1
|
Li H, Wang Z, Feng B, Shi J, Liao M, He K, Tian H, Megharaj M, He W. Arsenic stress on soil microbial nutrient metabolism interpreted by microbial utilization of dissolved organic carbon. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134232. [PMID: 38593666 DOI: 10.1016/j.jhazmat.2024.134232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/11/2024]
Abstract
In a 120-day microcosm incubation experiment, we investigated the impact of arsenic contamination on soil microbial nutrient metabolism, focusing on carbon cycling processes. Our study encompassed soil basal respiration, key enzyme activities (particularly, β-1,4-N-acetylglucosaminidase and phosphatases), microbial biomass, and community structure. Results revealed a substantial increase (1.21-2.81 times) in β-1,4-N-acetylglucosaminidase activities under arsenic stress, accompanied by a significant decrease (9.86%-45.20%) in phosphatase activities (sum of acid and alkaline phosphatases). Enzymatic stoichiometry analysis demonstrated the mitigation of microbial C and P requirements in response to arsenic stress. The addition of C-sources alleviated microbial C requirements but exacerbated P requirements, with the interference amplitude increasing with the complexity of the C-source. Network analysis unveiled altered microbial nutrient requirements and an increased resistance process of microbes under arsenic stress. Microbial carbon use efficiency (CUE) and basal respiration significantly increased (1.17-1.59 and 1.18-3.56 times, respectively) under heavy arsenic stress (500 mg kg-1). Arsenic stress influenced the relative abundances of microbial taxa, with Gemmatimonadota increasing (5.5-50.5%) and Bacteroidota/ Nitrospirota decreasing (31.4-47.9% and 31.2-63.7%). Application of C-sources enhanced microbial resistance to arsenic, promoting cohesion among microorganisms. These findings deepen our understanding of microbial nutrient dynamics in arsenic-contaminated areas, which is crucial for developing enzyme-based toxicity assessment systems for soil arsenic contamination.
Collapse
Affiliation(s)
- Huayong Li
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Ziquan Wang
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Bingcong Feng
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Jing Shi
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Maoyuan Liao
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Kangming He
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Haixia Tian
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Wenxiang He
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| |
Collapse
|
2
|
Lu H, Zhou P, Li F, Wang Y, Gu J, Wang Y, Sun S, Zhang M, Wang X. Trichoderma guizhouense NJAU4742 augments morphophysiological responses, nutrient availability and photosynthetic efficacy of ornamental Ilex verticillata. TREE PHYSIOLOGY 2024; 44:tpae033. [PMID: 38501890 DOI: 10.1093/treephys/tpae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/02/2024] [Indexed: 03/20/2024]
Abstract
Winterberry holly (Ilex verticillata [L.] A. Gray), a deciduous shrub producing glossy bright red berries, is a valuable ornamental and medicinal plant with good market prospects. However, the growth and development of I. verticillata are significantly affected by various stresses, and environmentally hazardous agrochemicals are often used to mitigate them. Trichoderma spp., ubiquitous soil-borne eco-friendly plant growth-promoting fungi, are potent biostimulants and biofertilizers and viable alternatives to agrochemicals for healthy and sustainable agriculture. In this study, the temporal efficacy of different dosages of the filamentous fungus Trichoderma guizhouense NJAU4742 in promoting morphophysiological responses of I. verticillata and the physicochemical properties and enzymatic activities of the substrate were investigated. Different concentrations of the strain T. guizhouense NJAU4742 spore suspension (C [0%], T1 [5%, v/m], T2 [10%, v/m] and T3 [15%, v/m]) were injected in the substrate contained in a pot in which 1-year-old I. verticillata was planted for temporal treatment (15, 45 and 75 days) under open-air conditions. The beneficial effects of T2 and/or T3 treatment for a long duration (75 days) were evident on the different root, aerial and photosynthetic traits; total contents of nitrogen (N), phosphorus (P) and potassium (K) in different tissues and the physicochemical properties of the substrate and its enzymatic activities (urease and invertase). Overall, the study revealed the potency of strain T. guizhouense NJAU4742 as a sustainable solution to improve the growth and development and ornamental value of I. verticillata.
Collapse
Affiliation(s)
- Huixin Lu
- Department of Landscape Architecture, College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, No. 1 Weigang, Xuanwu District, Nanjing 210095, China
- Department of Plant Nutrition and Fertilizer, College of Resources and Environmental Sciences, Nanjing Agricultural University, No. 1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Peng Zhou
- Jiangsu Academy of Forestry, 109 Danyang Road, Dongshanqiao, Jiangning District, Nanjing 211153, China
| | - Fei Li
- Jiangsu Academy of Forestry, 109 Danyang Road, Dongshanqiao, Jiangning District, Nanjing 211153, China
| | - Yanjie Wang
- Department of Landscape Architecture, College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, No. 1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Jiaying Gu
- Department of Landscape Architecture, College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, No. 1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Ying Wang
- Department of Landscape Architecture, College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, No. 1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Shubin Sun
- Department of Plant Nutrition and Fertilizer, College of Resources and Environmental Sciences, Nanjing Agricultural University, No. 1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Min Zhang
- Jiangsu Academy of Forestry, 109 Danyang Road, Dongshanqiao, Jiangning District, Nanjing 211153, China
| | - Xiaowen Wang
- Department of Landscape Architecture, College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, No. 1 Weigang, Xuanwu District, Nanjing 210095, China
| |
Collapse
|
3
|
Recio M, de la Torre J, Daddaoua A, Udaondo Z, Duque E, Gavira JA, López‐Sánchez C, Ramos JL. Characterization of an extremophile bacterial acid phosphatase derived from metagenomics analysis. Microb Biotechnol 2024; 17:e14404. [PMID: 38588312 PMCID: PMC11001196 DOI: 10.1111/1751-7915.14404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 04/10/2024] Open
Abstract
Acid phosphatases are enzymes that play a crucial role in the hydrolysis of various organophosphorous molecules. A putative acid phosphatase called FS6 was identified using genetic profiles and sequences from different environments. FS6 showed high sequence similarity to type C acid phosphatases and retained more than 30% of consensus residues in its protein sequence. A histidine-tagged recombinant FS6 produced in Escherichia coli exhibited extremophile properties, functioning effectively in a broad pH range between 3.5 and 8.5. The enzyme demonstrated optimal activity at temperatures between 25 and 50°C, with a melting temperature of 51.6°C. Kinetic parameters were determined using various substrates, and the reaction catalysed by FS6 with physiological substrates was at least 100-fold more efficient than with p-nitrophenyl phosphate. Furthermore, FS6 was found to be a decamer in solution, unlike the dimeric forms of crystallized proteins in its family.
Collapse
Affiliation(s)
- Maria‐Isabel Recio
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Department of Environmental ProtectionGranadaSpain
| | - Jesús de la Torre
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Department of Environmental ProtectionGranadaSpain
| | - Abdelali Daddaoua
- Department of Biochemistry and Molecular Biology II, Pharmacy SchoolGranada UniversityGranadaSpain
| | - Zulema Udaondo
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Estrella Duque
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Department of Environmental ProtectionGranadaSpain
| | - José Antonio Gavira
- Consejo Superior de Investigaciones Científicas, Instituto de Ciencias de la TierraGranadaSpain
| | - Carmen López‐Sánchez
- Consejo Superior de Investigaciones Científicas, Instituto de Ciencias de la TierraGranadaSpain
| | - Juan L. Ramos
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Department of Environmental ProtectionGranadaSpain
| |
Collapse
|
4
|
Miao YS, Wang JY, Zhuang RR, Huo XK, Yi ZC, Sun XN, Yu ZL, Tian XG, Ning J, Feng L, Ma XC, Lv X. A high-affinity fluorescent probe for human uridine-disphosphate glucuronosyltransferase 1A9 function monitoring under environmental pollutant exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133439. [PMID: 38218035 DOI: 10.1016/j.jhazmat.2024.133439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024]
Abstract
Uridine-disphosphate glucuronosyltransferase 1A9 (UGT1A9), an important detoxification and inactivation enzyme for toxicants, regulates the exposure level of environmental pollutants in the human body and induces various toxicological consequences. However, an effective tool for high-throughput monitoring of UGT1A9 function under exposure to environmental pollutants is still lacking. In this study, 1,3-dichloro-7-hydroxy-9,9-dimethylacridin-2(9H)-one (DDAO) was found to exhibit excellent specificity and high affinity towards human UGT1A9. Remarkable changes in absorption and fluorescence signals after reacting with UGT1A9 were observed, due to the intramolecular charge transfer (ICT) mechanism. Importantly, DDAO was successfully applied to monitor the biological functions of UGT1A9 in response to environmental pollutant exposure not only in microsome samples, but also in living cells by using a high-throughput screening method. Meanwhile, the identified pollutants that disturb UGT1A9 functions were found to significantly influence the exposure level and retention time of bisphenol S/bisphenol A in living cells. Furthermore, the molecular mechanism underlying the inhibition of UGT1A9 by these pollutant-derived disruptors was elucidated by molecular docking and molecular dynamics simulations. Collectively, a fluorescent probe to characterize the responses of UGT1A9 towards environmental pollutants was developed, which was beneficial for elucidating the health hazards of environmental pollutants from a new perspective.
