1
|
Zhao J, Deng H, Song Z, Wu S, Liang B, Luo J, Xiao T. Excess supply of sulfur mitigates thallium toxicity to rice (Oryza sativa L.) growth in hydroponic experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176216. [PMID: 39270855 DOI: 10.1016/j.scitotenv.2024.176216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/10/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Sulfur (S) is an essential element for the growth of rice plants (Oryza sativa L.), crucial for enhancing crop yield and grain quality. However, its potential in mitigating thallium (Tl) toxicity in rice remains unclear. In this study, a hydroponic experiment was performed to investigate the effects of low, medium and high S application levels (LS, MS, HS) on Tl accumulation in rice at three Tl exposure levels (0, 0.5 and 1 mg·L-1). Our findings reveal that the exogenous S application could alleviate Tl toxicity, enhancing fresh weight and shoot length of rice plant. Additionally, HS (HS, SO42- content was 387.84 mg·L-1) group significantly increased chlorophyll and glutathione (GSH) content by 6.46 to 21.38 % and 2.15 to 7.31 % respectively, while reducing malondialdehyde (MDA) levels by 17.43 to 28.48 %, compared to MS (MS, SO42- content was 193.41 mg·L-1) group. Fe content in rice roots and iron plaque consistently increased with S provision under Tl-free and Tl-contaminated conditions. In Tl exposure environment, HS and LS (LS, SO42- content was 1.02 mg·L-1) groups exhibited significant differences in Fe contents and iron plaque in rice root. Moreover, in Tl exposure environment, S application reduced Tl concentration in iron plaque, root, and shoot, HS treatment showed Tl content reduction from 16.29 % to 25.89 %, compared to LS treatment. Our findings underscore the potential of S application in hydroponic environment to promote rice growth and mitigate Tl accumulation, offering insights for developing effective Tl remediation strategies by using S-contained fertilizers.
Collapse
Affiliation(s)
- Jiayin Zhao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Hongmei Deng
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Zhiyi Song
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Shishi Wu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Bixia Liang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jiexi Luo
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
2
|
Wu J, Fu X, Zhao L, Lv J, Lv S, Shang J, Lv J, Du S, Guo H, Ma F. Biochar as a partner of plants and beneficial microorganisms to assist in-situ bioremediation of heavy metal contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171442. [PMID: 38453085 DOI: 10.1016/j.scitotenv.2024.171442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/19/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
Synergistic remediation of heavy metal (HM) contaminated soil using beneficial microorganisms (BM) and plants is a common and effective in situ bioremediation method. However, the shortcomings of this approach are the low colonisation of BM under high levels of heavy metal stress (HMS) and the poor state of plant growth. Previous studies have overlooked the potential of biochar to mitigate the above problems and aid in-situ remediation. Therefore, this paper describes the characteristics and physicochemical properties of biochar. It is proposed that biochar enhances plant resistance to HMS and aids in situ bioremediation by increasing colonisation of BM and HM stability. On this basis, the paper focuses on the following possible mechanisms: specific biochar-derived organic matter regulates the transport of HMs in plants and promotes mycorrhizal colonisation via the abscisic acid signalling pathway and the karrikin signalling pathway; promotes the growth-promoting pathway of indole-3-acetic acid and increases expression of the nodule-initiating gene NIN; improvement of soil HM stability by ion exchange, electrostatic adsorption, redox and complex precipitation mechanisms. And this paper summarizes guidelines on how to use biochar-assisted remediation based on current research for reference. Finally, the paper identifies research gaps in biochar in the direction of promoting beneficial microbial symbiotic mechanisms, recognition and function of organic molecules, and factors affecting practical applications.
Collapse
Affiliation(s)
- Jieting Wu
- School of Environmental Science, Liaoning University, Shenyang 110036, China.
| | - Xiaofan Fu
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jin Lv
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Sidi Lv
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Jing Shang
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Jiaxuan Lv
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Shuxuan Du
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Haijuan Guo
- School of Environmental Science, Liaoning University, Shenyang 110036, China.
