1
|
Safeer R, Liu G, Yousaf B, Ashraf A, Haider MIS, Cheema AI, Ijaz S, Rashid A, Sikandar A, Pikoń K. Insights into the biogeochemical transformation, environmental impacts and biochar-based soil decontamination of antimony. ENVIRONMENTAL RESEARCH 2024; 251:118645. [PMID: 38485077 DOI: 10.1016/j.envres.2024.118645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/17/2024] [Accepted: 03/05/2024] [Indexed: 04/07/2024]
Abstract
Every year, a significant amount of antimony (Sb) enters the environment from natural and anthropogenic sources like mining, smelting, industrial operations, ore processing, vehicle emissions, shooting activities, and coal power plants. Humans, plants, animals, and aquatic life are heavily exposed to hazardous Sb or antimonide by either direct consumption or indirect exposure to Sb in the environment. This review summarizes the current knowledge about Sb global occurrence, its fate, distribution, speciation, associated health hazards, and advanced biochar composites studies used for the remediation of soil contaminated with Sb to lessen Sb bioavailability and toxicity in soil. Anionic metal(loid) like Sb in the soil is significantly immobilized by pristine biochar and its composites, reducing their bioavailability. However, a comprehensive review of the impacts of biochar-based composites on soil Sb remediation is needed. Therefore, the current review focuses on (1) the fundamental aspects of Sb global occurrence, global soil Sb contamination, its transformation in soil, and associated health hazards, (2) the role of different biochar-based composites in the immobilization of Sb from soil to increase biochar applicability toward Sb decontamination. The review aids in developing advanced, efficient, and effective engineered biochar composites for Sb remediation by evaluating novel materials and techniques and through sustainable management of Sb-contaminated soil, ultimately reducing its environmental and health risks.
Collapse
Affiliation(s)
- Rabia Safeer
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Guijian Liu
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China.
| | - Balal Yousaf
- Department of Technologies and Installations for Waste Management, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44 -100, Gliwice, Poland
| | - Aniqa Ashraf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Muhammad Irtaza Sajjad Haider
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Ayesha Imtiyaz Cheema
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Samra Ijaz
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Audil Rashid
- Botany Department, Faculty of Science, University of Gujrat, Hafiz Hayat Campus, Gujrat, 50700, Pakistan
| | - Anila Sikandar
- Department of Environmental Science, Kunming University of Science and Technology, 650500, Yunnan, PR China
| | - Krzysztof Pikoń
- Department of Technologies and Installations for Waste Management, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44 -100, Gliwice, Poland
| |
Collapse
|
2
|
Tang H, Hassan MU, Nawaz M, Yang W, Liu Y, Yang B. A review on sources of soil antimony pollution and recent progress on remediation of antimony polluted soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115583. [PMID: 37862748 DOI: 10.1016/j.ecoenv.2023.115583] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023]
Abstract
Antimony (Sb) is a serious toxic and non-essential metalloid for animals, humans, and plants. The rapid increase in anthropogenic inputs from mining and industrial activities, vehicle emissions, and shoot activity increased the Sb concentration in the environment, which has become a serious concern across the globe. Hence, remediation of Sb-contaminated soils needs serious attention to provide safe and healthy foods to humans. Different techniques, including biochar (BC), compost, manures, plant additives, phyto-hormones, nano-particles (NPs), organic acids (OA), silicon (Si), microbial remediation techniques, and phytoremediation are being used globally to remediate the Sb polluted soils. In the present review, we described sources of soil Sb pollution, the environmental impact of antimony pollution, the multi-faceted nature of antimony pollution, recent progress in remediation techniques, and recommendations for the remediation of soil Sb-pollution. We also discussed the success stories and potential of different practices to remediate Sb-polluted soils. In particular, we discussed the various mechanisms, including bio-sorption, bio-accumulation, complexation, and electrostatic attraction, that can reduce the toxicity of Sb by converting Sb-V into Sb-III. Additionally, we also identified the research gaps that need to be filled in future studies. Therefore, the current review will help to develop appropriate and innovative strategies to limit Sb bioavailability and toxicity and sustainably manage Sb polluted soils hence reducing the toxic effects of Sb on the environment and human health.