Collapse
Affiliation(s)
- Yi-Sheng Miao
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China; College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Jia-Yue Wang
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China; College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Rui-Rui Zhuang
- College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Xiao-Kui Huo
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China
| | - Zi-Chang Yi
- College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Xiao-Nan Sun
- College of Integrative Medicine, Dalian Medical University, Dalian 116044, China; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Zhen-Long Yu
- College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Xiang-Ge Tian
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China
| | - Jing Ning
- College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Lei Feng
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China; Chengdu University of Traditional Chinese Medicine, Chengdu 611137 China.
| | - Xiao-Chi Ma
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China; Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Xia Lv
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China; College of Integrative Medicine, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
5
|
Pesaresi A. Mixed and non-competitive enzyme inhibition: underlying mechanisms and mechanistic irrelevance of the formal two-site model. J Enzyme Inhib Med Chem 2023; 38:2245168. [PMID: 37577806 PMCID: PMC10683834 DOI: 10.1080/14756366.2023.2245168] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/14/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023] Open
Abstract
The formal mechanism of linear mixed and non-competitive enzyme inhibition implies the binding of inhibitors to both the active site of the free enzyme in competition with the substrate, and to an allosteric site on the enzyme-substrate complex. However, it is evident from a review of the scientific literature that the two-site mechanism is frequently mistaken as the actual underlying mechanism of mixed inhibition. In this study, we conducted a comprehensive assessment of the mechanistic relevance of this type of inhibition using a statistical approach. By combining a statistical analysis of the inhibition cases documented in the BRENDA database with a theoretical investigation of inhibition models, we conclude that mixed inhibitors exclusively bind to the active site of enzymes. Hence ruling out any implication of allosteric sites and depriving the two-site model of any mechanistic relevance.
Collapse
Affiliation(s)
- Alessandro Pesaresi
- Istituto di Cristallografia – Consiglio Nazionale delle Ricerche, Trieste, Italy
| |
Collapse
|
6
|
Wang Y, Xing M, Gao X, Wu M, Liu F, Sun L, Zhang P, Duan M, Fan W, Xu J. Physiological and transcriptomic analyses reveal that phytohormone pathways and glutathione metabolism are involved in the arsenite toxicity response in tomatoes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165676. [PMID: 37481082 DOI: 10.1016/j.scitotenv.2023.165676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
The main forms of inorganic arsenic (As) in soil are arsenate [As(V)] and arsenite [As(III)]. Both forms inhibit plant growth. Here, we investigate the effects of As(III) toxicity on the growth of tomatoes by integrating physiological and transcriptomic analyses. As(III) toxicity induces oxidative damage, inhibits photosynthetic efficiency, and reduces soluble sugar levels. As(III) toxicity leads to reductions in auxin, cytokinin and jasmonic acid contents by 29 %, 39 % and 55 %, respectively, but leads to increases in the ethylene precursor 1-amino-cyclopropane carboxylic acid, abscisic acid and salicylic acid contents in roots, by 116 %, 79 % and 39 %, respectively, thereby altering phytohormone signalling pathways. The total glutathione, reduced glutathione (GSH) and oxidized glutathione (GSSG) contents are reduced by 59 %, 49 % and 94 % in roots; moreover, a high GSH/GSSG ratio is maintained through increased glutathione reductase activity (increased by 214 %) and decreased glutathione peroxidase activity (decreased by 40 %) in the roots of As(III)-treated tomato seedlings. In addition, As(III) toxicity affects the expression of genes related to the endoplasmic reticulum stress response. The altered expression of aquaporins and ABCC transporters changes the level of As(III) accumulation in plants. A set of hub genes involved in modulating As(III) toxicity responses in tomatoes was identified via a weighted gene coexpression network analysis. Taken together, these results elucidate the physiological and molecular regulatory mechanism underlying As(III) toxicity and provide a theoretical basis for selecting and breeding tomato varieties with low As(III) accumulation. Therefore, these findings are expected to be helpful in improving food safety and to developing sustainable agricultural.
Collapse
Affiliation(s)
- Yingzhi Wang
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Menglu Xing
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Xinru Gao
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Min Wu
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Fei Liu
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Liangliang Sun
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Ping Zhang
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Ming Duan
- Center of Experimental Education, Shanxi Agricultural University, Taigu 030801, China
| | - Weixin Fan
- Center of Experimental Education, Shanxi Agricultural University, Taigu 030801, China
| | - Jin Xu
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China.
| |
Collapse
|
7
|
Zhang SH, Wang Y, Hu JJ, Chen WJ, Wu JL, Seah RWX, Zhu YC, Guo ZP, Chen J. Bamboo charcoal affects soil properties and bacterial community in tea plantations. Open Life Sci 2023; 18:20220681. [PMID: 37589012 PMCID: PMC10426720 DOI: 10.1515/biol-2022-0681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/16/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023] Open
Abstract
Bamboo charcoal, a type of manufactured biochar, is produced by pyrolyzing bamboo residue under anoxic conditions. Its beneficial properties in absorption, catalyst support, and agricultural function have attracted significant attention; however, relatively few studies have examined its effects on the soil microbiota. In this study, we analyzed the effects of bamboo charcoal on soil physicochemical properties, enzymes, and microbial community structure in tea plantations and investigated the optimal amount of bamboo charcoal to be added to organic fertilizer. The results show that bamboo charcoal can further increase soil available nitrogen, total and available phosphorus and potassium, organic carbon content, pH, and urease activity. However, only the combined use of bamboo charcoal and organic fertilizer significantly increased total nitrogen, sucrase, and β-glucosidase activities in the soil. Bamboo charcoal also significantly increased the Chao1 and Shannon indices of microbiota diversity in a concentration-dependent manner. The structure of the bacterial community changed significantly after the bamboo charcoal addition, with Proteobacteria, Actinobacteria, and Firmicutes increasing and Acidobacteria decreasing. This study provides fundamental insights into the suitability of bamboo charcoal application for the ecological remediation of diseased soils.
Collapse
Affiliation(s)
- Si-Hai Zhang
- College of Liangshan, Lishui University, Lishui323000, China
| | - Yue Wang
- College of Horticulture Science, Zhejiang A&F University, Hangzhou311300, China
| | - Jin-Jie Hu
- College of Ecology, Lishui University, No. 1 Xueyuan Road, Lishui323000, China
| | - Wei-Jia Chen
- College of Ecology, Lishui University, No. 1 Xueyuan Road, Lishui323000, China
| | - Jia-Le Wu
- College of Ecology, Lishui University, No. 1 Xueyuan Road, Lishui323000, China
| | - Rachel Wan Xin Seah
- Department of Biological Science, National University of Singapore, Singapore117558, Singapore
| | - Yang-Chun Zhu
- College of Ecology, Lishui University, No. 1 Xueyuan Road, Lishui323000, China
| | - Zhi-Ping Guo
- College of Ecology, Lishui University, No. 1 Xueyuan Road, Lishui323000, China
| | - Jie Chen
- College of Ecology, Lishui University, No. 1 Xueyuan Road, Lishui323000, China
| |
Collapse
|
8
|
Li N, Wang Z, Tian H, Megharaj M, He W. Ecotoxicity of soil Pb pollution reflected by soil β-glucosidase: Comparison of extracellular and intracellular enzyme pool. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163364. [PMID: 37031929 DOI: 10.1016/j.scitotenv.2023.163364] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 06/01/2023]
Abstract
Lead (Pb) is a major environmental pollutant that threatens the soil environment and human health. Monitoring and assessing Pb toxicity on soil health are of paramount importance to the public. To use soil enzymes as biological indicators of Pb contamination, herein, the responses of soil β-glucosidase (BG) in different pools of soil (total, intracellular and extracellular enzyme) to Pb contamination were investigated. The results indicated that the intra-BG (intracellular BG) and extra-BG (extracellular BG) responded differently to Pb contamination. While the addition of Pb caused a significant inhibition of the intra-BG activities, the extra-BG activities were only slightly inhibited. Pb showed a non-competitive inhibition to extra-BG, while both non-competitive and uncompetitive inhibition were observed for intra-BG in the tested soils. The dose-response modeling was used to calculate ecological dose ED10, which represents the concentration of Pb pollutant that causes a 10 % reduction in Vmax, to express the ecological consequences of Pb contamination. A positive correlation was found between ecological dose ED10 values of intra-BG and soil total nitrogen (p < 0.05), which suggests soil properties may influence Pb toxicity to soil BG. Based on the differences in ED10 and inhibition rate among different enzyme pools, this study suggests that the intra-BG is more sensitive for Pb contamination assessment. From this, we propose that intra-BG should be considered when evaluating Pb contamination using soil enzymes as indicators.