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
3
|
Alsubaie QD, Al-Amri AA, Siddiqui MH, Alamri S. Strigolactone and nitric oxide collaborate synergistically to boost tomato seedling resilience to arsenic toxicity via modulating physiology and antioxidant system. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108412. [PMID: 38359557 DOI: 10.1016/j.plaphy.2024.108412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/17/2024]
Abstract
Arsenic (As) poses a significant environmental threat as a metalloid toxin, adversely affecting the health of both plants and animals. Strigolactones (SL) and nitric oxide (NO) are known to play crucial roles in plant physiology. Therefore, the present experiment was designed to investigate the potential cumulative role of SL (GR24-0.20 μM) and NO (100 μM) in mitigating the adverse effect of AsV (53 μM) by modulating physiological mechanisms in two genotypes of tomato (Riogrand and Super Strain 8). A sample randomized design with four replicates was used to arrange the experimental pots in the growth chamber. 45-d old both tomato cultivars under AsV toxicity exhibited reduced morphological attributes (root and shoot length, root and shoot fresh weight, and root and shoot dry weight) and physiological and biochemical characteristics [chlorophyll (Chl) a and b content, activity of δ-aminolevulinic acid dehydratase activity (an enzyme responsible for Chl biosynthesis), and carbonic anhydrase activity (an enzyme responsible for photosynthesis), and enhanced Chl degradation, overproduction of reactive oxygen species (ROS) and lipid peroxidation due to enhanced malondialdehyde (MDA) content. However, the combined application of SL and NO was more effective in enhancing the tolerance of both varieties to AsV toxicity compared to individual application. The combined application of SL and NO improved growth parameters, biosynthesis of Chls, NO and proline. However, the combined application significantly suppressed cellular damage by inhibiting MDA and overproduction of ROS in leaves and roots, as confirmed by the fluorescent microscopy study and markedly upregulated the antioxidant enzymes (catalase, peroxidase, superoxide dismutase, ascorbate dismutase and glutathione reductase) activity. This study provides clear evidence that the combined application of SL and NO supplementation significantly improves the resilience of tomato seedlings against AsV toxicity. The synergistic effect of SL and NO was confirmed by the application of cPTIO (an NO scavenger) with SL and NO. However, further molecular studies could be imperative to conclusively validate the simultaneous role of SL and NO in enhancing plant tolerance to abiotic stress.
Collapse
Affiliation(s)
- Qasi D Alsubaie
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdullah A Al-Amri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
4
|
Kalugina OV, Afanasyeva LV, Mikhailova TA. Anatomical and morphological changes in Pinus sylvestris and Larix sibirica needles under impact of emissions from a large aluminum enterprise. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:66-84. [PMID: 38183574 DOI: 10.1007/s10646-023-02723-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 01/08/2024]
Abstract
Species-specific anatomical and morphological characteristics of Pinus sylvestris and Larix sibirica needles were studied at different levels of tree stand pollution by aluminum smelter emissions. The anatomical characteristics of the needle were studied using light microscopy. The level of tree stand pollution was determined using the cluster analysis outcomes of the pollutant elements content (fluorine, sulfur, and heavy metals) in the needles. Four levels of tree stand pollution were separated: low, moderate, high, and critical, as well as background tree stand in unpolluted areas. It was found that the state of tree phytomass deteriorated with increasing levels of pollution (from low to critical): pine crown defoliation increased to 85%, and larch defoliation increased to 65%. The life span of pine needles was reduced to 2-3 years, with a background value of 6-7 years. The change of morphological parameters was more pronounced in P. sylvestris: the weight and length of the 2-year-old shoot decreased by 2.7-3.1 times compared to the background values; the weight of needles on the shoot and the number of needle pairs on the shoot-by 1.9-2.1 times. The length of the needle and shoot and the number of L. sibirica brachyblasts decreased by 1.8-1.9 times. The anatomical parameters of the needle also changed to a greater extent in P. sylvestris. Up to the high level of tree pollution, we observed a decrease in the cross-sectional area of the needle, central cylinder, vascular bundle, area and thickness of mesophyll, number and diameter of resin ducts by 18-66% compared to background values. At the critical pollution level, when the content of pollutant elements in pine needles reached maximum values, the anatomical parameters of the remaining few green needles were close to background values. In our opinion, this may be due to the activation of mechanisms aimed at maintaining the viability of trees. A reduction in thickness and area of assimilation tissue in the L. sibirica needle was detected only at the critical pollution level. An upward trend in these parameters was found at low, medium, and high pollution levels of tree stand, which may indicate an adaptive nature. The results suggested that at a similar pollution level of trees, the greatest amount of negative anatomical and morphological changes were recorded in pine needles, which indicates a greater sensitivity of this species to technogenic emissions.