Collapse
Affiliation(s)
- Haiying Tang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; School of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Muhammad Umair Hassan
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China
| | - Mohsin Nawaz
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wenting Yang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ying Liu
- School of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Binjuan Yang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
3
|
Xiao A, Chi Y, Huang L, Li WC, Ye Z. Effects of cultivar, water condition and their interactions on Cd accumulation in rice grains. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115168. [PMID: 37352585 DOI: 10.1016/j.ecoenv.2023.115168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 05/17/2023] [Accepted: 06/18/2023] [Indexed: 06/25/2023]
Abstract
Using low Cd accumulation cultivars and managing field water regimes are effective measures to mitigate Cd accumulations in rice grains. However, the effect of the cultivar-water condition interaction (CWI) on grain Cd accumulations has largely been ignored. To solve this problem, pot and hydroponic experiments were conducted using 14 rice cultivars and two contrasting water conditions. The results showed that CWI significantly affected Cd concentrations in rice grains and roots, explaining 8.8% and 22.8% of the total variance, respectively. These CWI effects were derived from cultivar-dependent variations in rhizosphere soil properties [Eh, pH and available Cd associated with root radial oxygen loss (ROL)] and root Cd uptake. In this context, cultivar HH61 exhibited low, stable Cd accumulations, owing to its stably lower translocation rate, root Cd uptake ability and available Cd in its rhizosphere than the other cultivars, which was induced by its lower ROL. Root-to-grain Cd translocation rates were vital in determining Cd accumulations in grain of different cultivars but were independent from CWI. These results indicated that CWI could play an important role in Cd accumulation in rice while stable low-Cd cultivar should possess low ROL under flooding and low root-to-grain Cd translocation rate. The results will provide novel theoretical basis for cultivar selection and hence benefit the extensive use of low-accumulation cultivars and public health.
Collapse
Affiliation(s)
- Anwen Xiao
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Yihan Chi
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Lu Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530105, China
| | - Wai Chin Li
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong Special Administrative Region of China.
| | - Zhihong Ye
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
4
|
Long J, Zhou D, Wang J, Huang B, Luo Y, Zhang G, Liu Z, Lei M. Repeated inoculation of antimony resistant bacterium reduces antimony accumulation in rice plants. CHEMOSPHERE 2023; 327:138335. [PMID: 36948256 DOI: 10.1016/j.chemosphere.2023.138335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Applying beneficial bacteria in rice rhizosphere to manage heavy metal behaviour in soil-plant system is a promising strategy. However, colonization/domination of exogenous bacteria in rhizosphere soils remains a challenge. In this study, a bacterium Ochrobactrum anthropi, which showed the potential of transforming soluble SbIII into Sb2O3 mineral, was repeatedly inoculated into the rice rhizosphere weekly throughout the rice growth period, and the colonization of this bacterium in rice rhizosphere soils and its effect on Sb accumulation in rice plants were investigated. Results showed that repeated inoculants changed the native bacterial community in rhizosphere soils in comparison with the control, but the inoculated O. anthropi was not identified as an abundant species. With weekly inoculation, the decrease in Sb in rice roots and straws was maintained throughout the rice growth period, with decrease percentages ranging from 36 to 49% and 33-35%. In addition, decrease percentages of Sb in husks and grains at the maturing stage obtained 34 and 37%, respectively. Furthermore, the XRD identified the formation of valentinite (Sb2O3) on rice root in inoculation treatment, and the decrease percentages in aqueous SbIII in rhizosphere were 53-100% through the growth period. It demonstrated that weekly inoculants performed their temporary activity of valentinite formation, and reduced Sb accumulation in rice plants efficiently. This study suggests that regardless of successful colonization, repeated inoculation of beneficial bacteria is an option to facilitate the positive effects of inoculated bacteria in the management of heavy metal behaviour.