Collapse
Affiliation(s)
- Ni Li
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Ziquan Wang
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Haixia Tian
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Wenxiang He
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| |
Collapse
|
9
|
Li C, Dong Y, Yi Y, Tian J, Xuan C, Wang Y, Wen Y, Cao J. Effects of phosphogypsum on enzyme activity and microbial community in acid soil. Sci Rep 2023; 13:6189. [PMID: 37062764 PMCID: PMC10106453 DOI: 10.1038/s41598-023-33191-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/08/2023] [Indexed: 04/18/2023] Open
Abstract
Phosphogypsum (PG) is a solid waste produced from decomposition of phosphate rock in sulfuric acid. It can improve the physicochemical properties of soil. However, the application of PG will inevitably change the living environment of soil microorganisms and lead to the evolution of the soil microbial community. The effects of PG (0, 0.01%, 0.1%, 1%, 10% PG) on soil respiration, enzyme activity and microbial community were studied systematically by indoor incubation experiments. The results showed that the addition of 0.01% PG had little effect on the soil physicochemical properties and microflora. The soil respiration rate decreased with the increase of PG; The activities of catalase, urease and phosphatase were decreased and the activities of sucrase were increased by 10% PG treatment, while 0.01% or 0.1% PG treatment improve the urease activity; Soil microbial community response was significantly separated by amount of the PG amendment, and the application of 10% PG reduced the abundance, diversity and evenness of soil bacteria and fungi. Redundancy analysis (RDA) showed that soil bacterial composition was mainly driven by electrical conductivity (EC) and Ca2+, while fungal composition was mainly driven by F- and NH4+. In addition, the application of PG increased the abundance of salt-tolerant microorganisms and accelerated the degradation of soil organic matter. Overall, These results can help to revisit the current management of PG applications as soil amendments.
Collapse
Affiliation(s)
- Changan Li
- Key Laboratory of Guizhou Province for Green Chemical Industry and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, Guizhou, China
- School of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities, Duyun, 558000, Guizhou, China
| | - Yonggang Dong
- Engineering Research Center of Efficient Utilization for Industrial Waste, Guizhou University, Guiyang, 550025, Guizhou, China.
| | - Yun Yi
- Key Laboratory of Guizhou Province for Green Chemical Industry and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Juan Tian
- Guizhou Research Institute of Chemical Industry, Guiyang, 550002, Guizhou, China
| | - Chao Xuan
- Key Laboratory of Guizhou Province for Green Chemical Industry and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, Guizhou, China
- Engineering Research Center of Efficient Utilization for Industrial Waste, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Yan Wang
- Key Laboratory of Guizhou Province for Green Chemical Industry and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Yuanbo Wen
- Key Laboratory of Guizhou Province for Green Chemical Industry and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Jianxin Cao
- Key Laboratory of Guizhou Province for Green Chemical Industry and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
10
|
Zong R, Wang Z, Li W, Ayantobo OO, Li H, Song L. Assessing the impact of seasonal freezing and thawing on the soil microbial quality in arid northwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:161029. [PMID: 36549533 DOI: 10.1016/j.scitotenv.2022.161029] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
In drylands, soil microorganisms play a vital role in restoring degraded soils, and soil microbiota is significantly affected by human activities and climate events, such as seasonal freezing and thawing. However, the response of soil microbes to freezing and thawing, as well as their properties in drylands agroecosystems, remains unknown. This study investigated the effects of seasonal freezing and thawing on soil fungal and bacterial communities, multifunctionality, and soil microbial quality in a dryland agroecosystem. It has been observed that seasonal freezing and thawing promoted nutrient releases such as total carbon and available phosphorus. After thawing, soil catalase and cellulase activities increased while acid phosphatase and urease activities and total nitrogen content at topsoil decreased. Soil microbial biomass carbon content at 0-40 cm depth was significantly reduced by 94.77 %. Importantly, freezing and thawing considerably shifted the composition of fungal groups, while the soil bacterial community exhibited more stress tolerance to freezing-thawing. Compared to pre-freezing, the relative abundance of dominant fungal phyla such as Basidiomycota and Mortierellomycota decreased. At the same time, Ascomycota increased after thawing, and the relative abundance of pathogenic fungus also increased. For dominant bacteria phylum, freezing and thawing increased the relative abundance of Proteobacteria and Gemmatimonadetes while Micrococcaceae declined. Freezing and thawing significantly increased bacterial diversity and evenness by 4.94 % and 4.19 %, respectively, but decreased fungal richness and diversity by 23.49 % and 14.91 %, respectively. The minimum and total data sets were used to evaluate soil quality and we found that freezing and thawing significantly negatively impacted soil multifunctionality and microbial quality. In summary, this study demonstrates that the seasonal freezing-thawing has a significant negative impact on soil microbial quality and multifunctionality, and accelerates soil degeneration in dryland agroecosystem.
Collapse
Affiliation(s)
- Rui Zong
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, Xinjiang, PR China; College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, PR China; Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi University, Shihezi 832000, Xinjiang, PR China; Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi 832000, Xinjiang, PR China
| | - Zhenhua Wang
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, Xinjiang, PR China; Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi University, Shihezi 832000, Xinjiang, PR China; Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi 832000, Xinjiang, PR China.
| | - Wenhao Li
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, Xinjiang, PR China; Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi University, Shihezi 832000, Xinjiang, PR China; Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi 832000, Xinjiang, PR China
| | - Olusola O Ayantobo
- State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 10086, PR China
| | - Haiqiang Li
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, Xinjiang, PR China; Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi University, Shihezi 832000, Xinjiang, PR China; Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi 832000, Xinjiang, PR China
| | - Libing Song
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, Xinjiang, PR China; Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi University, Shihezi 832000, Xinjiang, PR China; Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi 832000, Xinjiang, PR China
| |
Collapse
|
11
|
Ma X, Tian H, Dai Y, Yang Y, Megharaj M, He W. Respecting catalytic efficiency of soil arylsulfatase as soil Sb contamination bio-indicator by enzyme kinetic strategy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:17644-17656. [PMID: 36197608 DOI: 10.1007/s11356-022-23338-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Antimony (Sb), a toxic metalloid, is ubiquitous in the environment and threatens human and ecological health. Soil arylsulfatase (ARS) activity indicates heavy metal pollution. However, the enzyme's substrate concentration can affect the toxicity evaluation of heavy metals using enzyme activity. Enzyme kinetic parameters directly reflect the potency of heavy metals, and the magnitude of these parameters does not change with the substrate concentration of soil enzyme. In this work, seventeen soils were exposed to Sb contamination to investigate the change of kinetic parameters of soil arylsulfatase under Sb stress. Results showed that Sb inhibited soil arylsulfatase activity. The maximum reaction rate (Vmax) of soil arylsulfatase was reduced by 11.58-46.72% in 16 tested soils and unchanged in S15 when exposed to Sb. The Michaelis constant (Km) presented three trends: unchanged, increased by 28.46-41.27%, and decreased by 19.71-29.91% under Sb stress. The catalytic efficiency (Ka as the ratio of Vmax to Km) decreased by 12.56-55.17% in all soils except for S12 and S16. Antimony acted as a non-competitive and linear mixed inhibitor by decreasing ARS activity in S1-S12, S14, and S17-S18 soils, as an uncompetitive inhibitor in S13 and S16 soils and as a competitive inhibitor in S15. The competitive and uncompetitive inhibition constants (Kic and Kiu) were 0.058-0.142 mM and 0.075-0.503 mM. The ecological dose values of Sb to catalytic efficiency (Ka) of ARS (ED10-Ka) ranged from 50 to 1315 mg kg-1. Soil pH and total phosphorus (TP) contents were the dominant factors responsible for Sb toxicity on Ka by affecting the interaction of inhibitor (Sb) with enzyme-substrate (ES) complex. The findings of this study advance the current knowledge on Sb toxicity to soil enzymes and have significant implications for the risk assessment of Sb in soils.