Collapse
Affiliation(s)
- Olga Vladimirovna Kalugina
- Laboratory of Natural and Anthropogenic Ecosystems, Siberian Institute of Plant Physiology and Biochemistry Siberian Branch of the Russian Academy of Sciences, Lermontov str., 132, 664033, Irkutsk, Russia
| | - Larisa Vladimirovna Afanasyeva
- Laboratory of Floristics and Geobotany, Institute of General and Experimental Biology Siberian Branch of the Russian Academy of Sciences, Sakhyanova str., 6, 670047, Ulan-Ude, Russia.
| | - Tatiana Alekseevna Mikhailova
- Laboratory of Natural and Anthropogenic Ecosystems, Siberian Institute of Plant Physiology and Biochemistry Siberian Branch of the Russian Academy of Sciences, Lermontov str., 132, 664033, Irkutsk, Russia
| |
Collapse
|
5
|
Zeng F, Nazir MM, Ahmed T, Noman M, Ali S, Rizwan M, Alam MS, Lwalaba JLW, Zhang G. Calcium and L-glutamate present the opposite role in managing arsenic in barley. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 321:121141. [PMID: 36702433 DOI: 10.1016/j.envpol.2023.121141] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/11/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Arsenic contamination in agricultural soils has posed tremendous threat to sustainable crop production and human health via food chain. Calcium and Glutamate have been well-documented in metal(loid)s detoxification, but it is poorly understood how they regulate arsenic-induced toxicity to plants. In this study, the effect of glutamate and calcium at high concentration on arsenic toxicity and accumulation in barley seedling was accessed in terms of plant growth, photosynthetic efficacy, arsenic uptake, translocation and accumulation, antioxidant defense, nutrient uptake and the expression of As transporters. Our results have demonstrated that calcium could effectively ameliorate arsenic toxicity to barley seedlings, which is mainly attributed to its beneficial effect on increasing nutrient uptake, reducing the aboveground arsenic accumulation and enhancing antioxidative defense capacity. However, it is unexpected that glutamate considerably exacerbated the arsenic toxicity to barley seedlings. More importantly, for the first time, glutamate was observed to tremendously facilitate the root-to-shoot translocation of arsenic by 41.8- to 60.8-fold, leading to 90% of the total amount of As accumulating in barley shoots. The reason of this phenomenon can be well explained by the glutamate-triggered enormous upregulation of genes involved in arsenic uptake (HvPHT1;1, HvPHR2 and HvNIP3;2), reduction (HvHAC1;1), translocation (HvABCC7, HvNIP1;1 and HvNIP3;3) and intracellular sequestration (HvABCC1). These findings suggest that calcium and glutamate function as the opposite player in managing arsenic, with calcium being an effective alleviator of arsenic stress to ensure the safe production of crops; while glutamate being a highly efficient phytoextraction agent for phytoremediation of arsenate-contaminated soils.