Collapse
Affiliation(s)
- Jiumei Long
- Hunan Key Laboratory for Conservation & Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences, Hengyang Normal University, Hengyang, 421008, PR China
| | - Dongsheng Zhou
- Hunan Key Laboratory for Conservation & Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences, Hengyang Normal University, Hengyang, 421008, PR China
| | - Jing Wang
- Hunan Key Laboratory for Conservation & Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences, Hengyang Normal University, Hengyang, 421008, PR China
| | - Binyan Huang
- Hunan Key Laboratory for Conservation & Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences, Hengyang Normal University, Hengyang, 421008, PR China
| | - Yuanlai Luo
- Hunan Key Laboratory for Conservation & Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences, Hengyang Normal University, Hengyang, 421008, PR China
| | - Guocheng Zhang
- Hunan Key Laboratory for Conservation & Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences, Hengyang Normal University, Hengyang, 421008, PR China
| | - Zui Liu
- Hunan Key Laboratory for Conservation & Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences, Hengyang Normal University, Hengyang, 421008, PR China
| | - Ming Lei
- Hunan Engineering Research Center for Safe & High-Efficient Utilization of Heavy Metal Pollution Farmland, College of Resource & Environment, Hunan Agricultural University, Changsha, 410128, PR China.
| |
Collapse
|
5
|
Liang T, Zhou G, Chang D, Wang Y, Gao S, Nie J, Liao Y, Lu Y, Zou C, Cao W. Co-incorporation of Chinese milk vetch (Astragalus sinicus L.), rice straw, and biochar strengthens the mitigation of Cd uptake by rice (Oryza sativa L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:158060. [PMID: 35981578 DOI: 10.1016/j.scitotenv.2022.158060] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Soil cadmium (Cd) contamination is becoming a widespread concern because of its threat to global ecosystem health and food security. Co-incorporation of Chinese milk vetch (MV) and rice straw (RS) is a common agricultural practice in Southern China; however, the effects of combining these two materials with biochar on Cd bioavailability remain unclear. This study investigated the effects of MV, RS, rape straw biochar (RB), iron-modified biochar (FB), and their combinations on Cd uptake by rice through incubation and field experiments. The results showed that compared with the control without material input (CK), MV + RS (MR), MV + RS + RB (MRRB), and MV + RS + FB (MRFB) considerably reduced the Cd concentration in brown rice by 61.20 %, 65.38 %, and 62.65 %, respectively. Furthermore, the treatments increased the formation of iron‑manganese plaque (IMP) at different growth stages; MRRB and MRFB exhibited the highest increase rates among the treatments. Quantitatively, the Fe plaque and Mn plaque were increased by 20.61 %-47.23 % and 80.18 %-172.74 %, respectively. Compared with CK, the MRRB and MRFB treatments reduced the soil available Cd by 35.09 %-54.45 % and 38.20 %-50.20 %, respectively, at all stages. This decrease was substantially lower than that observed in the MV, RS, and MR treatments. Similar trends were observed in the incubation experiment. Additionally, the Community Bureau of Reference Sequential Extraction Analysis indicated that the MRRB and MRFB treatments converted the bioavailable Cd fractions into a stable form. Partial least squares path model and redundancy analysis revealed that pH was the major factor influencing Cd bioavailability. This study emphasized that the dual impact factors from the enhancement of Cd passivation capability and IMP formation jointly result in the reduction of Cd uptake by rice. Consequently, the co-incorporation of MV, RS, and biochar is promising for remediating Cd-contaminated paddy soils in Southern China.
Collapse
Affiliation(s)
- Ting Liang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100081, China
| | - Guopeng Zhou
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Danna Chang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yikun Wang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Songjuan Gao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Nie
- Soil and Fertilizer Institute of Hunan Province, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yulin Liao
- Soil and Fertilizer Institute of Hunan Province, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yanhong Lu
- Soil and Fertilizer Institute of Hunan Province, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Chunqin Zou
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100081, China
| | - Weidong Cao
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
6
|
Kumar V, Radziemska M. Impact of physiochemical properties, microbes and biochar on bioavailability of toxic elements in the soil: a review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:3725-3742. [PMID: 34811628 DOI: 10.1007/s10653-021-01157-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
The pollution of toxic elements (TEs) in the ecosystem exhibits detrimental effects on the human health. In this paper, we debated remediation approaches for TEs polluted soils via immobilization methods employing numerous amendments with reverence to type of soil and metals, and amendment, immobilization competence, fundamental processes and field applicability. We argued the influence of pH, soil organic matter, textural properties, microbes, speciation and biochar on the bioavailability of TEs. All these properties of soil, microbes and biochar are imperative for effective and safe application of these methods in remediation of TEs contamination in the ecosystem. Further, the application of physiochemical properties, microbes and biochar as amendments has significant synergistic impacts not only on absorption of elements but also on diminution of toxic elements.