Collapse
Affiliation(s)
- Xing Ma
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Haixia Tian
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Yunchao Dai
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Yizhe Yang
- Cultivated Land Quality and Agricultural Environment Protection Workstation of Shaanxi Province, Xi'an, 710000, Shaanxi, China
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Wenxiang He
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
12
|
Li S, Fan W, Xu G, Cao Y, Zhao X, Hao S, Deng B, Ren S, Hu S. Bio-organic fertilizers improve Dendrocalamus farinosus growth by remolding the soil microbiome and metabolome. Front Microbiol 2023; 14:1117355. [PMID: 36876063 PMCID: PMC9975161 DOI: 10.3389/fmicb.2023.1117355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/24/2023] [Indexed: 02/17/2023] Open
Abstract
Organic and microbial fertilizers have potential advantages over inorganic fertilizers in improving soil fertility and crop yield without harmful side-effects. However, the effects of these bio-organic fertilizers on the soil microbiome and metabolome remain largely unknown, especially in the context of bamboo cultivation. In this study, we cultivated Dendrocalamus farinosus (D. farinosus) plants under five different fertilization conditions: organic fertilizer (OF), Bacillus amyloliquefaciens bio-fertilizer (Ba), Bacillus mucilaginosus Krassilnikov bio-fertilizer (BmK), organic fertilizer plus Bacillus amyloliquefaciens bio-fertilizer (OFBa), and organic fertilizer plus Bacillus mucilaginosus Krassilnikov bio-fertilizer (OFBmK). We conducted 16S rRNA sequencing and liquid chromatography/mass spectrometry (LC-MS) to evaluate the soil bacterial composition and soil metabolic activity in the different treatment groups. The results demonstrate that all the fertilization conditions altered the soil bacterial community composition. Moreover, the combination of organic and microbial fertilizers (i.e., in the OFBa and OFBmK groups) significantly affected the relative abundance of soil bacterial species; the largest number of dominant microbial communities were found in the OFBa group, which were strongly correlated with each other. Additionally, non-targeted metabolomics revealed that the levels of soil lipids and lipid-like molecules, and organic acids and their derivatives, were greatly altered under all treatment conditions. The levels of galactitol, guanine, and deoxycytidine were also markedly decreased in the OFBa and OFBmK groups. Moreover, we constructed a regulatory network to delineated the relationships between bamboo phenotype, soil enzymatic activity, soil differential metabolites, and dominant microbial. The network revealed that bio-organic fertilizers promoted bamboo growth by modifying the soil microbiome and metabolome. Accordingly, we concluded that the use of organic fertilizers, microbial fertilizers, or their combination regulated bacterial composition and soil metabolic processes. These findings provide new insights into how D. farinosus-bacterial interactions are affected by different fertilization regiments, which are directly applicable to the agricultural cultivation of bamboo.
Collapse
Affiliation(s)
- Shangmeng Li
- Lab of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang, China.,Engineering Research Center for Biomass Resource Utilizaiton and Modification of Sichuan Province, Mianyang, China
| | - Wei Fan
- Lab of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang, China.,Engineering Research Center for Biomass Resource Utilizaiton and Modification of Sichuan Province, Mianyang, China
| | - Gang Xu
- Lab of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang, China.,Engineering Research Center for Biomass Resource Utilizaiton and Modification of Sichuan Province, Mianyang, China
| | - Ying Cao
- Lab of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang, China.,Engineering Research Center for Biomass Resource Utilizaiton and Modification of Sichuan Province, Mianyang, China
| | - Xin Zhao
- Lab of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang, China.,Engineering Research Center for Biomass Resource Utilizaiton and Modification of Sichuan Province, Mianyang, China
| | - Suwei Hao
- Lab of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang, China.,Engineering Research Center for Biomass Resource Utilizaiton and Modification of Sichuan Province, Mianyang, China
| | - Bin Deng
- Lab of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang, China.,Engineering Research Center for Biomass Resource Utilizaiton and Modification of Sichuan Province, Mianyang, China
| | - Siyuan Ren
- Lab of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang, China.,Engineering Research Center for Biomass Resource Utilizaiton and Modification of Sichuan Province, Mianyang, China
| | - Shanglian Hu
- Lab of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang, China.,Engineering Research Center for Biomass Resource Utilizaiton and Modification of Sichuan Province, Mianyang, China
| |
Collapse
|
13
|
Awuah KF, Jegede O, Cousins M, Renaud M, Hale B, Siciliano SD. Response addition is more protective of biogeochemical cycles of carbon and phosphorus compared to concentration addition. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119935. [PMID: 35977633 DOI: 10.1016/j.envpol.2022.119935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
In soils, enzymes are crucial to catalyzing reactions and cycling elements such as carbon (C), nitrogen (N), and phosphorus (P). Although these soil enzymes are sensitive to metals, they are often disregarded in risk assessments, and regulatory laws governing their existence are unclear. Nevertheless, there is a need to develop regulatory standards for metal mixtures that protect biogeochemical cycles because soil serve as a sink for metals and exposures occur as mixtures. Using a fixed ratio ray design, we investigated the effects of 5 single metals and 10 quinary mixtures of Zn, Cu, Ni, Pb, and Co metal oxides on two soil enzymes (i.e., acid phosphatases [ACP] and beta glucosidases [BGD]) in two acidic Canadian soils (S1: acid sandy forest soil, and S2: acid sandy arable soil), closely matched to EU REACH standard soils. Compared to BGD, ACP was generally the more sensitive enzyme to both the single metals and the metal mixtures. The effective concentration inhibiting 50% enzyme activity (EC50) estimates for single Cu (2.1-160.7 mmol kg-1) and Ni (12-272 mmol kg-1) showed that those were the most toxic to both enzymes in both soils. For metal mixtures, response addition (RA) was more conservative in predicting metal effects compared to concentration addition (CA). For both additivity models, antagonism was observed except at lower concentrations (≤10,000 mg/kg) where synergism was observed. At higher concentrations (>10,000 mg/kg), free and CaCl2 extractable Cu protected both enzymes against the toxicity of other metals in the mixture. The results suggest that assuming CA at concentrations less than EC50 does not protect biogeochemical cycling of C and P. And Cu in soil may protect soil enzymes from other toxic metals and thus may have an overall positive role.
Collapse
Affiliation(s)
- Kobby Fred Awuah
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada.
| | - Olukayode Jegede
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Mark Cousins
- Department of Soil Science, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Mathieu Renaud
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Beverley Hale
- School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | |
Collapse
|
14
|
Li J, Wu B, Luo Z, Lei N, Kuang H, Li Z. Immobilization of cadmium by mercapto-functionalized palygorskite under stimulated acid rain: Stability performance and micro-ecological response. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119400. [PMID: 35525516 DOI: 10.1016/j.envpol.2022.119400] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/06/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
The interaction of cadmium (Cd) pollution and acid rain stress has seriously threatened soil ecosystem and human health. However, there are still few effective amendments for the in-situ remediation in the Cd-contaminated acidified soil. In this study, the performance and mechanisms of palygorskite (PAL) and mercapto-functionalized PAL (MPAL) on Cd immobilization were investigated, and the stability as well as effects on soil micro-ecology under stimulated acid rain were also explored. Results showed that MPAL could react with Cd to form stable Cd-sulfhydryl and Cd-O complexes. The reduction of bioavailable Cd by MPAL was 121.19-164.86% higher than that by PAL. Notably, the Cd immobilization by MPAL remained stable within 90 days in which the concentrations of HOAc-extractable Cd were reduced by 18.28-25.12%, while the reducible and residual fractions were increased by 9.26-18.53% and 54.16%-479.01%, respectively. The sequential acid rain leaching demonstrated that soil after MPAL treatments had a strong H+ resistance, and the immobilized Cd showed prominent stability. In addition, activities of acid phosphatase, catalase and invertase in MPAL treated soil were significantly enhanced by 34.60%, 22.09% and 48.87%, respectively. After MPAL application, bacterial diversity was further improved with diversified sulfur metabolism biomarkers. The decreased abundance of Cd resistance genes including cadA, cadC, czcA, czcB, czcR and zipA also indicated that soil micro-ecology was improved by MPAL. These results showed that MPAL was an effective and eco-friendly amendment for the immobilization of Cd in contaminated soil.
