1
|
Shah K, Ray S, Bose H, Pandey V, Wohlschlegel JA, Mahendra S. Proteomics insights into the fungal-mediated bioremediation of environmental contaminants. Curr Opin Biotechnol 2024; 90:103213. [PMID: 39393120 DOI: 10.1016/j.copbio.2024.103213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/26/2024] [Accepted: 09/15/2024] [Indexed: 10/13/2024]
Abstract
As anthropogenic activities continue to introduce various contaminants into the environment, the need for effective monitoring and bioremediation strategies is critical. Fungi, with their diverse enzymatic arsenal, offer promising solutions for the biotransformation of many pollutants. While conventional research reports on ligninolytic, oxidoreductive, and cytochrome P450 (CYP) enzymes, the vast potential of fungi, with approximately 10 345 protein sequences per species, remains largely untapped. This review describes recent advancements in fungal proteomics instruments as well as software and highlights their detoxification mechanisms and biochemical pathways. Additionally, it highlights lesser-known fungal enzymes with potential applications in environmental biotechnology. By reviewing the benefits and challenges associated with proteomics tools, we hope to summarize and promote the studies of fungi and fungal proteins relevant in the environment.
Collapse
Affiliation(s)
- Kshitija Shah
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, USA
| | - Soham Ray
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, USA
| | - Himadri Bose
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, USA
| | - Vijaya Pandey
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Shaily Mahendra
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Du X, Hong M, Yang Y, Li J, Su Y, Liu N. Removal mechanisms of aqueous Cr(VI) by anaerobic fermentation sludge. ENVIRONMENTAL TECHNOLOGY 2023; 44:3975-3987. [PMID: 35549986 DOI: 10.1080/09593330.2022.2077136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
After fermentation, activated sludge contains many acid-producing bacteria and their metabolites, which have a good reducing effect. Various active groups (e.g., hydroxyl, amino, carboxyl, and phosphate) on microbial cell surfaces can adsorb heavy metals through complexation or chelation, forming heavy metal precipitates and thereby reducing the toxicity of heavy metals. However, the effects and mechanisms of using sludge after anaerobic fermentation to remove Cr(VI) are unclear, such as the dominance of direct versus indirect biological reduction, the contribution of abiotic effects, and the influence of fermentation conditions. This paper compares Cr(VI) removal in fermented and unfermented sludges. After fermentation for 24 h, 99.9% of the Cr(VI) (50 mg/L) in anaerobic sludge was removed within 7 h, which was twice the rate in unfermented activated sludge. A series of comparative experiments demonstrated that Cr(VI) removal primarily occurred through biological effects (about 92%), which included biological reduction and biosorption. 16SrRNA gene sequencing revealed that Cr(VI) transformation primarily occurred through direct biological reduction, with the related genera being Trichococcus, Acetobacter, Aeromonas, and Tolumonas. Fourier-transform infrared (FTIR) spectroscopy results showed that the C = O and C-O functionalities on sludge were likely involved in the Cr(VI) conversion. Majority of the Cr(VI) in the system was reduced to Cr(III) and existed in the suspension, with a small amount deposited on the sludge surface. The X-ray photoelectron spectroscopy (XPS) results indicated that the majority of Cr was present as reduced Cr(III) on the sludge. These results demonstrate that after fermentation in an aqueous environment, activated sludge is an effective medium for the remediation of Cr(VI). These results are useful for designing a green and sustainable bioreduction system for the remediation of Cr(VI)-polluted water.