Collapse
Affiliation(s)
- Vinod Kumar
- Department of Botany, Government Degree College, Ramban, Jammu, 182144, India.
| | - Maja Radziemska
- Institute of Environmental Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland
| |
Collapse
|
7
|
Zhang L, Dong Y, Liu J, Liu C, Liu W, Lin H. The effect of co-pyrolysis temperature for iron-biochar composites on their adsorption behavior of antimonite and antimonate in aqueous solution. BIORESOURCE TECHNOLOGY 2022; 347:126362. [PMID: 34838625 DOI: 10.1016/j.biortech.2021.126362] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Iron-biochar is an efficient adsorbent for contaminants, whereas the role of prepared temperature on removal of antimony (Sb) is unacquainted. In this study, the iron-biochar composites (FBC) were fabricated by co-pyrolysis at 500°C and 800°C and applied to remove antimonite (Sb(III)) and antimonate (Sb(V)) in aqueous. The results showed Fe3O4 was loaded on biochar prepared at 500°C (FBC500), while FeOOH with zero-valent iron (ZVI) was formed on biochar pyrolyzed at 800°C (FBC800). However, FBC500 showed the maximum absorbance for Sb(V) (30.47 mg/g), and FBC800 had optimal removal efficiency for Sb(III) (52.30 mg/g). The sorption of Sb(III) and Sb(V) on FBC was multilayer heterogeneous chemisorption (complexation and ligand exchange). Sb(III) was oxidized to Sb(V) with less toxicity during the corrosion of ZVI on FBC800, leading to the co-precipitation of Sb2O5. The electrostatic interaction affected the adsorption of Sb(V) on FBC500 and FBC800. The FBC800 showed superior reusability and resistance than FBC500.
Collapse
Affiliation(s)
- Liping Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Junfei Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Chenjing Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Wei Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| |
Collapse
|
8
|
Shetty R, Vidya CSN, Weidinger M, Vaculík M. Silicon alleviates antimony phytotoxicity in giant reed (Arundo donax L.). PLANTA 2021; 254:100. [PMID: 34665350 DOI: 10.1007/s00425-021-03756-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Silicon enhances photosynthetic efficiency, biomass, and lignification of root structures possibly limiting antimony translocation and mitigating phytotoxicity in giant reed plants. Antimony (Sb) is a non-essential metalloid causing toxic effects in plants. Silicon has been reported to impart tolerance against biotic and abiotic stress in plants. Fast-growing plant, giant reed (Arundo donax L.) is a promising energy crop, can be a suitable plant for phytoremediation. However, information regarding the tolerance capacity with respect to Sb toxicity and potential of Si to mitigate the Sb phytotoxicity in giant reed are very scarce. Rhizomes of giant reed were grown for ten weeks in hydroponics exposed to Sb, Si, and their combination wherein treatment without Sb/Si served as control. Effect of these treatments on rate of net photosynthesis and photosynthetic pigments, phytoextraction ability of Sb, Si and Sb uptake, plant biomass, and lignification and suberization of roots along with localization of Sb and Si were analysed. We found that Si considerably improved the growth and biomass of giant reed under Sb toxicity. Antimony reduced the photosynthesis and decreased the content of photosynthetic pigments, which was completely alleviated by Si. Silicon amendment to Sb treated plants enhanced root lignification. Silicon enhanced lignification of root structures probably restricted the Sb translocation. However, co-localization of Sb with Si has not been observed neither at the shoot nor at the root levels. Similarly, Sb was also not detected in leaf phytoliths. These findings suggest that Si treatment promotes overall plant growth by improving photosynthetic parameters and decreasing Sb translocation from root to shoot in giant reed by improving root lignification.
Collapse
Affiliation(s)
- Rajpal Shetty
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, Ilkovičova 6, 842 15, Bratislava, Slovakia.