Collapse
Affiliation(s)
- Jia Li
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Bin Wu
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China.
| | - Zhi Luo
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Ningfei Lei
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Hongjie Kuang
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Ziqing Li
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| |
Collapse
|
15
|
Saha I, Hasanuzzaman M, Adak MK. Abscisic acid priming regulates arsenite toxicity in two contrasting rice (Oryza sativa L.) genotypes through differential functioning of sub1A quantitative trait loci. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117586. [PMID: 34426386 DOI: 10.1016/j.envpol.2021.117586] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/24/2021] [Accepted: 06/10/2021] [Indexed: 05/07/2023]
Abstract
Arsenite [As(III)] toxicity causes impeded growth, inadequate productivity of plants and toxicity through the food chain. Using various chemical residues for priming is one of the approaches in conferring arsenic tolerance in crops. We investigated the mechanism of abscisic acid (ABA)-induced As(III) tolerance in rice genotypes (cv. Swarna and Swarna Sub1) pretreated with 10 μM of ABA for 24 h and transferred into 0, 25 and 50 μM arsenic for 10 days. Plants showed a dose-dependent bioaccumulation of As(III), oxidative stress indicators like superoxide, hydrogen peroxide, thiobarbituric acid reactive substances and the activity of lipoxygenase. As(III) had disrupted cellular redox that reflecting growth indices like net assimilation rate, relative growth rate, specific leaf weight, leaf mass ratio, relative water content, proline, delta-1-pyrroline-5-carboxylate synthetase and electrolyte leakage. ABA priming was more protective in cv. Swarna Sub1 than Swarna for retrieval of total glutathione pool, non-protein thiols, cysteine, phytochelatin and glutathione reductase. Phosphate metabolisms were significantly curtailed irrespective of genotypes where ABA had moderated phosphate uptake and its metabolizing enzymes like acid phosphatase, alkaline phosphatase and H+/ATPase. Rice seedlings had regulated antioxidative potential with the varied polymorphic expression of those enzymes markedly with antioxidative enzymes. The results have given the possible cellular and physiological traits those may interact with ABA priming in the establishment of plant tolerance with As(III) over accumulation and, thereby, its amelioration for oxidative damages. Finally, cv. Swarna Sub1 was identified as a rice genotype as a candidate for breeding program for sustainability against As(III) stress with cellular and physiological traits serving better for selection pressure.
Collapse
Affiliation(s)
- Indraneel Saha
- Plant Physiology and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani, 74 1235, Nadia, W.B., India
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207, Bangladesh.
| | - Malay Kumar Adak
- Plant Physiology and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani, 74 1235, Nadia, W.B., India
| |
Collapse
|
16
|
Zeng W, Ren X, Shen L, Hu X, Hu Y, Luo W, Wang B. Effects of consecutive culture of Penaeus vannamei on phosphorus transformation and microbial community in sediment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55716-55724. [PMID: 34138425 DOI: 10.1007/s11356-021-14894-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 06/10/2021] [Indexed: 06/12/2023]
Abstract
Phosphorus (P) is highly related to water quality during shrimp culture. Recognizing P transformation in pond-based cultures is crucial for sustainable and healthy aquaculture. However, P transformation remains unclear in the sediment of Penaeus vannamei cultures, although commercial species have been pervasive worldwide. To determine P transformation, samples with different culture years were collected from Zhejiang province, China. Sequential chemical extraction was applied to reveal the composition of inorganic P, while phosphatase activity was used to evaluate the biomineralization of organic P. The results indicated that the consecutive culture of Penaeus vannamei promoted the dissolution potential of sedimentary P. This was attributed to anoxic iron reduction that increased the formation of loosely bound P and Fe (II)-P. However, this phenomenon was dominated by biomineralization, which transformed the organic P to inorganic P. The results suggested that consecutive culture changed the microbial community structure in the sediment as well as the gene functions. The Shannon Wiener index showed that increasing the culture duration significantly decreased the stability of the microbial community. Overall, this study suggests that long-term consecutive culture of Penaeus vannamei may increase the P release potential of the sediment, which increases the risk of pond eutrophication.
Collapse
Affiliation(s)
- Wentao Zeng
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang, 312000, China
| | - Xuanqi Ren
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang, 312000, China
| | - Liang Shen
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang, 312000, China
| | - Xudong Hu
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang, 312000, China
| | - Yiwei Hu
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang, 312000, China
| | - Wen Luo
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang, 312000, China
| | - Binliang Wang
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang, 312000, China.
| |
Collapse
|
17
|
Aponte H, Mondaca P, Santander C, Meier S, Paolini J, Butler B, Rojas C, Diez MC, Cornejo P. Enzyme activities and microbial functional diversity in metal(loid) contaminated soils near to a copper smelter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146423. [PMID: 33752014 DOI: 10.1016/j.scitotenv.2021.146423] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
The monitoring of soil metal(loid) contamination is of global significance due to deleterious effects that metal(loid)s have on living organisms. Soil biological properties such as enzyme activities (EAs) are good indicators of metal(loid) contamination due to their high sensitivity, fast response, and low-cost. Here, the effect of metal(loid) contamination on physicochemical properties and microbial functionality in soils sampled from within 10 km of a Cu smelter is investigated. Soil composite samples were randomly taken within 2, 4, 6, 8 and10 km zones from a mining industry Cu smelter. The EAs of dehydrogenase (DHA), arylsulfatase (ARY), β-glucosidase, urease, and arginine ammonification (AA) were studied as indicators of metal(loid) contamination, which included the ecological dose (ED50) with respect to Cu and As contents. The community level physiological profile (CLPP), functional diversity, and catabolic evenness were evaluated based on the C-substrate utilisation. All EAs decreased in zones with high degrees of metal(loid) contamination, which also had low TOC and clay contents, reflecting long term processes of soil degradation. Positive and strong relationships between EAs and TOC were found. DHA and ARY activities decreased by approximately 85-90% in highly metal(loid) contaminated soils. DHA and AA showed significant ED50 values associated with available Cu (112.8 and 121.6 mg CuDTPA kg-1, respectively) and total As contents (30.8 and 31.8 mg As kg-1, respectively). The CLPP showed different metabolic profiles along the metal(loid) contamination gradients. Long-term stress conditions in soils close to industrial areas resulted in the decreasing of general biological activity, catabolic capacity, and functional diversity.