Collapse
Affiliation(s)
- Xiaoyan Du
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of Environment and Resources, Jilin University, Changchun, People's Republic of China
| | - Mei Hong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of Environment and Resources, Jilin University, Changchun, People's Republic of China
| | - Yadong Yang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of Environment and Resources, Jilin University, Changchun, People's Republic of China
| | - Jing Li
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of Environment and Resources, Jilin University, Changchun, People's Republic of China
| | - Yaoming Su
- South China Institute of Environmental Sciences, MEP, People's Republic of China
| | - Na Liu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of Environment and Resources, Jilin University, Changchun, People's Republic of China
- Institute of Groundwater and Earth Science, Jinan University, Guangzhou City, People's Republic of China
| |
Collapse
|
3
|
Ben Jaballah M, Karrat A, Amine A, Dridi C. Immobilization of diphenylcarbazide on paper-based analytical devices for the pre-concentration and detection of chromium VI in water samples. Talanta 2023; 265:124889. [PMID: 37399649 DOI: 10.1016/j.talanta.2023.124889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023]
Abstract
A novel approach using a smartphone for the detection of Cr (VI) has been developed. In this context, two different platforms were designed for the detection of Cr (VI). The first one was synthesized via a crosslinking reaction of chitosan with 1,5-Diphenylcarbazide (DPC-CS). The obtained material was integrated into a paper to develop a new paper-based analytical device (DPC-CS-PAD). The DPC-CS-PAD exhibited high specificity toward Cr (VI). The second platform (DPC-Nylon PAD) was prepared by covalent immobilization of DPC onto a Nylon paper and then its analytical performances regarding Cr (VI) extraction and detection were evaluated. DPC-CS-PAD presented a linear range of 0.1-5 ppm with detection and quantification limits of about 0.04 and 0.12 ppm, respectively. The DPC-Nylon-PAD exhibited a linear response of 0.1-2.5 ppm with detection and quantification limits of 0.06 and 0.2 ppm, respectively. Furthermore, the developed platforms were effectively applied for testing the effect of the loading solution volume for trace Cr (IV) detection. For the DPC-CS material, a volume of 20 mL allowed the detection of 4 ppb of Cr (VI). In the case of DPC-Nylon-PAD, the loading volume of 1 mL permitted the detection of the critical concentration of Cr (VI) in water.
Collapse
Affiliation(s)
- Menyar Ben Jaballah
- NANOMISENE Laboratory, Centre for Research on Microelectronics and Nanotechnology CRMN of Sousse Technopole, B.P. 334, LR16CRMN01, Sahloul, Sousse, 4054, Tunisia
| | - Abdelhafid Karrat
- Laboratory of Process Engineering and Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, P.A. 146., Mohammedia, Morocco
| | - Aziz Amine
- Laboratory of Process Engineering and Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, P.A. 146., Mohammedia, Morocco.
| | - Chérif Dridi
- NANOMISENE Laboratory, Centre for Research on Microelectronics and Nanotechnology CRMN of Sousse Technopole, B.P. 334, LR16CRMN01, Sahloul, Sousse, 4054, Tunisia.
| |
Collapse
|
4
|
Cai M, Zhou J, Hao T, Du K. Tolerance of phyllospheric Wickerhamomyces anomalus to BDE-3 and heavy metals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:56555-56561. [PMID: 35347617 DOI: 10.1007/s11356-022-19798-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Few research have focused on the potential microorganism and gene resources for plant resistance to polybrominated diphenyl ether (PBDE) and heavy metal (HM) co-contamination. The purpose of this study was to investigate the impact of phyllospheric Wickerhamomyces anomalus bioremediation ability on PBDE and HM co-contamination. The results showed that the toleration capability of W. anomalus to cadmium (Cd2+) was higher than that to chromium (Cr) or 4-bromodiphenyl ether (BDE-3) contamination. The threshold levels of W. anomalus tolerance to BDE-3, Cd2+, and Cr were 30 mg/L, 500 mg/L, 30 mg/L, respectively. The use of the higher concentration of BDE-3 (30 mg/L) as a carbon source may improve tolerance to Cd2+ and Cr (10 mg/L Cd2+ and 10 mg/L Cr). Overexpression of Wapdr15 gene of ABCG subfamily from W. anomalus improved the tolerance to BDE-3 (10 mg/mL) and Cd2+ (0.5 mg/mL) significantly in transgenic tobacco lines. The synergism effect of BDE-3 and Cd2+ stress existed similarly in W. anomalus and transgenic lines. The findings suggest that W. anomalus should be taken into account for providing an efficient method in improving crops' tolerance during PBDE and HM co-contamination in soil.
Collapse
Affiliation(s)
- Man Cai
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
- Key Laboratory of Tree Species Germplasm Resources and Forest Protection of Hebei Province, Hebei Agricultural University, 2596 Lekai South Road, Baoding, 071000, China
| | - Jian Zhou
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Tian Hao
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Kejiu Du
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China.
- Key Laboratory of Tree Species Germplasm Resources and Forest Protection of Hebei Province, Hebei Agricultural University, 2596 Lekai South Road, Baoding, 071000, China.
