1
|
Song Y, Cheng Q, Zhao B. Exogenous organic acids promoted phytoremediation by Hydrangea macrophylla in cadmium‑contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117551. [PMID: 39693853 DOI: 10.1016/j.ecoenv.2024.117551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024]
Abstract
Cadmium (Cd) contaminants with high toxicity and mobility seriously threatens the ecological environment and human safety. Hydrangea macrophylla is a potential plant for Cd-contaminated soil remediation. Exogenous organic acids have been proven to effectively enhance the phytoremediation of soil contaminated with Cd. However, research on the effects of organic acids on Cd tolerance and accumulation of H. macrophylla remains scarce. In this study, a potted experiment was performed with H. macrophylla as the research object. The effects of acetic acid (AA), citric acid (CA), and malic acid (MA) with different concentrations (2.5, 5, and 10 mmol·kg-1) on the growth physiology, Cd absorption and accumulation of H. macrophylla and soil microecological environment under Cd stress were systematically studied. Results indicated that organic acids increased chlorophyll content and promoted the growth of H. macrophylla, the biomass of shoots and roots increased by 165.44 % , 161.50 % under 5 mmol·kg-1 citric acid treatment. Furthermore, organic acids reduced the level of membrane lipid peroxidation in leaves, increased plant biomass and promoted root growth of H. macrophylla. By boosting superoxide dismutase (SOD), peroxidase (POD), and catalase activities (CAT), elevating levels of proline (Pro), non-protein thiol (NPT), glutathione (GSH) and phytochelatins (PCs), exogenous organic acids promoted the Cd tolerance of H. macrophylla. In particular, 5 mmol·kg-1 CA had the best effect on improving the Cd tolerance of H. macrophylla. The roots of H. macrophylla accumulated a large amount of Cd, ranging from 365.04 to1111.67 μg·plant-1. Appropriate concentration of organic acids increased the total Cd accumulation by 1.12-2.07 times of H. macrophylla. The translocation factor (TF) increased by 97.91 %, 107.95 % under 5 mmol·kg-1 CA and 10 mmol·kg-1 MA treatments. Nevertheless, TF values were all less than 1. We posit that using H. macrophylla and organic acids could reduce the Cd bioavailability in the soil mainly through rhizosphere immobilization and plant absorption. Additionally, organic acids increased the soil pH, accompanied by changes in soil enzyme activities. 10 mmol·kg-1AA and MA reduced the available Cd concentration by 20.42 % and 31.65 %, respectively. Overall, exogenous organic acids can assist H. macrophylla in phytoremediation. 5 mmol·kg-1 CA treatment was considered the best choice for the remediation of heavy Cd-contaminated soil by H. macrophylla.
Collapse
Affiliation(s)
- Yunjing Song
- The College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
| | - Qian Cheng
- The College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
| | - Bing Zhao
- The College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
2
|
Lan W, Zhou Q, Li J, Liu M, Deng Y, Huang Y, Zhou Y, Yang H, Xiao Y. Investigation of Cd and Pb enrichment capacities of Erigeron sumatrensis across three polluted regions: Insights into soil parameters and microbial communities. ENVIRONMENTAL RESEARCH 2024; 262:119868. [PMID: 39216739 DOI: 10.1016/j.envres.2024.119868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Erigeron sumatrensis is a vigorously growing invasive plant in mining areas and has been the subject of research for its potential in the phytoremediation of heavy metals. In this study, the bioconcentration factor (BCF) and translocation factor (TF) of E. sumatrensis were assessed to evaluate its phytoaccumulation potential for cadmium (Cd) and lead (Pb) across three distinct zinc mining regions with different degrees of contamination, including Huayuan (HY), Yueyang (YY), and Liuyang (LY) areas. The region of HY is identified as having the most severe Cd contamination, while the most pronounced Pb pollution characterizes the LY area. The findings indicate that E. sumatrensis demonstrated a stronger ability to enrich Cd and Pb in less contaminated areas. To elucidate the underlying mechanisms, high-throughput sequencing of 16S rRNA and internal transcribed spacer (ITS) regions was employed to analyze the rhizosphere bacterial and fungal communities across the three areas. The results revealed significant variations in the microbial community structure, function, and composition, suggesting a complex interplay between the plant and its associated microorganisms. Correlation analysis identified several soil properties, including soil pH, total nitrogen (TN), available nitrogen (AN), organic matter (OM), and available phosphorus (AP), as pivotal factors that may influence the heavy metal enrichment capabilities of the plant. Notably, some microorganisms (e.g., Burkholderia, Brevundimonas, Paraglomus, and Trichoderma) and enzymes (e.g., P-type ATPases, citrate synthase, catalase) of microorganisms were found to be potentially involved in facilitating the accumulation of Cd and Pb by E. sumatrensis. This research contributes to understanding how invasive alien plants can be utilized to remedy contaminated environments. It highlights the importance of modulating critical soil factors to enhance the phytoremediation potential of E. sumatrensis, which could aid in developing strategies to manage invasive plants and mitigate heavy metal pollution in ecosystems.