Collapse
Affiliation(s)
- Humberto Aponte
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, Temuco, Chile; Doctoral Program in Sciences of Natural Resources, Universidad de La Frontera, Temuco, Chile; Universidad de O'Higgins, Institute of Agri-Food, Animal and Environmental Sciences (ICA3), Laboratory of Soil Microbial Ecology and Biogeochemistry, San Fernando, Chile
| | - Pedro Mondaca
- Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340025, Chile
| | - Christian Santander
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, Temuco, Chile
| | - Sebastián Meier
- Instituto de Investigaciones Agropecuarias (INIA), Centro de Investigación Regional de Investigación Carillanca, P.O. Box 58-D, Temuco, Chile
| | - Jorge Paolini
- Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Ecología, Altos de Pipe, Apdo. 21827, Caracas 1020-A, Venezuela
| | - Benjamin Butler
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | - Claudia Rojas
- Universidad de O'Higgins, Institute of Agri-Food, Animal and Environmental Sciences (ICA3), Laboratory of Soil Microbial Ecology and Biogeochemistry, San Fernando, Chile
| | - María Cristina Diez
- Centre of Environmental Biotechnology, BIOREN, Universidad de La Frontera, Temuco, Chile
| | - Pablo Cornejo
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
18
|
Tao K, Tian H, Fan J, Li D, Liu C, Megharaj M, Li H, Hu M, Jia H, He W. Kinetics and catalytic efficiency of soil fluorescein diacetate hydrolase under the pesticide parathion stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144835. [PMID: 33548707 DOI: 10.1016/j.scitotenv.2020.144835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Fluorescein diacetate hydrolase (FDA-H) is an accurate biochemical method measuring the total microbial activity in soil, which indicates soil quality under ambient environmental changes such as pesticide parathion (PTH). However, the influence of PTH on the kinetics of FDA-H is still unknown. In this study, fifteen farmland soils were exposed to acute PTH pollution to investigate how the kinetic characteristics of FDA-H change with PTH concentration. Results showed that PTH strongly inhibited the FDA-H activities. The values of maximum reaction velocity (Vmax) ranged from 0.29 to 2.18 × 10-2 mM g-1 soil h-1 and declined by 42.30%-71.01% under PTH stress. The Michaelis constant (Km) values ranged between 2.90 and 14.17 × 10-2 mM and exhibited three forms including unchanged, increased (38.16-242.65%) and decreased (13.41-39.23%) when exposed to PTH. Based on the changes in two kinetic parameters, the inhibition of PTH on FDA-H was classified as three types, i.e., noncompetitive, linear mixed and uncompetitive inhibition. The competitive inhibition constant (Kic) and noncompetitive constant (Kiu) ranged from 0.064 to 0.447 mM and 0.209 to 0.723 mM, respectively, which were larger than the Km in values. The catalytic efficiency (Vmax/Km) of FDA-H is a sensitive integrated parameter to evaluate the PTH toxicity due to the higher inhibition ratio than the Vmax. The PTH toxicity to FDA-H decreased with increase of soil organic matter and total nitrogen contents. This implied that the PTH toxicity could be alleviated by an increasing content of soil organic matter due to its buffering capacity to PTH. Besides, soils with a higher content of total nitrogen could provide stable environment for FDA-H to maintain its functionality under PTH pollution. Thus, the results of this study have great implications to the risk assessment of parathion in soils.
Collapse
Affiliation(s)
- Kelin Tao
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Haixia Tian
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Jing Fan
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Dongxiao Li
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Chaoyang Liu
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation, Faculty of Science, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Huayong Li
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Min Hu
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| | - Wenxiang He
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| |
Collapse
|
19
|
Yue Z, Zhang J, Zhou Z, Ding C, Wan L, Liu J, Chen L, Wang X. Pollution characteristics of livestock faeces and the key driver of the spread of antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124957. [PMID: 33418295 DOI: 10.1016/j.jhazmat.2020.124957] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
The increasing prevalence of antibiotic resistance genes (ARGs) in livestock and poultry faeces has attracted considerable amounts of attention. However, in the actual breeding environment, the key driver of the spread of ARGs and which bacteria are involved remain unclear. This study investigated 19 antibiotics and 4 heavy metals in 147 animal faeces. The results showed that piglet faeces exhibited the highest levels of antibiotics and heavy metals. Twelve ARGs, 4 mobile genetic elements (MGEs) and bacterial communities of piglet faeces from 6 pig farms were further assessed to determine the key driver and relevant mechanism of the spread of ARGs. Sulphonamides (SAs) explained 36.5% of the variance (P < 0.05) of the bacterial community and were significantly related to 8 genes (P < 0.01), indicating that SAs dominated the spread of ARGs and should be tightly supervised. Structural equation modelling (SEM) indicated that SAs increased the abundance of ARGs via two pathways: horizontal transfer of ARGs (involving 10 genera) and vertical transfer of ARGs (involving 26 genera). These results improve our understanding of the potential hosts involved in the spread of ARGs, suggesting that monitoring of the above potential hosts is also important in animal feeding practice.
Collapse
Affiliation(s)
- Zhengfu Yue
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhigao Zhou
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Changfeng Ding
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Ecological Experimental Station of Red Soil, Chinese Academy of Sciences, Yingtan 335211, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liping Wan
- Jiangxi Zhenghe Ecological Agriculture Company Limited, Xinyu 338008, China
| | - Jia Liu
- Institute of Soil and Fertilizer & Resources and Environment, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Liumeng Chen
- Institute of Applied Agricultural Microorganism, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Xingxiang Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Ecological Experimental Station of Red Soil, Chinese Academy of Sciences, Yingtan 335211, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
20
|
Raiesi F, Dayani L. Compost application increases the ecological dose values in a non-calcareous agricultural soil contaminated with cadmium. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:17-30. [PMID: 33070239 DOI: 10.1007/s10646-020-02286-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Soil cadmium (Cd) pollution resulting from anthropogenic activities has become a major concern for microbial and biochemical functions that are critical for soil quality and ecosystem sustainability. Organic amendments can reduce Cd toxicity to the microbial community and enzymatic activity in Cd-polluted soils and thus would increase the ecological dose (ED) values. However, there has been less focus on the effect of organic amendments on microbial and biochemical responses to Cd toxicity in non-calcareous soils using the concept ED. The aim of this study was to assess the impact of compost application on microbial activity, microbial biomass, turnover rates of carbon and nitrogen, and enzymatic activities as the key ecological functions in a non-calcareous soil spiked with different Cd concentrations (0-200 mg kg-1). Results showed that soil amendment with compost decreased Cd availability by 48-76%, depending on the total soil Cd content. The application of compost reduced the negative influence of Cd eco-toxicity on most soil microbial and biochemical functions by 20-122%, depending on the Cd level and the assay itself. The ED values, derived from the sigmoidal dose-response and kinetic models, were 1.10- to 2.24-fold higher in the compost-amended soils than the unamended control soils at all Cd levels. In conclusion, the potential risks associated with high levels of Cd pollution can be alleviated for microbial and biochemical indicators of soil quality/health with application of 2500 kg ha-1 compost as a cost-effective source of organic matter to non-calcareous soils. The findings would have some useful implications for organic matter-limited non-calcareous soils polluted with Cd.
Collapse
Affiliation(s)
- Fayez Raiesi
- Department of Soil Science and Engineering, Faculty of Agriculture, Shahrekord University, P.O. Box 115, Shahrekord, Iran.
| | - Leila Dayani
- Department of Soil Science and Engineering, Faculty of Agriculture, Shahrekord University, P.O. Box 115, Shahrekord, Iran
| |
Collapse
|
21
|
Li H, Tian H, Liu C, Lu G, Wang Z, Tan X, Jia H, Megharaj M, He W. The effect of arsenic on soil intracellular and potential extracellular β-glucosidase differentiated by chloroform fumigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138659. [PMID: 32325318 DOI: 10.1016/j.scitotenv.2020.138659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
Arsenic (As) contamination of soil is a global issue of serious ecological and human health concern. For better use of soil enzymes as biological indicators of As pollution, the response of soil β-glucosidase in different pools of soil (total, intracellular and potential extracellular) to As(V) stress was investigated. Chloroform fumigation method was employed to distinguish the intracellular and potential extracellular β-glucosidase in three soils. The intracellular and potential extracellular β-glucosidase accounted about 79% and 21% of the total β-glucosidase activity in the tested soils. Moreover, it was found that the response of these three enzyme pools to As(V) pollution was different. Under the stress of 400 mg kg-1 As(V), the β-glucosidase activities decreased by 69%, 79%, and 28% for the total, intracellular and potential extracellular pools, respectively. The calculated median ecological dose (ED50) showed the highest value for potential extracellular β-glucosidase (19.55-27.63 mg kg-1 for total, 18.49-27.42 mg kg-1 for intracellular, and 32.27-52.69 mg kg-1 for potential extracellular β-glucosidase). As(V) exhibited an uncompetitive inhibition for total and intracellular β-glucosidase and non-competitive inhibition for potential extracellular enzyme. The inhibition constant (Kiu) is biggest for potential extracellular β-glucosidase among the three enzyme pools (0.61-0.79 mmol L-1 for total, 0.34-0.36 mmol L-1 for intracellular, and 4.01-23.90 mmol L-1 for potential extracellular β-glucosidase). Thus, compared to potential extracellular β-glucosidase, the total and intracellular β-glucosidases are more suitable for their use as sensitive indicators of As(V) pollution.