| |
Collapse
|
5
|
Shi L, Zhao X, Zhong K, Jia Q, Shen Z, Zou J, Chen Y. Physiological mechanism of the response to Cr(VI) in the aerobic denitrifying ectomycorrhizal fungus Pisolithus sp.1. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128318. [PMID: 35086038 DOI: 10.1016/j.jhazmat.2022.128318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/04/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Pisolithus sp. 1 (P sp. 1) is an ectomycorrhizal fungus (EMF) with a strong Cr(VI) tolerance and reduction ability. The noninvasive microttest technique (NMT), real-time quantitative PCR (qRT-PCR), and the three-dimensional excitation-emission matrix (3D-EEM) were used to deeply explore the physiological mechanism of the P sp. 1 response to Cr(VI) and investigate the relationship between Cr(VI) reduction and denitrification in P sp. Cr(VI) induced the strongest elevations in nitrate reductase (NR) activity and NO production in the mycelia after treatment with Cr(VI) for 48 h under aerobic conditions. The NR inhibitor tungstate significantly inhibited Cr(VI) reduction, proton efflux and the expression of the NR gene (niaD) and NiR gene (niiA). In addition, NO was generated via NR-regulated denitrification. Combined treatments with Cr(VI) and the NO scavenger carboxy-PTIO (cPTIO) significantly increased O2-, H2O2 and MDA contents and reduced SDH, CAT, GSH, GR and GSNOR activity. Therefore, the NR-driven aerobic denitrifying process requires protons, and the generated NO reduces the oxidative stress effect of Cr(VI) on mycelia by reducing ROS accumulation and lipid peroxidation, enhancing mycelial and CAT activity, and promoting GSH recycling and regeneration. Psp.1 can also secrete humic acid-like and protein-like substances to combine with Cr(III) in a culture system.
Collapse
Affiliation(s)
- Liang Shi
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuan Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Kecheng Zhong
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiyuan Jia
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianwen Zou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation, Nanjing Agricultural University, Nanjing 210095, China; The Collaborated Lab. of Plant Molecular Ecology Between College of Life Sciences of Nanjing Agricultural University and Asian Natural Environmental Science Center of the University of Tokyo, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
6
|
Hao K, Zhang Z, Wang B, Zhang J, Zhang G. Mechanism of Cr (VI) reduction by Pichia guilliermondii ZJH-1. IRANIAN JOURNAL OF BIOTECHNOLOGY 2022; 20:e3001. [PMID: 35891955 PMCID: PMC9284239 DOI: 10.30498/ijb.2021.275524.3001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background Chromium is one of the most used toxic heavy metals. A large amount of chromium waste is discharged into the environment every year, causing serious environmental pollution, especially the pollution of soil and water by hexavalent chromium. Eliminating hexavalent chromium is the primary challenge to achieve a pollution-free environment. Objectives This study aims to understand the mechanism of Pichia guilliermondii's reduction of hexavalent chromium through enzymatic characteristic, oxidative stress response, and reduction product. Material and Methods The strain Pichia guilliermondii ZJH-1 was isolated and stored in our laboratory. The hexavalent chromium uses 1,5-diphenyl carbazide method (DPC) to measure. The UV spectrophotometer was used to measure the intracellular antioxidant enzyme activity, and the kit was used to measure the activity of catalase and glutathione reductase. The reduction products were analyzed by ultraviolet full-wavelength scanning and FTIR. Results The reduction of hexavalent chromium by ZJH-1 is accompanied by an increase in active oxygen and antioxidant levels. Chromate reductase mainly exists in the extracellular fluid, and the carboxyl, amide, hydroxide and other groups of the cell wall are involved in the bioremediation of Cr(VI) by complexing with Cr(VI) and Cr(III). After ZJH-1 was treated with different concentrations of Cr(VI), the expression of proteins with molecular weights of 15 kDa, 18 kDa, 35 kDa, 62 kDa, and 115 kDa increased significantly. This strain is the most suitable for chromate reductase (CChR). The optimum temperature is 40℃ and the optimum pH is 7.0. Cu2+ can enhance the activity of chromate reductase. At the optimum temperature and pH, the chromate reductase Km of this strain is 0.40 μmol and Vmax is 14.47 μmoL.L-1·min-1. Conclusions The bioremediation of Cr(VI) by Pichia guilliermondii ZJH-1 is attributable to the reduction product (Cr(III)) that can be removed in the precipitate and can be fixed on the cell surface and accumulated in the cell.