Collapse
Affiliation(s)
- Wendi Lan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Qingfan Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Jian Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Mingxin Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Yan Deng
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Yong Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Yu Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Hua Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China; Yuelushan Laboratory, Changsha, 410128, China.
| | - Yunhua Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China; Yuelushan Laboratory, Changsha, 410128, China.
| |
Collapse
|
3
|
Teng K, Zhou Y, Mao H, Long X, Zhang S, Ma J, Meng D, Yin H, Xiao Y. Synergistic effects of yeast and plant growth-promoting bacteria on Tobacco growth and soil-borne disease suppression: evidence from pot and field experiments. FRONTIERS IN PLANT SCIENCE 2024; 15:1489112. [PMID: 39554525 PMCID: PMC11563955 DOI: 10.3389/fpls.2024.1489112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/15/2024] [Indexed: 11/19/2024]
Abstract
Background Tobacco (Nicotiana tabacum L.) is an important economic crop, and the use of plant growth-promoting bacteria (PGPB) to enhance its growth and suppress soil-borne diseases has garnered considerable research interest. However, the potential of yeast to augment the growth-promoting and disease-suppressing effects of PGPB on tobacco remains unclear. Methods This study investigated the effects of Pichia sp. microbial fertilizer (J1), PGPB-Klebsiella oxytoca microbial fertilizer (ZS4), and their composite fertilizer (JZ) on tobacco growth indexes, soil properties, and soil microbial community through a pot experiment. Additionally, field experiments were conducted to further assess the efficacy of the composite microbial fertilizer on tobacco growth and the incidences of soil-borne diseases, including tobacco bacterial wilt (TBW) and tobacco black shank (TBS). Results and discussions In the pot experiment, application of the microbial fertilizers significantly enhanced soil organic matter (OM), total nitrogen (TN), total phosphorus (TP), total potassium (TK), available phosphorus (AP), and available potassium (AK) levels. Compared to the control group (CK), J1, ZS4, and JZ microbial fertilizers significantly promoted tobacco growth, and the composite microbial fertilizers demonstrated superior to the individual microbial fertilizers. We found that the application of microbial fertilizer led to significant alterations in the structure and composition of the bacterial and fungal communities based on the high-throughput sequencing of 16S rRNA and internal transcribed spacer (ITS) regions. The bacterial and fungal diversity indexes showed a decreasing trend. Key microorganisms such as Sphingomonas, Kitasatospora, Nitrosospira, Mortierella, and Trichoderma were identified as influential in regulating soil physicochemical parameters to enhance tobacco growth. Functional prediction further demonstrated a significant increase in the relative abundances of certain enzymes, including Alkaline phosphatase, 1-aminocyclopropane-1-carboxylate deaminase (ACC deaminase), and Peroxidase, as well as antimicrobial substances like Tetracycline, Isoquinoline alkaloid, and Phenylpropanoids, following inoculation with the fertilizer. Besides, field experiments revealed that the JZ fertilizer significantly promoted tobacco growth and reduced the incidence of TBW and TBS, indicating its potential for further application in tobacco cultivation.