Collapse
Affiliation(s)
- Huayong Li
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Haixia Tian
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Chaoyang Liu
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Guannan Lu
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Ziquan Wang
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Xiangping Tan
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation, Faculty of Science, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Wenxiang He
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
22
|
Udaondo Z, Duque E, Daddaoua A, Caselles C, Roca A, Pizarro-Tobias P, Ramos JL. Developing robust protein analysis profiles to identify bacterial acid phosphatases in genomes and metagenomic libraries. Environ Microbiol 2020; 22:3561-3571. [PMID: 32564477 DOI: 10.1111/1462-2920.15138] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 12/16/2022]
Abstract
Phylogenetic analysis of more than 4000 annotated bacterial acid phosphatases was carried out. Our analysis enabled us to sort these enzymes into the following three types: (1) class B acid phosphatases, which were distantly related to the other types, (2) class C acid phosphatases and (3) generic acid phosphatases (GAP). Although class B phosphatases are found in a limited number of bacterial families, which include known pathogens, class C acid phosphatases and GAP proteins are found in a variety of microbes that inhabit soil, fresh water and marine environments. As part of our analysis, we developed three profiles, named Pfr-B-Phos, Pfr-C-Phos and Pfr-GAP, to describe the three groups of acid phosphatases. These sequence-based profiles were then used to scan genomes and metagenomes to identify a large number of formerly unknown acid phosphatases. A number of proteins in databases annotated as hypothetical proteins were also identified by these profiles as putative acid phosphatases. To validate these in silico results, we cloned genes encoding candidate acid phosphatases from genomic DNA or recovered from metagenomic libraries or genes synthesized in vitro based on protein sequences recovered from metagenomic data. Expression of a number of these genes, followed by enzymatic analysis of the proteins, further confirmed that sequence similarity searches using our profiles could successfully identify previously unknown acid phosphatases.
Collapse
Affiliation(s)
- Zulema Udaondo
- Estación Experimental del Zaidín, CSIC, Granada, E-18008, Spain.,Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
| | - Estrella Duque
- Estación Experimental del Zaidín, CSIC, Granada, E-18008, Spain
| | - Abdelali Daddaoua
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Carlos Caselles
- Estación Experimental del Zaidín, CSIC, Granada, E-18008, Spain
| | | | | | - Juan L Ramos
- Estación Experimental del Zaidín, CSIC, Granada, E-18008, Spain
| |
Collapse
|
23
|
Awuah KF, Jegede O, Hale B, Siciliano SD. Introducing the Adverse Ecosystem Service Pathway as a Tool in Ecological Risk Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8144-8157. [PMID: 32484337 DOI: 10.1021/acs.est.9b06851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Soils provide numerous ecosystem services (ESs) such as food production and water purification. These ESs result from soil organism interactions and activities, which are supported by the soil physicochemical properties. Risk assessment for this complex system requires understanding the relationships among its components, both in the presence and absence of stressors. To better understand the soil ecosystem and how exposure to potentially toxic elements impact ESs, we developed a quantitative technique, the adverse ecosystem service pathway (AESP) model. We sampled 47 soils across Canada and analyzed them for properties that included pH and cation exchange capacity. We spiked the soils with a metal mixture and measured 15 soil processes representing five ESs. Using a Pearson correlation, we confirmed that proxies of ESs are linked to soil properties. t test results showed that, apart from soil enzyme activities (p > 0.05), the processes underlying ES proxies are significantly reduced in metal-impacted soils. Using soil properties as predictors of ES proxies, we developed AESP models: one for spiked and another for control soils. These models showed adverse effects on ESs in spiked soils, depicted as changes in partial correlation coefficients. The AESP model, therefore, can be an important tool to understand complex ecosystems and improve risk assessment.
Collapse
Affiliation(s)
- Kobby Fred Awuah
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK Canada, S7N 5A8
| | - Olukayode Jegede
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK Canada, S7N 5A8
| | - Beverley Hale
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | |
Collapse
|
24
|
Wang Z, Tian H, Lei M, Megharaj M, Tan X, Wang F, Jia H, He W. Soil enzyme kinetics indicate ecotoxicity of long-term arsenic pollution in the soil at field scale. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 191:110215. [PMID: 31978765 DOI: 10.1016/j.ecoenv.2020.110215] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/11/2019] [Accepted: 01/13/2020] [Indexed: 05/27/2023]
Abstract
Information on the kinetic characteristics of soil enzymes under long-term arsenic (As) pollution in field soils is scarce. We investigated Michaelis-Menten kinetic properties of four soil enzymes including β-glucosidase (BG), acid phosphatase (ACP), alkaline phosphatase (ALP), and dehydrogenase (DHA) in field soils contaminated by As resulting from long-term realgar mining activity. The kinetic parameters, namely the maximum reaction velocity (Vmax), enzyme-substrate affinity (Km) and catalytic efficiency (Vmax/Km) were calculated. Results revealed that the enzyme kinetic characteristics varied in soils and were significantly influenced by total nitrogen (N) and total As, which explained 31.8% and 30.7% of the variance in enzyme kinetics respectively. Enzyme pools (Vmax) and catalytic efficiency (Vmax/Km) of BG, ACP and DHA decreased with elevated As pollution, while the enzyme affinity for substrate (Km) was less affected. Redundancy analysis and stepwise regression suggested that the adverse influence of As on enzyme kinetics may offset or weakened by soil total N and soil organic matter (SOM). Concentration-response fitting revealed that the specific kinetic parameters expressed as the absolute enzyme kinetic parameters multiplied by normalized soil total N and SOM were more relevant than the absolute ones to soil total As. The arsenic ecological dose values that cause 10% decrease (ED10) in the specific enzyme kinetics were 20-49 mg kg-1, with a mean value of 35 mg kg-1, indicating a practical range of threshold for As contamination at field level. This study concluded that soil enzymes exhibited functional adaptation to long-term As stress mainly through the reduction of enzyme pools (Vmax) or maintenance of enzyme-substrate affinity (Km). Further, this study demonstrates that the specific enzyme kinetics are the better indicators of As ecotoxicity at field-scale compared with the absolute enzyme parameters.
Collapse
Affiliation(s)
- Ziquan Wang
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Haixia Tian
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Mei Lei
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation, Faculty of Science, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Xiangping Tan
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China; Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Rd., Tianhe District, Guangzhou, 510650, China
| | - Fang Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China.
| | - Wenxiang He
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
25
|
Shah AA, Ahmed S, Yasin NA. 2-Hydroxymelatonin induced nutritional orchestration in Cucumis sativus under cadmium toxicity: modulation of non-enzymatic antioxidants and gene expression. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 22:497-507. [PMID: 31703532 DOI: 10.1080/15226514.2019.1683715] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
2-Hydroxymelatonin (2-OHMT) is an important metabolite produced through melatonin interaction with oxygenated compounds. 2-OHMT pretreated seeds (50 µM, 100 µM, and 150 µM) were grown in soil contaminated with 50 mg kg-1 cadmium. Cadmium imposed stress reduced seed germination, growth, biomass production, and chlorophyll (Chl) content in Cucumis sativus seedlings. 2-OHMT application emphatically revamped germination, shoot length, root length, and plant biomass production. The 2-OHMT pretreatment modulated expression levels of plasma membrane H+-ATPase genes of C. sativus including CsHA2, CsHA3, CsHA4, CsHA8, and CsHA9. This biomolecule amplified the accumulation of antioxidants such as glutathione, proline, phenolics, and flavonoids. The reduced Cd-uptake in 2-OHMT treated C. sativus seedlings encouraged uptake of essential plant nutrients. Furthermore, conjugated increase of indole acetic acid contents and ethylene production rate were observed in 2-OHMT treated seedlings in a dose-dependent manner. The improved nutritional content in 2-OHMT applied seedlings was ascribed to enhanced expression of H+-ATPase regulating genes besides increased amount of non-enzymatic antioxidants in Cd-stressed plants. The present novel study elucidates the potential of 2-OHMT in improving nutritional content in cucumber plants by modulation of non-enzymatic antioxidants and gene expression.