Collapse
Affiliation(s)
- Kongli Hao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Zihui Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Binsong Wang
- School of Chemistry and Material Sciences, Heilongjiang University, Harbin 150080, China
| | - Jie Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Guocai Zhang
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
7
|
Liu QN, Tang YY, Zhao JR, Li YT, Yang RP, Zhang DZ, Cheng YX, Tang BP, Ding F. Transcriptome analysis reveals antioxidant defense mechanisms in the red swamp crayfish Procambarus clarkia after exposure to chromium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112911. [PMID: 34673411 DOI: 10.1016/j.ecoenv.2021.112911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/28/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Chromium (Cr) as a chromate anion has a strong redox capacity that seriously threatens the ecological environment and human health. Cr can contaminate water and impart toxicity to aquatic species. Procambarus clarkii is an important food source that once represented a large proportion of the aquaculture industry due to its rapid reproduction and high economic value. However, there have been reports on the death of P. clarkii due to heavy metal pollution. The underlying mechanism regarding heavy metal toxicity was studied in this paper. The transcriptome data of hemocytes extracted from P. clarkii injected with Cr were analyzed by high-throughput sequencing and compared to the control group. In total, 48,128,748 clean reads were obtained in the treatment group and 56,480,556 clean reads were obtained in the control group. The reads were assembled using Trinity and the identified unigenes were then annotated. Then, 421 differentially-expressed genes (DEGs) were found, 170 of which were upregulated and 251 downregulated. Many of these genes were found to be related to glutathione metabolism and transportation. The glutathione metabolic pathway of P. clarkii was thus activated by Cr exposure to detoxify and maintain body function. Validation of DEGs with quantitative real-time PCR confirms the changes in gene expression. Thus, this study provides data supporting a glutathione-focused response of P. clarkii to exposure to heavy metals.
Collapse
Affiliation(s)
- Qiu-Ning Liu
- Department of Microbiology & Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China; Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, School of Wetlands, Yancheng Teachers University, Yancheng, People's Republic of China; Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, People's Republic of China.
| | - Ying-Yu Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, School of Wetlands, Yancheng Teachers University, Yancheng, People's Republic of China; Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, People's Republic of China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, People's Republic of China
| | - Jing-Ru Zhao
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, School of Wetlands, Yancheng Teachers University, Yancheng, People's Republic of China; Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, People's Republic of China
| | - Yue-Tian Li
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, School of Wetlands, Yancheng Teachers University, Yancheng, People's Republic of China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, College of Aquaculture and Life Science, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Rui-Ping Yang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, School of Wetlands, Yancheng Teachers University, Yancheng, People's Republic of China; Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, People's Republic of China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, School of Wetlands, Yancheng Teachers University, Yancheng, People's Republic of China; Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, People's Republic of China
| | - Yong-Xu Cheng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, College of Aquaculture and Life Science, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, School of Wetlands, Yancheng Teachers University, Yancheng, People's Republic of China; Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, People's Republic of China.
| | - Feng Ding
- Department of Microbiology & Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China.
| |
Collapse
|
8
|
Liu Y, Qiu Y, Yin Q, Li X, Bai Q, Li Y, Xiao H. iTRAQ-based quantitative proteomic reveals proteomic changes in Serratia sp. CM01 and mechanism of Cr(Ⅵ) resistance. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112899. [PMID: 34823212 DOI: 10.1016/j.ecoenv.2021.112899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/29/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE Serratia sp. CM01 is a wild strain with the resistance and reduction ability of chromium(Ⅵ). The aim of this study it to investigate the underlying mechanisms of the Cr(Ⅵ) tolerance and reduction of strain CM01, and to explore its response to environmental pollution pressure at the molecular level. METHODS The iTRAQ technique was utilized to investigate the differentially expressed protein patterns related to the Cr(Ⅵ)-resistance in wild-type strain CM01 and domesticated CM01. RT-qPCR was used to verify the expression levels of several functional genes. The cell surface hydrophobicity and autoaggregation, the intracellular glucose content, and the total superoxide dismutase (SOD) activity were determined. RESULTS In total, 2750 proteins were detected and identified in WT CM01 and domesticated CM01. Compared with WT CM01, the iTRAQ results of 646 proteins were found to be significantly differentially expressed in domesticated CM01. There were 343 up-regulated and 303 down-regulated proteins, which mainly related to carbohydrate metabolism, stress responses, amino acid metabolism and some other systems. RT-qPCR results showed that the expression level of seven genes in domesticated CM01 were consistent with the iTRAQ proteomic profiles. The cell surface hydrophobicity, self-aggregation, intracellular glucose content and total SOD activity of domesticated CM01 with Cr(Ⅵ) treatment were significantly higher than without Cr(Ⅵ) treatment. CONCLUSION Domesticated CM01 displayed a complex biological network to exhibit the tolerance of Cr(Ⅵ), which may be attributed to the following aspects: (a) CM01 reduced the consumption of glucose by inhibiting the metabolism of carbohydrates, which was an energy-saving survival mode. (b) The inositol phosphate metabolism pathway played an important role. (c) Oxidative stress proteins enhanced the adaptability. (d) CM01 enhanced biosynthesis of hydrophobic amino acids to resistance to Cr(Ⅵ). (e) Several key systems and proteins, such as UvrABC system, Lon protease, porin OmpC, also may play an important role.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China; Center for Disease Control and Prevention, Chongqing 400010, China
| | - Yanlun Qiu
- Center for Disease Control and Prevention, Beibei District, Chongqing 400700, China
| | - Qi Yin
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| | - Xinglong Li
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| | - Qunhua Bai
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| | - Yingli Li
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| | - Hong Xiao
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China.