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 845 23, Bratislava, Slovakia.
| | | | - Marieluise Weidinger
- Core Facility Cell Imaging and Ultrastructure Research, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Marek Vaculík
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, Ilkovičova 6, 842 15, Bratislava, Slovakia
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 845 23, Bratislava, Slovakia
| |
Collapse
|
9
|
Duarte VP, Pereira MP, Corrêa FF, de Castro EM, Pereira FJ. Aerenchyma, gas diffusion, and catalase activity in Typha domingensis: a complementary model for radial oxygen loss. PROTOPLASMA 2021; 258:765-777. [PMID: 33404920 DOI: 10.1007/s00709-020-01597-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Radial oxygen loss is a physical phenomenon that occurs naturally in aquatic plants. Typha domingensis was chosen as a model plant because it possesses basic morphological characteristics, such as a stem (rhizome) that produces leaves and adventitious roots, which are present in many aquatic plants. This study aimed to evaluate the following: the relevance of the anatomy of T. domingensis on gas diffusion among organs; the influence of plant parts on radial oxygen loss; the role of catalase in radial oxygen loss; and the proposition of a novel explanation for the downward diffusion of oxygen through the organs of this aquatic macrophyte and into the environment. Typha domingensis plants were cultivated in a greenhouse under different conditions: plants with intact leaves, plants with leaves cut in half, and plants without leaves. Furthermore, we evaluated the percentage of aerenchyma in different vegetative organs, the minimum pressure required for radial oxygen loss, the daily variations of dissolved oxygen, and the roots' catalase activity. The results demonstrated that certain cellular features contributed to decreased oxygen diffusion among the organs, specifically, those found in the leaf-rhizome and root-rhizome interfaces as well as the suberin and lignin layers in these regions. Additionally, our experiments with a catalase activator and inhibitor validated that a significant amount of the oxygen released in radial oxygen loss could not, in fact, be exclusively supplied by the atmosphere. Thus, a complementary model is proposed in which catalase activity is an important component of radial oxygen loss.
Collapse
Affiliation(s)
- Vinícius P Duarte
- Departamento de Biologia, Universidade Federal de Lavras, Lavras, 37200-000, Brazil
| | - Marcio P Pereira
- Departamento de Biologia, Universidade Federal de Lavras, Lavras, 37200-000, Brazil
| | - Felipe F Corrêa
- Departamento de Biologia, Universidade Federal de Lavras, Lavras, 37200-000, Brazil
| | - Evaristo M de Castro
- Departamento de Biologia, Universidade Federal de Lavras, Lavras, 37200-000, Brazil
| | - Fabricio J Pereira
- Instituto de Ciências da Natureza, Universidade Federal de Alfenas, Alfenas, 37130-001, Brazil.
| |
Collapse
|
10
|
Vaculík M, Lukačová Z, Bokor B, Martinka M, Tripathi DK, Lux A. Alleviation mechanisms of metal(loid) stress in plants by silicon: a review. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6744-6757. [PMID: 32569367 DOI: 10.1093/jxb/eraa288] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/15/2020] [Indexed: 05/06/2023]
Abstract
Silicon (Si), although not considered as an essential element for plants in general, can ameliorate the phytotoxicity induced by excess metal(loid)s whether non-essential (e.g. Cd, Pb, Cr, Al, As, and Sb) or essential (e.g. Cu, Ni, and Zn). The Si-enhanced resistance allowing plants to cope with this type of abiotic stress has been developed at multiple levels in plants. Restriction of root uptake and immobilization of metal(loid)s in the rhizosphere by Si is probably one of the first defence mechanism. Further, retention of elements in the root apoplasm might enhance the resistance and vigour of plants. At the cellular level, the formation of insoluble complexes between Si and metal(loid)s and their storage within cell walls help plants to decrease available element concentration and restrict symplasmic uptake. Moreover, Si influences the oxidative status of plants by modifying the activity of various antioxidants, improves membrane stability, and acts on gene expression, although its exact role in these processes is still not well understood. This review focuses on all currently known plant-based mechanisms related to Si supply and involved in amelioration of stress caused by excess metal(loid)s.
