z, Ruan G. Silicon doped graphene quantum dots combined with ruthenium(iii) ions as a fluorescent probe for turn-on detection of triclosan. NEW J CHEM 2019. [DOI: 10.1039/c9nj03046h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, silicon doped graphene quantum dots (Si-GQDs) were prepared and applied for the sensitive and selective fluorescence detection of triclosan (TCS) in combination with Ru3+ ions.
Collapse
Affiliation(s)
- Fuyou Du
- Department of Biological Engineering and Environmental Science
- Changsha University
- Changsha 410003
- China
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials
| | - Qiulian Zeng
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guilin 541004
- China
| | - Zhan Lai
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guilin 541004
- China
| | - Zhenfang Cheng
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guilin 541004
- China
| | - Guihua Ruan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guilin 541004
- China
| |
Collapse
|