Collapse
Affiliation(s)
- Fanrong Zeng
- College of Agriculture, Yangtze University, Jingzhou, 434025, China; Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Muhammad Mudassir Nazir
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Temoor Ahmed
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Noman
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Mohammad Shah Alam
- College of Agriculture, Yangtze University, Jingzhou, 434025, China; Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jonas Lwalaba Wa Lwalaba
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
6
|
Chakraborty S, Singh A, Roychoudhury A. Extensive cross-talk among stress-regulated protective metabolites, biogenic-amines and phytohormone-signalling, co-ordinated by dopamine-mediated seed-priming, governs tolerance against fluoride stress in rice. PLANT CELL REPORTS 2022; 41:2261-2278. [PMID: 36040502 DOI: 10.1007/s00299-022-02919-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Seed priming with dopamine reduced fluoride bioaccumulation, induced endogenous dopamine level, thereby orchestrating phytohormone homeostasis and biogenic amine metabolism, and modulating osmolyte and antioxidant machinery to enhance fluoride tolerance in rice. The aim of this study was to decipher the efficacy of seed priming with dopamine in curtailing the adverse impacts of fluoride toxicity in rice seedlings. Fluoride-stressed seedlings exhibited severe growth retardation, high fluoride bioaccumulation, electrolyte leakage and marked cellular injuries. Dopamine priming stimulated the overall physiological growth parameters during stress, via reduced formation of H2O2, malondialdehyde and methylglyoxal, due to lesser fluoride-accumulation. Fluoride stress-induced endogenous dopamine level was further induced upon dopamine priming, marked by the up regulated DOPA decarboxylase expression. Additionally, dopamine treatment led to escalated activity of catalase, superoxide dismutase and glutathione peroxidase in the stressed seedlings, concomitant with altered CAT, SOD and GPX expression. The higher accumulation of protective osmolytes (proline and total amino acids) and non-enzymatic antioxidants (phenolics, flavonoids, anthocyanins, glutathione and carotenoids), upon dopamine priming, during fluoride stress, could be linked with the altered expression pattern of the respective genes. Dopamine promoted active utilization of the biogenic amine (polyamines and ϒ-amino butyric acid) pools for toxicity mitigation, correlated with the modulation of the concerned enzyme activity and gene expression. Dopamine stimulated the accumulation of phytohormones like gibberellin and salicylic acid, via inducing the biosynthetic genes like gibberellin-3-oxidase (GA3ox) and isochorismate synthase (ICS), respectively, while depreciating the abscisic acid and melatonin level during fluoride stress. To our knowledge, this is the first documented report for the remedial role of dopamine priming against fluoride stress in any plant species. This study will open new arenas in sustainable agriculture for the exploitation of this pulsating biomolecule against fluoride stress.
Collapse
Affiliation(s)
- Swarnavo Chakraborty
- Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, West Bengal, India
| | - Ankur Singh
- Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, West Bengal, India
| | - Aryadeep Roychoudhury
- Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, West Bengal, India.
| |
Collapse
|
7
|
Bibi I, Hussain K, Amen R, Hasan IMU, Shahid M, Bashir S, Niazi NK, Mehmood T, Asghar HN, Nawaz MF, Hussain MM, Ali W. The potential of microbes and sulfate in reducing arsenic phytoaccumulation by maize (Zea mays L.) plants. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:5037-5051. [PMID: 33811285 DOI: 10.1007/s10653-021-00902-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Arsenic (As) contamination in soil-plant system is an important environmental, agricultural and health issue globally. The microbe- and sulfate-mediated As cycling in soil-plant system may depend on soil sulfate levels, and it can be used as a potential strategy to reduce plant As uptake and improve plant growth. Here, we investigated the role of soil microbes (SMs) to examine As phytoaccumulation using maize as a test plant, under varying sulfate levels (S-0, S-5, S-25 mmol kg-1) and As stress. The addition of sulfate and SMs promoted maize plant growth and reduced As concentration in shoots compared to sulfate-treated plants without SMs. Results revealed that the SMs-S-5 treatment proved to be the most promising in reducing As uptake by 27% and 48% in root and shoot of the maize plants, respectively. The SMs-S treatments, primarily with S-5, enhanced plant growth, shoot dry biomass, Chl a, b and total Chl (a + b) contents, and gas exchange attributes of maize plants. Similarly, the antioxidant defense in maize plants was increased significantly in SMs-S-treated plants, notably with SMs-S-5 treatment. Overall, the SMs-S-5-treated plants possessed improved plant growth, dry biomass, physiology and antioxidant defense system and decrease in plant shoot As concentration. The outcomes of this study suggest that sulfate supplementation in soil along with SMs could assist in reducing As accumulation by maize plants, thus providing a sustainable and eco-friendly bioremediation strategy in limiting As exposure.