| |
Collapse
|
9
|
Anusha P, Narayanan M, Natarajan D, Kandasamy S, Chinnathambi A, Alharbi SA, Brindhadevi K. Assessment of hexavalent chromium (VI) biosorption competence of indigenous Aspergillus tubingensis AF3 isolated from bauxite mine tailing. CHEMOSPHERE 2021; 282:131055. [PMID: 34118617 DOI: 10.1016/j.chemosphere.2021.131055] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 05/20/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
The intention of this research was to find the most eminent metal tolerant and absorbing autochthonous fungal species from the waste dump of a bauxite mine. Out of the 4 (BI-1, BI-II, BI-III, and BI-IV) predominant isolates, BI-II had an excellent metal tolerance potential against most of the metals in the subsequent order: Cr(VI) (1500), Cu(II) (600), Pb(II) (500), and Zn(II) (500-1500 μg mL-1). BI-II had shown tolerance to Cr(VI) up to 1500 mg L-1. The excellent metal tolerant isolate was characterized and identified as Aspergillus tubingensis AF3 through 18S rRNA sequencing method and submitted to GenBank and received an accession number (MN901243). A. tubingensis AF3 had the efficiency to absorb Cr(VI) and Cu(II) at <70 & 46.3% respectively under the standard growth conditions. Under the optimized conditions (25 °C, pH 7.0, 0.5% of dextrose, and 12 days of incubation), A. tubingensis AF3 absorbed 74.48% of Cr(VI) in 12 days (reduction occurred as 822.3, 719.13, 296.66, and 255.2 mg L-1 of Cr(VI) on the 3rd, the 6th, the 9th and the 12th day, respectively). The adsorbed metal was sequestered in the mycelia of the fungus in a precipitated form; it was confirmed by Scanning Electron Microscope (SEM) and Energy Dispersive X-ray analysis (EDX) analyses. The possible biosorption mechanisms were analyzed by Fourier-Transform Infrared Spectroscopy (FTIR) analysis, the results showed the presence of N-H primary amines (1649.98 cm-1) and Alkanes (914.30 cm-1) in the cell wall of the fungus, while being treated with Cr(VI) they supported and enhanced the Cr(VI) absorption. The entire results concluded that the biomass of A. tubingensis AF3 had the potential to absorb a high concentration of Cr(VI).
Collapse
Affiliation(s)
- Ponniah Anusha
- Natural Drug Research Laboratory, Department of Biotechnology, Periyar University, Salem, Tamil Nadu, India
| | - Mathiyazhagan Narayanan
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational Research Institute, Hosur, Tamil Nadu, India
| | - Devarajan Natarajan
- Natural Drug Research Laboratory, Department of Biotechnology, Periyar University, Salem, Tamil Nadu, India.
| | | | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Kathirvel Brindhadevi
- Faculty of Electrical and Electronics Engineering, Ton Duc Thang, University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
10
|
Martínez FL, Rajal VB, Irazusta VP. Genomic characterization and proteomic analysis of the halotolerant Micrococcus luteus SA211 in response to the presence of lithium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147290. [PMID: 33940405 DOI: 10.1016/j.scitotenv.2021.147290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/08/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
Micrococcus luteus SA211, isolated from the Salar del Hombre Muerto in Argentina, developed responses that allowed its survival and growth in presence of high concentrations of lithium chloride (LiCl). In this research, analysis of total genome sequencing and a comparative proteomic approach were performed to investigate the responses of this bacterium to the presence of Li. Through proteomic analysis, we found differentially synthesized proteins in growth media without LiCl (DM) and with 10 (D10) and 30 g/L LiCl (D30). Bi-dimensional separation of total protein extracts allowed the identification of 17 over-synthesized spots when growth occurred in D30, five in D10, and six in both media with added LiCl. The results obtained showed different metabolic pathways involved in the ability of M. luteus SA211 to interact with Li. These pathways include defense against oxidative stress, pigment and protein synthesis, energy production, and osmolytes biosynthesis and uptake. Furthermore, mono-dimensional gel electrophoresis revealed differential protein synthesis at equivalent NaCl and LiCl concentrations, suggesting that this strain would be able to develop different responses depending on the nature of the ion. Moreover, the percentage of proteins with acidic pI predicted and observed was highlighted, indicating an adaptation to saline environments. To the best of our knowledge, this is the first report showing the relationship between protein synthesis and genome sequence analysis in response to Li, showing the great biotechnological potential that native microorganisms present, especially those isolated from extreme environments.