Collapse
Affiliation(s)
- Kai Teng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
- Hunan Tobacco Company Xiangxi Autonomous Prefecture Corporation, Jishou, China
| | - Yu Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Hui Mao
- Hunan Tobacco Company Xiangxi Autonomous Prefecture Corporation, Jishou, China
| | - Xianjun Long
- Hunan Tobacco Company Xiangxi Autonomous Prefecture Corporation, Jishou, China
| | - Sheng Zhang
- Hunan Tobacco Company Xiangxi Autonomous Prefecture Corporation, Jishou, China
| | - Jingjing Ma
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Yunhua Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
- Center for the Creation of Chinese Herbal Medicine Varieties, Yuelushan Laboratory, Changsha, China
| |
Collapse
|
4
|
Wu B, Li X, Lin S, Jiao R, Yang X, Shi A, Nie X, Lin Q, Qiu R. Miscanthus sp. root exudate alters rhizosphere microbial community to drive soil aggregation for heavy metal immobilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175009. [PMID: 39053533 DOI: 10.1016/j.scitotenv.2024.175009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
The heavy metals (HMs) spatial distribution in soil is intricately shaped by aggregation processes involving chemical reactions and biological activities, which modulate HMs toxicity, migration, and accumulation. Pioneer plants play a central role in preventing HMs at source, yet the precise mechanisms underlying their involvement in soil aggregation remain unclear. This study investigates HMs distribution within rhizosphere and bulk soil aggregates of Miscanthus sp. grown in tailings to elucidate the impact of root exudates (REs) and rhizosphere microbes. The results indicate that Miscanthus sp. enhance soil stability, increasing the proportion of macroaggregates by 4.06 %-9.78 %. HMs tend to concentrate in coarse-aggregates, particularly within rhizosphere environments, while diminishing in fine-aggregates. Under HMs stress, lipids and lipid-like molecules are the most abundant REs produced by Miscanthus sp., accounting for under up to 26.74 %. These REs form complex with HMs, promoting microaggregates formation. Charged components such as sugars and amino acids further contribute to soil aggregation. REs also regulates rhizosphere bacteria and fungi, with Acidobacteriota, Chloroflexi were the dominant bacterial phyla, while Ascomycota and Basidiomycota dominate the fungal community. The synergistic effect of REs and microorganisms impact soil organic matter and nutrient content, facilitating HMs nanoparticle heteroaggregation and macroaggregates formation. Consequently, soil structure and REs shape the distribution of HMs in soil aggregation. Pioneer plants mediate REs interaction with rhizosphere microbes, promoting the distribution of HMs into macroaggregates, leading to immobilization. This study sheds light on the role of pioneer plants in regulating soil HMs, offering valuable insights for soil remediation strategies.
Collapse
Affiliation(s)
- Bohan Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xiao Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Shukun Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Ruifang Jiao
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou 510650, China
| | - Xu Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Aoao Shi
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xinxing Nie
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Qingqi Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
5
|
Zhou Y, Lan W, Yang F, Zhou Q, Liu M, Li J, Yang H, Xiao Y. Invasive Amaranthus spp. for heavy metal phytoremediation: Investigations of cadmium and lead accumulation and soil microbial community in three zinc mining areas. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117040. [PMID: 39270476 DOI: 10.1016/j.ecoenv.2024.117040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Amaranthus spp. are a group of strongly invasive and vigorous plants, and heavy metal phytoremediation using alien invasive Amaranthus spp. has been a popular research topic. In this study, the bioconcentration factor (BCF) and translocation factor (TF) of Amaranthus spp. were evaluated, focusing on the accumulation potential of cadmium (Cd) and lead (Pb) by plants from three different zinc mining areas, namely Huayuan (HYX), Yueyang (LYX), and Liuyang (LYX). The HYX area has the most severe Cd contamination, while the LYX area has the most apparent Pb contamination. The results showed that Amaranthus spp. had a strong Cd and Pb enrichment capacity in low-polluted areas. To elucidate the underlying mechanisms, we used high-throughput sequencing of 16S rRNA and internal transcribed spacer (ITS) regions to analyze rhizosphere bacterial and fungal communities in three areas. The results showed significant differences in the structure, function, and composition of microbial communities and complex interactions between plants and their microbes. The correlation analysis revealed that some key microorganisms (e.g., Amycolatopsis, Bryobacterium, Sphingomonas, Flavobacterium, Agaricus, Nigrospora, Humicola) could regulate several soil factors such as soil pH, organic matter (OM), available nitrogen (AN), and available phosphorus (AP) to affect the heavy metal enrichment capacity of plants. Notably, some enzymes (e.g., P-type ATPases, Cysteine synthase, Catalase, Acid phosphatase) and genes (e.g., ZIP gene family, and ArsR, MerR, Fur, NikR transcription regulators) have been found to be involved in promoting Cd and Pb accumulation in Amaranthus spp. This study can provide new ideas for managing heavy metal-contaminated soils and new ways for the ecological resource utilization of invasive plants in phytoremediation.