Collapse
Affiliation(s)
- Marek Vaculík
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Ilkovicova 6, Bratislava, Slovakia
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, Slovakia
| | - Zuzana Lukačová
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Ilkovicova 6, Bratislava, Slovakia
| | - Boris Bokor
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Ilkovicova 6, Bratislava, Slovakia
- Comenius University Science Park, Ilkovicova 8, Bratislava, Slovakia
| | - Michal Martinka
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Ilkovicova 6, Bratislava, Slovakia
| | - Durgesh Kumar Tripathi
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sect 125, Noida, Uttar Pradesh, India
| | - Alexander Lux
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Ilkovicova 6, Bratislava, Slovakia
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, Slovakia
| |
Collapse
|
11
|
Yan H, Wang X, Yang Y, Duan G, Zhang H, Cheng W. The effect of straw-returning on antimony and arsenic volatilization from paddy soil and accumulation in rice grains. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114581. [PMID: 33618473 DOI: 10.1016/j.envpol.2020.114581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/28/2020] [Accepted: 04/09/2020] [Indexed: 06/12/2023]
Abstract
Pollution by antimony (Sb) and arsenic (As) in soil can pose a great threat to human health. Straw-returning is widely applied to paddy fields for improving and remediating soil. A pot experiment was conducted to investigate the effect of straw-returning on Sb and As transformation and translocation in a soil-rice system. In this study, Sb and As co-contaminated soil was thoroughly mixed with different proportions (0, 0.5, 1, and 2%) of straw and used for growing rice plants through the entire growing stage in a pot experiment and 4 weeks in a microcosm experiment. The straw application significantly increased Sb and As mobility. The concentrations of total Sb and As in soil-pore water increased after the application of straw in most growing stages. The Sb volatilization in the pot and microcosm experiments was also stimulated by straw application. With the high dose of straw application (2%), the concentration of Sb in brown grain was reduced by 72% compared with the control, but As concentrations increased by around 77%. These findings provide a new perspective in that straw-returning could affect the behavior of both Sb and As in soil and reduce the Sb accumulation in brown grain and some guidance in the use of straw-returning in Sb-contaminated paddy soil.
Collapse
Affiliation(s)
- HuiJun Yan
- The Key Lab of Resource Environment and GIS, Capital Normal University, Beijing, 100048, China; State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - XueDong Wang
- The Key Lab of Resource Environment and GIS, Capital Normal University, Beijing, 100048, China.
| | - YuPing Yang
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - GuiLan Duan
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - HongMei Zhang
- Jiaxing Academy of Agricultural Sciences, Jiaxing, 314016, China
| | - WangDa Cheng
- Jiaxing Academy of Agricultural Sciences, Jiaxing, 314016, China
| |
Collapse
|
12
|
Long J, Zhou D, Li B, Zhou Y, Li Y, Lei M. The effect of an antimony resistant bacterium on the iron plaque fraction and antimony uptake by rice seedlings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113670. [PMID: 31806459 DOI: 10.1016/j.envpol.2019.113670] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Iron plaque (IP) is crucial in mitigating antimony (Sb) uptake and accumulation in rice plants, while, few studies focused on the effect of the iron plaque-associated Sb resistant bacteria on IP and Sb uptake into rice plants. Here, the effect of a Sb resistant bacterium (GenBank accession No. MH345840, with potential of conversion soluble Sb(III) into insoluble Sb2O3) on IP and Sb(III)/Sb(V) uptake under hydroponic condition was investigated. The results showed that in the presence of Sb(III), a large quantity of bacterial cells consorted with IP on rice roots, the bacterial inoculum altered the IP fraction distribution without enhancing its amount. However, it reduced Sb(III) uptake into rice roots. On contrary, seldom bacterial cells associated with the IP on rice roots in the presence of the Sb(V), the bacterial inoculum increased the IP amount slightly, and did not decline the Sb(V) uptake into rice roots. It also showed that the bacterial inoculum decreased Sb concentrations in rice shoots greatly in both Sb(III) and Sb(V) supplied treatments.
Collapse
Affiliation(s)
- Jiumei Long
- College of Life Sciences & Environment, Hengyang Normal University, Hengyang, 421008, PR China
| | - Dongsheng Zhou
- College of Life Sciences & Environment, Hengyang Normal University, Hengyang, 421008, PR China
| | - Bingyu Li
- College of Resource & Environment, Hunan Agricultural University, Changsha, 410128, PR China; Hunan Engineering Research Center for Safe and High-Efficient Utilization of Heavy Metal Pollution Farmland, Changsha, 410128, PR China
| | - Yimin Zhou
- College of Resource & Environment, Hunan Agricultural University, Changsha, 410128, PR China; Hunan Engineering Research Center for Safe and High-Efficient Utilization of Heavy Metal Pollution Farmland, Changsha, 410128, PR China
| | - Yongjie Li
- College of Resource & Environment, Hunan Agricultural University, Changsha, 410128, PR China; Hunan Engineering Research Center for Safe and High-Efficient Utilization of Heavy Metal Pollution Farmland, Changsha, 410128, PR China
| | - Ming Lei
- College of Resource & Environment, Hunan Agricultural University, Changsha, 410128, PR China; Hunan Engineering Research Center for Safe and High-Efficient Utilization of Heavy Metal Pollution Farmland, Changsha, 410128, PR China.