Collapse
Affiliation(s)
- Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan.
| | - Khalid Hussain
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Rabia Amen
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Israr Masood Ul Hasan
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, Shanghai, China
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Safdar Bashir
- Department of Soil and Environmental Sciences, Faculty of Agriculture, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan.
| | - Tariq Mehmood
- College of Environment, Hohai University Nanjing, Nanjing, 210098, China
| | - Hafiz Naeem Asghar
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Muhammad Farrakh Nawaz
- Department of Forestry and Range Management, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Muhammad Mahroz Hussain
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Waqar Ali
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| |
Collapse
|
8
|
Kalugina OV, Mikhailova TA, Afanasyeva LV, Gurina VV, Ivanova MV. Changes in the fatty acid composition of pine needle lipids under the aluminum smelter emissions. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:2083-2095. [PMID: 34546442 DOI: 10.1007/s10646-021-02479-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Changes in the fatty acid (FA) composition of total lipids of Pinus sylvestris needles at different pollution levels caused by emissions from a large aluminum smelter (BrAS) have been studied. In the needles of trees from unpolluted (background) territories, the FA spectrum is represented by 24 acids with prevalence of unsaturated FAs (71.6%). The main unsaturated FA are represented by oleic (C18: 1ω9), linoleic (C18: 2ω6), and α-linolenic (C18: 3ω3) acids. Under the influence of BrAS emissions, the total amount of identified FAs in the needles and the proportion of unsaturated FAs decrease, while the fraction of saturated FAs, on the contrary, increases from 25.4% in unpolluted needles to 33.2% in polluted ones. The content of palmitic FA (C16:0) in the needles exceeds background values by 1.5 times, behenic acid (C22:0) - by 1.6-2.5 times, arachidic acid (C20:0) - by 1.5 times, palmitic margaric acid (C17:0) - by 1.5-2.3 times. These FAs play the important role in the protection of plant membranes from the effects of abiotic stress factors, making them less permeable. The sum of short-chain saturated FAs (C12:0, C14:0, C15:0) increase by 4.8 times in needles of trees that are highly polluted. Pentadecanoic (C15:0) acid is found in the needles only in the background areas and at the low pollution level. With a more severe pollution, C15:0 is not identified, but lauric acid with the cis-configuration of double bonds in the structure (izo-C12:0) appears. The presence of "relict" ∆5-polymethylene FAs in the composition of pine needle membrane lipids is determined. In the background areas, they account for 12.9% of the total FAs. With the industrial pollution intensification, their total content increases and reaches 14.1%. ∆5-polymethylene FAs are also able to protect membranes against negative influences. Thus, changes in the quantitative and qualitative FA composition of pine needle total lipids indicate the activation of the stabilization mechanisms of membrane lipids due to their tight packing in a bilayer. It is one of the adaptive reactions of Pinus sylvestris in response to the impact of the aluminum industry emissions.
Collapse
Affiliation(s)
- Olga Vladimirovna Kalugina
- The Natural and Anthropogenic Ecosystems Laboratory, Siberian Institute of Plant Physiology and Biochemistry Siberian Branch of the Russian Academy of Sciences, Lermontov str., 132, 664033, Irkutsk, Russia
| | - Tatiana Alekseevna Mikhailova
- The Natural and Anthropogenic Ecosystems Laboratory, Siberian Institute of Plant Physiology and Biochemistry Siberian Branch of the Russian Academy of Sciences, Lermontov str., 132, 664033, Irkutsk, Russia
| | - Larisa Vladimirovna Afanasyeva
- Laboratory of Floristics and Geobotany, Institute of General and Experimental Biology Siberian Branch of the Russian Academy of Sciences, Ulan-Ude, Russia, 6, Sakhyanova str., 670047, Ulan-Ude, Russia.