Collapse
Affiliation(s)
- Yu Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Wendi Lan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Fan Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Qingfan Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; Analysis Technology Department, Xiangxi Ecological Environment Monitoring Center, Jishou 416000, China
| | - Mingxin Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Jian Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Hua Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; Yuelushan Laboratory, Changsha 410128, China.
| | - Yunhua Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; Yuelushan Laboratory, Changsha 410128, China.
| |
Collapse
|
6
|
Phang LY, Mingyuan L, Mohammadi M, Tee CS, Yuswan MH, Cheng WH, Lai KS. Phytoremediation as a viable ecological and socioeconomic management strategy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50126-50141. [PMID: 39103580 DOI: 10.1007/s11356-024-34585-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 07/27/2024] [Indexed: 08/07/2024]
Abstract
Phytoremediation is an environmentally friendly alternative to traditional remediation technologies, notably for soil restoration and agricultural sustainability. This strategy makes use of marginal areas, incorporates biofortification processes, and expands crop alternatives. The ecological and economic benefits of phytoremediation are highlighted in this review. Native plant species provide cost-effective advantages and lower risks, while using invasive species to purify pollutants might be a potential solution to the dilemma of not removing them from the new habitat. Thus, strict management measures should be used to prevent the overgrowth of invasive species. The superior advantages of phytoremediation, including psychological and social improvements, make it a powerful tool for both successful cleanup and community well-being. Its ability to generate renewable biomass and adapt to a variety of uses strengthens its position in developing the bio-based economy. However, phytoremediation faces severe difficulties such as complex site circumstances and stakeholder doubts. Overcoming these challenges necessitates a comprehensive approach that balances economic viability, environmental protection, and community welfare. Incorporating regulatory standards such as ASTM and ISO demonstrates a commitment to long-term environmental sustainability, while also providing advice for unique nation-specific requirements. Finally, phytoremediation may contribute to a pleasant coexistence of human activity and the environment by navigating hurdles and embracing innovation.
Collapse
Affiliation(s)
- Lai-Yee Phang
- Department of Bioprocess Technology, Faculty of Biotechnology & Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Lim Mingyuan
- Department of Bioprocess Technology, Faculty of Biotechnology & Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mitra Mohammadi
- Department of Environmental Science, Kheradgerayan Motahar Institute of Higher Education, Kosar 45, Vakil Abad Boulevard, Mashhad, Iran
| | - Chong-Siang Tee
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), 31900, Kampar, Perak, Malaysia
| | - Mohd Hafis Yuswan
- Halal Products Research Institute, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Wan-Hee Cheng
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology, 41012, Abu Dhabi, United Arab Emirates
| |
Collapse
|
7
|
Mao J, Zheng Z, Ma L, Wang H, Wang X, Zhu F, Xue S, Srivastava P, Sapsford DJ. Polymetallic contamination drives indigenous microbial community assembly dominated by stochastic processes at Pb-Zn smelting sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174575. [PMID: 38977087 DOI: 10.1016/j.scitotenv.2024.174575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/14/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
Indigenous microbial communities in smelting areas are crucial for maintaining fragile ecosystem functions. However, the community assembly process and their responses to polymetallic pollution are poorly understood, especially the taxa in each bin from the amplicons that contributed to the assembly process. Herein, microbial diversity, co-occurrence patterns, assembly process and the intrinsic mechanisms across contamination gradients at a typical PbZn smelting site were systematically unravelled by high-throughput sequencing. The results showed a consistent compositional profile among the indigenous communities across sampling sites, wherein genera KD4-96 from Chloroflexi and Sphingomonas from Proteobacteria emerged as the most abundant taxa. Network modularity of the high- and middle-contaminated communities at Pb and Zn smelting sites was >0.44, indicating that community populations were clustered into modules to resist high heavy metal stress. Stochastic processes dominated the community assembly, with the greatest contribution from drift (DR), which was significantly correlated with Pb, Zn, Cr and Cu contents. What's particular was that the DR-controlled bins were dominated by Proteobacteria (typical r-strategists), while the HoS-controlled bins were by Chloroflexi (typical K-strategists). Furthermore, the proportion of DR in the bins dominated by Sphingomonadaceae (phylum Proteobacteria) increased gradually with the increase of heavy metal contents. These discoveries provide essential insights for community control in restoring and mitigating soil degradation at PbZn smelting sites.