Collapse
Affiliation(s)
- Fabiana Lilian Martínez
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Argentina
| | - Verónica Beatriz Rajal
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Argentina; Facultad de Ingeniería, UNSa, Argentina; Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore
| | - Verónica Patricia Irazusta
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Argentina; Facultad de Ciencias Naturales, UNSa, Argentina.
| |
Collapse
|
11
|
Kumar V, Dwivedi SK. Mycoremediation of heavy metals: processes, mechanisms, and affecting factors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10375-10412. [PMID: 33410020 DOI: 10.1007/s11356-020-11491-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 10/30/2020] [Indexed: 05/27/2023]
Abstract
Industrial processes and mining of coal and metal ores are generating a number of threats by polluting natural water bodies. Contamination of heavy metals (HMs) in water and soil is the most serious problem caused by industrial and mining processes and other anthropogenic activities. The available literature suggests that existing conventional technologies are costly and generated hazardous waste that necessitates disposal. So, there is a need for cheap and green approaches for the treatment of such contaminated wastewater. Bioremediation is considered a sustainable way where fungi seem to be good bioremediation agents to treat HM-polluted wastewater. Fungi have high adsorption and accumulation capacity of HMs and can be potentially utilized. The most important biomechanisms which are involved in HM tolerance and removal by fungi are bioaccumulation, bioadsorption, biosynthesis, biomineralisation, bioreduction, bio-oxidation, extracellular precipitation, intracellular precipitation, surface sorption, etc. which vary from species to species. However, the time, pH, temperature, concentration of HMs, the dose of fungal biomass, and shaking rate are the most influencing factors that affect the bioremediation of HMs and vary with characteristics of the fungi and nature of the HMs. In this review, we have discussed the application of fungi, involved tolerance and removal strategies in fungi, and factors affecting the removal of HMs.
Collapse
Affiliation(s)
- Vinay Kumar
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India.
| | - Shiv Kumar Dwivedi
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| |
Collapse
|
12
|
Zheng X, Li W, Gao Y. Knockdown of α-enolase (Eno1) genes by RNAi does not increase the sensitivity of Propsilocerus akamusi to cadmium stress. Int J Biol Macromol 2020; 164:3388-3393. [PMID: 32841668 DOI: 10.1016/j.ijbiomac.2020.08.164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/20/2020] [Indexed: 11/28/2022]
Abstract
α-enolase (Eno1) is a multifunctional enzyme which can as a stress protein under various environmental stresses. Recent researches also reported that Eno1 appears to have Cd2+ stress-related functions in cadmium tolerant plants. Our previous study inferred that the Eno1 gene might play an important role in the response of Propsilocerus akamusi to exogenous Cd2+. However, reports on the role of the Eno1 gene in coping with cadmium stress are still limited. In this study, we evaluated the roles of PaEno1 in the tolerance of P. akamusi to Cd2+ using RNAi technology and the response of recombinant proteins of PaEno1 in an E. coli expression system under Cd2+ stress. Our results showed that knockdown of PaEno1 did not increase but reduce the sensitivity of P. akamusi larvae to Cd2+ stress. However, bioassays showed the expression of recombinant PaEno1 protein in Rosetta cells enhanced the growth ability of E. coli under Cd2+ stress. These results suggested that overexpression of PaEno1 can significantly enhance the tolerance to heavy metal cadmium stresses in E. coli cells. However, knockdown of PaEno1 genes by RNAi does not increase the sensitivity of P. akamusi to cadmium stress.