| |
Collapse
|
13
|
Feng J, Xu Y, Ma B, Tang C, Brookes PC, He Y, Xu J. Assembly of root-associated microbiomes of typical rice cultivars in response to lindane pollution. ENVIRONMENT INTERNATIONAL 2019; 131:104975. [PMID: 31284116 DOI: 10.1016/j.envint.2019.104975] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/28/2019] [Accepted: 06/27/2019] [Indexed: 06/09/2023]
Abstract
Organochlorine pesticides have been extensively used for many years to prevent insect diseases of rice (Oryza sativa L.), but little is known about their residual impacts on the underground micro-ecology in anaerobic environment. In this glasshouse study, we characterized the lindane effects on the assembly of root-associated microbiomes of commonly used indica, japonica and hybrid rice cultivars, and their feedback in turn, in modifying lindane anaerobic dissipation during 60 days' rice production. The results showed that rice growth inhibited the anaerobic dissipation of lindane, but was not affected apparently by lindane at initial spiked concentration of 4.62 and 18.54 mg kg-1 soil. Suppressed removal of lindane in rice planted treatments as compared with that in unplanted control was likely due to inhibited reductive dechlorination induced by a comprehensive effect of radial O2 secretion of rice root and co-occurring Fe(III) reduction that consumed electron competitively in rice rhizosphere. However, the hybrid cultivar exhibited a less suppression than the conventional cultivars in high polluted soils. Bacteria was more sensitively responded to lindane pollution than fungal taxa, and Actinobacteria, Chloroflexi, Verrucomicrobia and Proteobacteria were the main different phyla between hybrid and conventional cultivars, with a more stable community structure exhibited in the hybrid rice under lindane stress. Our study highlights the assembly and variation of root-associated microbiomes in responses of lindane pollution, and suggests that hybrid rice cultivar might be most competent for cultivation in paddy fields polluted by lindane and other organochlorine pesticides, especially in the area with high residual levels.
Collapse
Affiliation(s)
- Jiayin Feng
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Yan Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Bin Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Caixian Tang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Philip C Brookes
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Yan He
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China.
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| |
Collapse
|
14
|
Chen H, Guo S, Li H, Zhou D, Cao X, Wang C, Liu Y, Xiang M, Li L, Yu Y. Multi-generational effects and variations of stress response by hexabromocyclododecane (HBCD) exposure in the nematode Caenorhabditis elegans. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 245:216-222. [PMID: 31154167 DOI: 10.1016/j.jenvman.2019.05.103] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/16/2019] [Accepted: 05/24/2019] [Indexed: 06/09/2023]
Abstract
In order to understand multi-generational effects and changes of stress response by hexabromocyclododecane (HBCD) exposure, the animal model Caenorhabditis elegans was chosen for toxicity study. Multiple endpoints, including the physiological levels (growth, reproduction, and locomotion behaviors), stress-related gene expressions, reactive oxygen species (ROS) production and degree of cell apoptosis, were evaluated on exposed nematodes and their progeny. Prolonged exposure to HBCD at concentrations of 2 nM-200 nM caused adverse physiological effects in the parental generation (F0), and these effects were also observed in the offspring under HBCD-free conditions (F1). HBCD-induced toxicities could be transferred from parent to offspring. The integrated gene expressions profiles showed that exposure to HBCD at concentrations of 20-200 nM resulted in obvious changes in stress-related gene expressions, which were more increased in F0 generation than in F1 generation. The increased expressions were pronounced in several genes related to oxidative stress and cell apoptosis, e.g., hsp-16.2, hsp-16.48, sod-1, sod-3 and cep-1 genes. Exposure to 200 nM of HBCD could significantly increase ROS production and degree of cell apoptosis in the F0 and F1 generations. Therefore, it was speculated that HBCD exposure induced oxidative stress and cell apoptosis, which resulted in the adverse physiological effects. This finding is helpful for understanding the multi-generational effects and evaluating the potential risk of HBCD.