Collapse
Affiliation(s)
- Anis Ali Shah
- Department of Botany, University of the Punjab, Lahore, Pakistan
| | - Shakil Ahmed
- Department of Botany, University of the Punjab, Lahore, Pakistan
| | | |
Collapse
|
26
|
Xu M, Ma R, Huang C, Shi G, Zhou T, Deng J. Competitive redox reaction of Au-NCs/MnO 2 nanocomposite: Toward colorimetric and fluorometric detection of acid phosphatase as an indicator of soil cadmium contamination. Anal Chim Acta 2019; 1096:174-183. [PMID: 31883584 DOI: 10.1016/j.aca.2019.10.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/19/2019] [Accepted: 10/25/2019] [Indexed: 01/17/2023]
Abstract
In this study, by rational regulating the competitive redox reaction of Au-NCs/MnO2 nanocomposite between the dye indigo carmine (IC) and the enzymatic product L-ascorbic acid (AA), we have established a colorimetric and fluorometric double-channel responsive assay for acid phosphatase (ACP), which could serve as an indicator of soil cadmium (Cd) contamination. Initially, the gold nanoclusters (Au-NCs) were added to the suspension of MnO2 nanosheets to form Au-NCs/MnO2 nanocomposite with enhanced oxidative degradation ability. When IC was subsequently added, the blue color of IC faded due to oxidative degradation, and the mixture showed the yellow color of Au-NCs/MnO2 nanocomposite. Meanwhile, based on the inner filter effect (IFE), the fluorescence of Au-NCs was suppressed by MnO2 nanosheets during this process. However, with the presence of AA, hydrolyzed from L-ascorbic-2-phosphate (AAP) by ACP, the MnO2 nanosheets in Au-NCs/MnO2 nanocomposite were reduced to Mn2+ immediately. As a consequence, IC remained its blue color, in the meantime, the fluorescence of Au-NCs recovered, which essentially constituted a new mechanism for ACP detection with colorimetric and fluorometric double-channel response. With the method we developed, soil ACP activity can either be directly visualized by bare eyes or detected reliably through double channels. Furthermore, the dynamic changes of ACP activity during soil Cd contamination could also be monitored; the sharp increase of ACP activity at an appropriate time point could serve as a unique alarm for cadmium (Cd) contamination in soil, which is of great importance for soil quality evaluation and ecological risk assessment.
Collapse
Affiliation(s)
- Miao Xu
- School of Ecological and Environmental Sciences, Shanghai Key Lab for Urban Ecological Process and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai, 200062, China
| | - Ruixue Ma
- School of Ecological and Environmental Sciences, Shanghai Key Lab for Urban Ecological Process and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai, 200062, China
| | - Chunyu Huang
- School of Ecological and Environmental Sciences, Shanghai Key Lab for Urban Ecological Process and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai, 200062, China
| | - Guoyue Shi
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Tianshu Zhou
- School of Ecological and Environmental Sciences, Shanghai Key Lab for Urban Ecological Process and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai, 200062, China
| | - Jingjing Deng
- School of Ecological and Environmental Sciences, Shanghai Key Lab for Urban Ecological Process and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai, 200062, China.
| |
Collapse
|
27
|
Wang Z, Tian H, Tan X, Wang F, Jia H, Megharaj M, He W. Long-term As contamination alters soil enzyme functional stability in response to additional heat disturbance. CHEMOSPHERE 2019; 229:471-480. [PMID: 31091488 DOI: 10.1016/j.chemosphere.2019.05.055] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/01/2019] [Accepted: 05/07/2019] [Indexed: 06/09/2023]
Abstract
The functional stability of soil enzymes is fundamental to the sustainability of soil biochemical processes and is affected by many environmental stressors. This study focused on the influences of long-term arsenic (As) contamination on soil enzyme functional stability: the resistance (ratio of the disturbed to control) and resilience (integrated recovery rate) of soil enzyme activities (β-glucosidase, urease, acid phosphatase, fluorescein diacetate (FDA) hydrolase) over 30 days incubation after an experimental heat disturbance (50 oC for 18 h). Results showed that the resistance of soil enzymes to heat disturbance differed among the enzyme types and followed the order: urease > β-glucosidase > acid phosphatase > FDA hydrolase. Urease activity was generally not affected and showed high stability against heat disturbance. The β-glucosidase activity recovered to the control level by 30 days, while 80% and 90% recovery on average occurred for acid phosphatase and FDA hydrolase, respectively. Long-term As contamination altered soil enzyme functional resistance and resilience to heat disturbance and resulted in three kinds of responses: (i) no apparent alteration (urease); (ii) moderate As contamination increased enzyme heat resistance (β-glucosidase); (iii) the resistance and resilience decreased with increasing As concentration (acid phosphatase and FDA hydrolase). The results demonstrated that different enzyme-catalytic biochemical processes have different functional stabilities under combined As and heat disturbance, and the negative changes in the soil enzyme activity led to losses in soil functions. Our study provides further evidence on the impacts of heavy metal/metalloid on soil enzyme functional stability in response to additional disturbance.
Collapse
Affiliation(s)
- Ziquan Wang
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Haixia Tian
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Xiangping Tan
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China; Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Rd., Tianhe District, Guangzhou, 510650, China
| | - Fang Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation, Faculty of Science, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Wenxiang He
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
28
|
Yao L, Huang L, Bai C, Zhou C, He Z. Effect of roxarsone metabolites in chicken manure on soil biological property. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:493-501. [PMID: 30639956 DOI: 10.1016/j.ecoenv.2019.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/02/2019] [Accepted: 01/06/2019] [Indexed: 06/09/2023]
Abstract
Roxarsone (ROX), an organoarsenic feed additive, occurs as itself and its metabolites including As(V), As(III), monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) in animal manure. Animal manure improves soil biological property, whereas As compounds impact microorganisms. The integral influence of animal manure bearing ROX metabolites on soil biological quality is not clear yet. Herein, the effect of four chicken manures excreted by chickens fed with four diets containing 0, 40, 80 and 120 mg ROX kg-1, on soil biological attributes. ROX addition in chicken diets increased total As and ROX metabolites in manures, but decreased manure total N, ammonium and nitrate. The elevated ROX metabolites in manures increased soil total As, As species and total N, and increased first and then decreased soil nitrate and nitrite, but did not affect soil ammonium in manure-applied soils. The promoting role of both soil As(III) and ammonium on soil microbial biomass carbon and nitrogen, respiration and saccharase activity, were exceeded or balanced by the inhibiting effect of soil nitrate. The suppression of soil catalase activity by soil As(V) was surpassed by the enhancement caused by soil nitrate and nitrite. Soil urease, acid phosphatase and polyphenol oxidase activities were not suitable bioindicators in the four manure-amended soils. Soil DMA did not affect soil biological properties, and MMA was not detectable in all manure-amended soils. The above highlights the complexity of joint influence of soil As and N on biological attributes. Totally, when ROX is used at allowable dose in chicken diet, soil biological quality would be suppressed in manure-amended soil.
Collapse
Affiliation(s)
- Lixian Yao
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Lianxi Huang
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Cuihua Bai
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Changmin Zhou
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zhaohuan He
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
29
|
Wang Z, Tian H, Lu G, Zhao Y, Yang R, Megharaj M, He W. Catalytic efficiency is a better predictor of arsenic toxicity to soil alkaline phosphatase. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 148:721-728. [PMID: 29175755 DOI: 10.1016/j.ecoenv.2017.11.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/11/2017] [Accepted: 11/16/2017] [Indexed: 06/07/2023]
Abstract
Arsenic (As) is an inhibitor of phosphatase, however, in the complex soil system, the substrate concentration effect and the mechanism of As inhibition of soil alkaline phosphatase (ALP) and its kinetics has not been adequately studied. In this work, we investigated soil ALP activity in response to As pollution at different substrate concentrations in various types of soils and explored the inhibition mechanism using the enzyme kinetics. The results showed that As inhibition of soil ALP activity was substrate concentration-dependent. Increasing substrate concentration decreased inhibition rate, suggesting reduced toxicity. This dependency was due to the competitive inhibition mechanism of As to soil ALP. The kinetic parameters, maximum reaction velocity (Vmax) and Michaelis constant (Km) in unpolluted soils were 0.012-0.267mMh-1 and 1.34-3.79mM respectively. The competitive inhibition constant (Kic) was 0.17-0.70mM, which was lower than Km, suggesting higher enzyme affinity for As than for substrate. The ecological doses, ED10 and ED50 (concentration of As that results in 10% and 50% inhibition on enzyme parameter) for inhibition of catalytic efficiency (Vmax/Km) were lower than those for inhibition of enzyme activity at different substrate concentrations. This suggests that the integrated kinetic parameter, catalytic efficiency is substrate concentration independent and more sensitive to As than ALP activity. Thus, catalytic efficiency was proposed as a more reliable indicator than ALP activity for risk assessment of As pollution.
Collapse
Affiliation(s)
- Ziquan Wang
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China; Rocky desertification research institute, Southwest Forestry University, Kunming, Yunnan 650224, China
| | - Haixia Tian
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Guannan Lu
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Yiming Zhao
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Rui Yang
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation, Faculty of Science, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Wenxiang He
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|