Collapse
Affiliation(s)
- Xianyun Zheng
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China.
| | - Wanghong Li
- School of Physical Exercise and Education, Shanxi University, Taiyuan 030006, PR China
| | - Ye Gao
- School of Physical Exercise and Education, Shanxi University, Taiyuan 030006, PR China
| |
Collapse
|
13
|
Lin WH, Chen SC, Chien CC, Tsang DCW, Lo KH, Kao CM. Application of enhanced bioreduction for hexavalent chromium-polluted groundwater cleanup: Microcosm and microbial diversity studies. ENVIRONMENTAL RESEARCH 2020; 184:109296. [PMID: 32146214 DOI: 10.1016/j.envres.2020.109296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/19/2020] [Accepted: 02/23/2020] [Indexed: 06/10/2023]
Abstract
Hexavalent chromium (Cr6+) is a commonly found heavy metal at polluted groundwater sites. In this study, the effectiveness of Cr6+ bioreduction by the chromium-reducing bacteria was evaluated to remediate Cr6+-contaminated groundwater. Microcosms were constructed using indigenous microbial consortia from a Cr6+-contaminated aquifer as the inocula, and slow-releasing emulsified polycolloid-substrate (ES), cane molasses (CM), and nutrient broth (NB) as the primary substrates. The genes responsible for the bioreduction of Cr6+ and variations in bacterial diversity were evaluated using metagenomics assay. Complete Cr6+ reduction via the biological mechanism was observed within 80 days using CM as the carbon source under anaerobic processes with the increased trivalent chromium (Cr3+) concentrations. Cr6+ removal efficiencies were 83% and 59% in microcosms using ES and NB as the substrates, respectively. Increased bacterial communities associated with Cr6+ bioreduction was observed in microcosms treated with CM and ES. Decreased bacterial communities were observed in NB microcosms. Compared to ES, CM was more applicable by indigenous Cr6+ reduction bacteria and resulted in effective Cr6+ bioreduction, which was possibly due to the growth of Cr6+-reduction related bacteria including Sporolactobacillus, Clostridium, and Ensifer. While NB was applied for specific bacterial selection, it might not be appropriate for electron donor application. These results revealed that substrate addition had significant impact on microbial diversities, which affected Cr6+ bioreduction processes. Results are useful for designing a green and sustainable bioreduction system for Cr6+-polluted groundwater remediation.
Collapse
Affiliation(s)
- Wei-Han Lin
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Ssu-Ching Chen
- Department of Life Sciences, National Central University, Chung-Li City, Taoyuan, Taiwan
| | - Chih-Ching Chien
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Chung-Li City, Taoyuan, Taiwan
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Kai-Hung Lo
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chih-Ming Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
14
|
Luo Y, Ye B, Ye J, Pang J, Xu Q, Shi J, Long B, Shi J. Ca 2+ and SO 42- accelerate the reduction of Cr(VI) by Penicillium oxalicum SL2. JOURNAL OF HAZARDOUS MATERIALS 2020; 382:121072. [PMID: 31470304 DOI: 10.1016/j.jhazmat.2019.121072] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/11/2019] [Accepted: 08/20/2019] [Indexed: 06/10/2023]
Abstract
Some ions in soils may affect the growth and metabolism of microorganisms and subsequently alter the remediation efficiency of Cr(VI). Here, the effects of different Ca2+ and SO42- levels on the reduction of Cr(VI) by Penicillium oxalicum SL2 were investigated. The results showed that Cr(VI) reduction by P. oxalicum SL2 in potato dextrose liquid (PDL) medium was accelerated by the presence of exogenous Ca2+ and SO42-. The Cr(VI) reduction rates were increased by 52.5% (200 mg L-1 Ca2+ treated) and 55.9% (2000 mg L-1 SO42- treated), respectively. High concentration of Ca2+ in medium resulted in the production of calcium oxalate crystals, which was contributed to the adsorption of chromium. In addition, X-ray absorption near-edge spectroscopy (XANES) analysis showed that P. oxalicum SL2 could reduce the toxicity of Cr(VI) by synthesizing cysteine (Cys) and reduced glutathione (GSH). The decrease of thiol compounds (Cys and GSH) in P. oxalicum SL2 mycelia treated with SO42- proved the alleviation of oxidative stress. In conclusion, exogenous Ca2+ could reduce the damage of Cr(VI) to P. oxalicum SL2 by maintaining the integrity of cell wall, and the addition of SO42- alleviated the Cr(VI) toxicity to P. oxalicum SL2, thus accelerating the reduction of Cr(VI).