| | - Veronika Valerievna Gurina
- Laboratory of Plant Cell Physiology, Siberian Instititue of Plant Physiology and Biochemistry Siberian Branch of the Russian Academy of Sciences, Lermontov str., 132, 664033, Irkutsk, Russia
| | - Maria Vladimirovna Ivanova
- Laboratory of Ecosystems Bioindication, Siberian Instititue of Plant Physiology and Biochemistry Siberian Branch of the Russian Academy of Sciences, Lermontov str., 132, 664033, Irkutsk, Russia
| |
Collapse
|
9
|
Yadav V, Arif N, Chauhan DK. A comparative study of the effective response of di-potassium phosphate (K 2HPO 4) on physiological, biochemical and anatomical aspects of crops dwelling with zinc oxide nanoparticles toxicity. Toxicol Res (Camb) 2021; 10:214-222. [PMID: 33884172 DOI: 10.1093/toxres/tfab004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 11/14/2022] Open
Abstract
The dipotassium phosphate (K2HPO4) is a source of phosphorus (P), which is an essential micronutrient for plant growth and reproduction and also acts as a stress alleviator against abiotic stresses. Therefore, it could also become a potential mineral to cope up with zinc oxide nanoparticles' (ZnONPs) toxicity in crops. This study primarily includes synthesis, characterization and differential toxic impacts of ZnONPs on two crop plantsThis study includes synthesis, characterization and differential toxic impacts of ZnONPs on two crop plants, i.e. Triticum aestivum and Solanum lycopersicum, as well as assuage the toxic impacts of ZnONPs through nutrient management approach implied via supplementation of P. The growth and physiological changes under toxic doses of ZnONPs and ameliorative potential of P in crop plants were examined by analysing growth, intracellular Zn accumulation, photosynthetic pigment contents, the kinetics of photosystem II (PS II) photochemistry, root cell anatomy and cell viability via histochemical staining 4',6-diamidino-2-phenylindole and propidium iodide. ZnONPs at 500 and 1000 μM concentrations significantly affected the growth, photosynthetic pigment and PS II photochemistry and cell death in both the plants. It also caused deformation in root anatomy of T. aestivum and S. lycopersicum. Whereas supplementation of P caused significant improvement against ZnONPs stress by causing remarkable enhancement in growth, photosynthetic pigments and activity of PS II photochemistry and decreased cell death. Moreover, the study also discloses the tolerant nature of S. lycopersicum comparing with T. aestivum seedlings. Thus, P is comparatively more effective in managing the ZnONPs toxicity in S. lycopersicum than in T. aestivum.
Collapse
Affiliation(s)
- Vaishali Yadav
- D. D. Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj 211002, India
| | - Namira Arif
- D. D. Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj 211002, India
| | - Devendra Kumar Chauhan
- D. D. Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj 211002, India
| |
Collapse
|
10
|
Singh H, Bhat JA, Singh VP, Corpas FJ, Yadav SR. Auxin metabolic network regulates the plant response to metalloids stress. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124250. [PMID: 33109410 DOI: 10.1016/j.jhazmat.2020.124250] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/17/2020] [Accepted: 10/08/2020] [Indexed: 05/13/2023]
Abstract
Metalloids are among the major pollutants posing a risk to the environment and global food security. Plant roots uptake these toxic metalloids from the soil along with other essential minerals. Plants respond to metalloid stress by regulating the distribution and levels of various endogenous phytohormones. Recent research showed that auxin is instrumental in mediating resilience to metalloid-induced stress in plants. Exogenous supplementation of the auxin or plant growth-promoting micro-organisms (PGPMs) alleviates metalloid uptake, localization, and accumulation in the plant tissues, thereby improving plant growth under metalloid stress. Moreover, auxin triggers various biological responses such as the production of enzymatic and non-enzymatic antioxidants to combat nitro-oxidative stress induced by the metalloids. However, an in-depth understanding of the auxin stimulated molecular and physiological responses to the metalloid toxicity needs to be investigated in future studies. The current review attempts to provide an update on the recent advances and the current state-of-the-art associated with auxin and metalloid interaction, which could be used as a start point to develop biotechnological tools and create an eco-friendly environment.