Collapse
Affiliation(s)
- Haibo Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, PR China
| | - Shu Guo
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, PR China
| | - Hui Li
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China.
| | - Dong Zhou
- Research Institute of Wastes and Soil Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, PR China
| | - Xue Cao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Chen Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yongdi Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, PR China
| | - Liangzhong Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, PR China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, PR China
| |
Collapse
|
15
|
He M, Wang N, Long X, Zhang C, Ma C, Zhong Q, Wang A, Wang Y, Pervaiz A, Shan J. Antimony speciation in the environment: Recent advances in understanding the biogeochemical processes and ecological effects. J Environ Sci (China) 2019; 75:14-39. [PMID: 30473279 DOI: 10.1016/j.jes.2018.05.023] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/24/2018] [Accepted: 05/28/2018] [Indexed: 05/14/2023]
Abstract
Antimony (Sb) is a toxic metalloid, and its pollution has become a global environmental problem as a result of its extensive use and corresponding Sb-mining activities. The toxicity and mobility of Sb strongly depend on its chemical speciation. In this review, we summarize the current knowledge on the biogeochemical processes (including emission, distribution, speciation, redox, metabolism and toxicity) that trigger the mobilization and transformation of Sb from pollution sources to the surrounding environment. Natural phenomena such as weathering, biological activity and volcanic activity, together with anthropogenic inputs, are responsible for the emission of Sb into the environment. Sb emitted in the environment can adsorb and undergo redox reactions on organic or inorganic environmental media, thus changing its existing form and exerting toxic effects on the ecosystem. This review is based on a careful and systematic collection of the latest papers during 2010-2017 and our research results, and it illustrates the fate and ecological effects of Sb in the environment.
Collapse
Affiliation(s)
- Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Ningning Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xiaojing Long
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chengjun Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Congli Ma
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Qianyun Zhong
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Aihua Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ying Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Aneesa Pervaiz
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jun Shan
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
16
|
Wang X, Yang J, Li H, Guo S, Tariq M, Chen H, Wang C, Liu Y. Chronic toxicity of hexabromocyclododecane(HBCD) induced by oxidative stress and cell apoptosis on nematode Caenorhabditis elegans. CHEMOSPHERE 2018; 208:31-39. [PMID: 29860142 DOI: 10.1016/j.chemosphere.2018.05.147] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
In order to gain insights into the chronic effects and mechanisms of hexabromocyclododecane (HBCD), the animal model Caenorhabditis elegans (C. elegans) was chosen for toxicity study. Multiple endpoints, including the physiological (growth and locomotion behaviors), biochemical (reactive oxygen species (ROS) production, lipofuscin accumulation, and cell apoptosis), and molecular (stress-related gene expressions) levels, were tested by chronic exposure for 10 d to low concentrations of HBCD (0.2 nM-200 nM). The results revealed that chronic exposure to HBCD at concentrations more than 20 nM would significantly influence the growth, locomotion behaviors, ROS formation, lipofuscin accumulation, and cell apoptosis of nematodes. Treatment with antioxidants of ascorbate and N-acetyl-l-cysteine (NAC) suppressed the toxicity induced by HBCD. The integrated gene expression profiles showed that the chronic exposure to 200 nM of HBCD significantly increased the expression levels of stress-related genes (e.g., hsp-16.2, hsp-16.48, sod-1, sod-3, and cep-1 genes). Among these genes, the sod-1, sod-3, and cep-1 gene expressions were significantly correlated with HBCD-induced physiological effects by the Pearson correlation test. The mutations of sod-3 and cep-1 induced more severe toxicity compared to wild-type nematodes. Therefore, HBCD exposure induced oxidative stress by ROS accumulation and cell apoptosis, which resulted in HBCD-induced toxicity on nematodes, and sod-3 and cep-1 played important roles in protecting nematodes against HBCD-induced toxicity.
Collapse
Affiliation(s)
- Xiaoli Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Jie Yang
- Research Institute of Wastes and Soil Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, PR China
| | - Hui Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; Institute of Environmental Pollution and Health, Shanghai University, Shanghai, 201800, PR China.
| | - Shu Guo
- Center for Environmental Health Research, South China Institute of Environmental Sciences, MEP, Guangzhou, 510535, PR China
| | - Muhammad Tariq
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Haibo Chen
- Center for Environmental Health Research, South China Institute of Environmental Sciences, MEP, Guangzhou, 510535, PR China.
| | - Chen Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yongdi Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|