Collapse
Affiliation(s)
- Yating Luo
- MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Binhui Ye
- Chengbang Eco-Environment Co., Ltd., Hangzhou, 310002, China
| | - Jien Ye
- MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jingli Pang
- MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiao Xu
- MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jingxuan Shi
- MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bibo Long
- Guangdong Bioengineering Institute, Guangzhou Sugarcane Industry Research Institute, Guangzhou, 510316, China
| | - Jiyan Shi
- MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
15
|
Kumar V, Dwivedi SK. Hexavalent chromium stress response, reduction capability and bioremediation potential of Trichoderma sp. isolated from electroplating wastewater. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 185:109734. [PMID: 31574371 DOI: 10.1016/j.ecoenv.2019.109734] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
In the present study we are investigating the Cr(VI) reduction potential of a multi-metal tolerant fungus (isolate CR700); isolated from electroplating wastewater. Based on the ITS region sequencing, the isolate was identified as Trichoderma lixii isolate CR700 and able to tolerate As(2000 mg/L), Ni(1500 mg/L), Zn(1200 mg/L), Cu(1200 mg/L), Cr(1000 mg/L), and 100 mg/L of Pb and Cd evident from tolerance assay. Cr(VI) reduction experiment was conducted in Erlenmeyer flasks containing different concentration of Cr(VI) (0-200 mg/L) amended potato dextrose broth medium followed by inoculating with a disk (0.5 cm diameter) of 7 days grown isolate CR700, and achieved a maximum of 99.4% within 120 h at 50 mg/L of Cr(VI). However, the accumulation of total Cr by isolate CR700 was 2.12 ± 0.15 mg/g of dried biomass at the same concentration after 144 h of exposure. Isolate CR700 showed the capability to reduce Cr(VI) at different physicochemical stress conditions such as pH, temperature, heavy metals, metabolic inhibitor and also in tannery wastewater. Fungus exhibited multifarious morphological and biochemical response under the exposure of Cr(VI); the scanning electron microscopic analysis revealed that Cr(VI) treated mycelia of isolate CR700 comparatively irregular, aggregated and swelled than without treated mycelia which might be due to the tolerance mechanism and vacuolar compartmentation of chromium. Moreover, energy dispersive spectroscopy and x-ray photoelectron spectroscopic analysis exposed the Cr(III) precipitation on the mycelia surface of isolate CR700 and Fourier-transform infrared spectroscopic analysis suggested the contribution of the protein associated functional group in the complexation of Cr(VI). The phytotoxicity test of fungal treated 100 mg/L of Cr(VI) supernatant on Vigna radiata and Cicer arietinum revealed the successful detoxification/remediation of Cr(VI).
Collapse
Affiliation(s)
- Vinay Kumar
- Department of Environmental Science, Babasaheb Bhimarao Ambedkar University, Lucknow, 226025, India.
| | - S K Dwivedi
- Department of Environmental Science, Babasaheb Bhimarao Ambedkar University, Lucknow, 226025, India
| |
Collapse
|
16
|
Kumar V, Dwivedi SK. Hexavalent chromium reduction ability and bioremediation potential of Aspergillus flavus CR500 isolated from electroplating wastewater. CHEMOSPHERE 2019; 237:124567. [PMID: 31549665 DOI: 10.1016/j.chemosphere.2019.124567] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Hexavalent chromium reduction by microbes can mitigate the chromium toxicity to the environment. In the present study Cr[VI] tolerant fungal isolate (CR500) was isolated from electroplating wastewater, was able to tolerate 800 mg/L of Cr[VI. Based on the ITS region sequencing, the isolate was identified as Aspergillus flavus CR500, showed multifarious biochemical (reactive oxygen species, antioxidants response and non-protein thiol) and morphological (protrusion less, constriction and swelling/outwards growth in mycelia) response under Cr[VI] stress. Batch experiment was conducted at different Cr[VI] concentration (0-200 mg/L) to optimize the Cr[VI] reduction and removal ability of isolate CR500; results showed 89.1% reduction of Cr[VI] to Cr[III] within 24 h and 4.9 ± 0.12 mg of Cr per gram of dried biomass accumulation within 144 h at the concentration of 50 mg/L of Cr[VI]. However, a maximum of 79.4% removal of Cr was recorded at 5 mg/L within 144 h. Fourier-transform infrared spectroscopy, energy dispersive x-ray spectroscopy and X-ray diffraction analysis revealed that chromium removal also happened via adsorption/precipitation on the mycelia surface. Fungus treated and without treated 100 mg/L of Cr[VI] solution was subjected to phytotoxicity test using Vigna radiata seeds and result revealed that A. flavus CR500 successfully detoxified the Cr[VI] via reduction and removal mechanisms. Isolate CR500 also exhibited efficient bioreduction potential at different temperature (20-40 °C), pH (5.0-9.0), heavy metals (As, Cd, Cu, Mn, Ni and Pb), metabolic inhibitors (phenol and EDTA) and in sterilized tannery effluent that make it a potential candidate for Cr[VI] bioremediation.
Collapse
Affiliation(s)
- Vinay Kumar
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India.
| | - S K Dwivedi
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| |
Collapse
|