Collapse
Affiliation(s)
- Harshita Singh
- Department of Biotechnology, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India
| | - Javaid Akhter Bhat
- National Center for Soybean Improvement, Key L aboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, University of Allahabad, Prayagraj 211002, India
| | - Francisco J Corpas
- Department of Biochemistry, Cell and Molecular Biology, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), C/Profesor Albareda, 1, 18008 Granada, Spain
| | - Shri Ram Yadav
- Department of Biotechnology, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
11
|
Praveen A, Pandey A, Gupta M. Protective role of nitric oxide on nitrogen-thiol metabolism and amino acids profiling during arsenic exposure in Oryza sativa L. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:825-836. [PMID: 32656654 DOI: 10.1007/s10646-020-02250-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Nitric oxide (NO) being a signaling molecule inside the plant cells, play significant role in signaling cascades and protection against environmental stresses. However, the protective role of NO in alleviating As toxicity in rice plants is currently not available. In the present study, the level of NO, nitrogen (N), inorganic N (nitrate, ammonium), thiols {TT (Total thiols), NPT (Nonprotein thiol)} and AAs contents along with N assimilating enzymes (NR, GDH, GOGAT) were analyzed after exposure of AsIII/NO treatment alone, and in combination. NO supplementation enhanced the content of N, inorganic N & thiol contents, NR, GOGAT activities, when compared with AsIII exposure alone. In AsIII exposed rice seedlings, content of AAs (except His, Arg, Met) reduced over the control, while supplementation of SNP improved AAs contents, compared to AsIII treatment alone. In conclusion, rice seedlings supplemented with NO tolerate the AsIII toxicity by reducing the N related parameters, thiol contents, altering the AA profile and enhanced the nutritional quality by increasing EAAs (essential amino acids) and NEAAs (non-essential amino acids).
Collapse
Affiliation(s)
- Afsana Praveen
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi-25, India
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali marg, New Delhi-67, India
| | - Meetu Gupta
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi-25, India.
| |
Collapse
|
12
|
Interplay of Calcium and Nitric Oxide in improvement of Growth and Arsenic-induced Toxicity in Mustard Seedlings. Sci Rep 2020; 10:6900. [PMID: 32327685 PMCID: PMC7181649 DOI: 10.1038/s41598-020-62831-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 03/09/2020] [Indexed: 01/24/2023] Open
Abstract
In this study, Ca2+ mediated NO signalling was studied in response to metalloid (As) stress in Brassica seedlings. Arsenic toxicity strongly suppressed the growth (fresh weight, root and shoot length), photosynthetic pigments, Chl a fluorescence indices (Kinetic traits: Fv, Fm, Fv/Fo, Fm/Fo, ФPo or Fv/Fm, Ψo, ФEo, PIABS, Area and N and redox status (AsA/DHA and GSH/GSSG ratios) of the cell; whereas energy flux traits: ABS/RC, TRo/RC, ETo/RC and DIo/RC along with Fo, Fo/Fv, Fo/Fm, ФDo and Sm) were enhanced. Further, addition of EGTA (Ca2+ scavenger) and LaCl3 (plasma membrane Ca2+ channel blocker) to As + Ca; while c‒PTIO (NO scavenger) and l‒NAME (NO synthase inhibitor) to As + SNP treated seedlings, siezed recovery on above parameters caused due to Ca2+ and NO supplementation, respectively to As stressed seedlings thereby indicating their signalling behaviour. Further, to investigate the link between Ca2+ and NO, when c‒PTIO and l‒NAME individually as well as in combination were supplemented to As + Ca treated seedlings; a sharp inhibition in above mentioned traits was observed even in presence of Ca2+, thereby signifying that NO plays crucial role in Ca2+ mediated signalling. In addition, As accumulation, ROS and their indices, antioxidant system, NO accumulation and thiol compounds were also studied that showed varied results.
Collapse
|
13
|
Ding G, Jin Z, Han Y, Sun P, Li G, Li W. Mitigation of chromium toxicity in Arabidopsis thaliana by sulfur supplementation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109379. [PMID: 31254852 DOI: 10.1016/j.ecoenv.2019.109379] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 05/12/2023]
Abstract
Chromium (Cr) contamination of soil and water has become a severe threat to human health. In this study, a series of experiments were conducted to examine the ameliorative effects of Cr toxicity, by exogenous 100 μM sodium sulfate. Our team has examined the plant growth, Cr content, chlorophyll, antioxidant index and soluble protein content, before and after the addition of sodium sulfate. The results showed that the addition of sulfur (S) can reduce the enrichment of Cr and the content of malonyldialdehyde (MDA) under Cr stress. After addition of S in the culture solution, the biomass and roots length of Arabidopsis thaliana increased under Cr stress. Furthermore, the content of chlorophyll, superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), glutathione (GSH), and soluble protein increased with the addition of sulfur. Transmission electron microscope observation point to that the chloroplasts can be damaged in leaf. All data demonstrate that S supplementation should help to alleviate the negative effects caused by both Cr(III) and Cr(VI) on Arabidopsis thaliana.
Collapse
Affiliation(s)
- Guotao Ding
- Handan Municipal Center for Disease Control and Prevention, Handan, 056000, Hebei, China
| | - Zengjun Jin
- School of Medicine, Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Yonghong Han
- Handan Municipal Center for Disease Control and Prevention, Handan, 056000, Hebei, China
| | - Peng Sun
- Handan Municipal Center for Disease Control and Prevention, Handan, 056000, Hebei, China
| | - Guiying Li
- (c)Affiliated Hospital of Hebei Engineering University, Hebei, 056000, China
| | - Weihao Li
- Handan Municipal Center for Disease Control and Prevention, Handan, 056000, Hebei, China.
| |
Collapse
|
14
|
Singh R, Parihar P, Prasad SM. Sulfur and Calcium Simultaneously Regulate Photosynthetic Performance and Nitrogen Metabolism Status in As-Challenged Brassica juncea L. Seedlings. FRONTIERS IN PLANT SCIENCE 2018; 9:772. [PMID: 29971072 PMCID: PMC6018418 DOI: 10.3389/fpls.2018.00772] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/18/2018] [Indexed: 05/25/2023]
Abstract
In the present study, the role of sulfur (K2SO4: S; 60 mg S kg-1 sand) and/or calcium (CaCl2: Ca; 250 mg Ca kg-1 sand) applied alone as well as in combination on growth, photosynthetic performance, indices of chlorophyll a fluorescence, nitrogen metabolism, and protein and carbohydrate contents of Indian mustard (Brassica juncea L.) seedlings in the absence and presence of arsenic (Na2HAsO4.7H2O: As1; 15 mg As kg-1 sand and As2; 30 mg As kg-1 sand) stress was analyzed. Arsenic with its rising concentration negatively affected the fresh weight, root/shoot ratio, leaf area, photosynthetic pigments content, photosynthetic oxygen yield, and chlorophyll a fluorescence parameters: the O-J, J-I and I-P rise, QA- kinetic parameters, i.e., ΦP0, Ψ0, ΦE0, and PIABS, along with Fv/F0 and Area while increased the energy flux parameters, i.e., ABS/RC, TR0/RC, ET0/RC, and DI0/RC along with F0/Fv and Sm due to higher As/S and As/Ca ratio in test seedlings; however, exogenous application of S and Ca and their combined effect notably counteracted on As induced toxicity on growth and other important growth regulating processes. Moreover, inorganic nitrogen contents, i.e., nitrate (NO3-) and nitrite (NO2-) and the activities of nitrate assimilating enzymes, viz., nitrate reductase (NR) and nitrite reductase (NiR) and ammonia assimilating enzymes, viz., glutamine synthetase (GS) and glutamate synthase (GOGAT) along with protein and carbohydrate contents were severely affected with As toxicity; while under similar condition, ammonium (NH4+) content and glutamate dehydrogenase (GDH) activity in both root and leaves showed reverse trend. Furthermore, S and Ca supplementation alone and also in combination to As stressed seedlings ameliorated these parameters except NH4+ content and GDH activity, which showed an obvious reduction under similar conditions. These findings point out that exogenous application of S and/or Ca particularly S+Ca more favorably regulated the photosynthesis, contents of protein, carbohydrate and inorganic nitrogen, and the activities of nitrate and ammonia assimilating enzymes, which might be linked with the mitigation of As stress. Our results suggest that exogenous application of S+Ca more efficiently defends Brassica seedlings by declining As accumulation in root and shoot tissues and by maintaining the photosynthesis and nitrogen metabolism as well.
Collapse
Affiliation(s)
| | | | - Sheo M. Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad, India
| |
Collapse
|