Collapse
Affiliation(s)
- Jialing Mao
- Institute of Geological Survey, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Zikui Zheng
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Liyuan Ma
- Institute of Geological Survey, China University of Geosciences, Wuhan 430074, Hubei, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; School of Engineering, Cardiff University, Cardiff CF243AA, United Kingdom.
| | - Hongmei Wang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Xingjie Wang
- Institute of Geological Survey, China University of Geosciences, Wuhan 430074, Hubei, China; School of Engineering, Cardiff University, Cardiff CF243AA, United Kingdom
| | - Feng Zhu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Shengguo Xue
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | | | - Devin J Sapsford
- School of Engineering, Cardiff University, Cardiff CF243AA, United Kingdom
| |
Collapse
|
8
|
Zhang H, Lv X, Yang Z, Li Q, Wang P, Zhang S, Xu Y, Wang X, Ali EF, Hooda PS, Lee SS, Li R, Shaheen SM, Zhang Z. A field trial for remediation of multi-metal contaminated soils using the combination of fly ash stabilization and Zanthoxylumbungeanum- Lolium perenne intercropping system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 361:121231. [PMID: 38810463 DOI: 10.1016/j.jenvman.2024.121231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Insitu stabilization and phytoextraction are considered as two convenient and effective technologies for the remediation of toxic elements (TEs) in soils. However, the effectiveness of these two remediation technologies together on the bioavailability and phytoextraction of TEs in field trials has not been explored yet. Specifically, the remediation potential of fly ash (FA; as stabilizing agent) and ryegrass (as a TE accumulator) intercropped with a target crop for soil polluted with multiple TEs has not been investigated yet, particularly in long-term field trials. Therefore, in this study, a six-month combined remediation field experiment of FA stabilization and/or ryegrass intercropping (IR) was carried out on the farmland soils contaminated with As, Cd, Cr, Cu, Hg, Ni, Pb and Zn where Zanthoxylumbungeanum (ZB) trees as native crops were grown for years. The treatments include soil cultivated alone with ZB untreated- (control) and treated-with FA (FA), produced by burning lignite in Shaanxi Datong power plant, China, soil cultivated with ZB and ryegrass untreated- (IR) and treated-with FA (FA + IR). This was underpinned by a large-scale survey in Daiziying (China), which showed that the topsoils were polluted by Cd, Cu, Hg and Pb, and that Hg and Pb contents in the Zanthoxylumbungeanum fruits exceeded their allowable limits. The TEs contents in the studied FA were lower than their total element contents in the soil. The DTPA-extractable TEs contents of the remediation modes were as follows: FA < FA + IR < IR < control. Notably, TEs contents in the ZB fruits were lowest under the FA + IR treatment, which were decreased by 27.6% for As, 42.3% for Cd, 16.7% for Cr, 30.5% for Cu, 23.1% for Hg, 15.5% for Ni, 33.2% for Pb and 38.1% for Zn compared with the control treatment. Whereas the FA + IR treatment enhanced TEs contents in ryegrass shoots and roots, and the TEs contents in ryegrass shoots were below their regulatory limits for fodder crops. The findings confirmed that the combined remediation strategy, i.e., FA (with low content of TEs) stabilization effect and intercropping of ZB (target crop) and ryegrass (accumulating plant) could provide a prospective approach to produce target plants within safe TEs thresholds with greater economic benefits, while remediating soils polluted with multiple TEs and mitigating the potential ecological and human health risk. Those results are of great applicable concern.
Collapse
Affiliation(s)
- Han Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Xiaoyong Lv
- China Nonferrous Metal Industry Xi 'an Survey and Design Institute Co., LTD, Xian, Shaanxi Province, 710054, China.
| | - Zhaowen Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Qian Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Ping Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Shuqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Yaqiong Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Xuejia Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| | - Peter S Hooda
- Faculty of Engineering, Computing and the Environment, Kingston University, London, Kingston Upon Thames, KT1 2EE, London, UK.
| | - Sang Soo Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea.
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516, Kafr El-Sheikh, Egypt.
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| |
Collapse
|
9
|
Machunguene M, Guilundo SV, Oliveira RS, Martins CM, Quilambo OA. Assessment of heavy metals and human health risk associated with the consumption of crops cultivated in industrial areas of Maputo, Mozambique. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2024:1-12. [PMID: 38733327 DOI: 10.1080/10934529.2024.2349478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/23/2024] [Indexed: 05/13/2024]
Abstract
This study aimed to evaluate heavy metals concentrations in soils and vegetables (cabbage, lettuce, and cassava) cultivated at Matola and Beluluane Industrial Parks, and to assess health risks linked to their consumption through estimated daily intake, hazard index (HI), and incremental lifetime cancer risk. Concentrations of Al, As, Co, Cd, Cr, Ni, Pb, and Zn were determined in the two sites. Soil concentrations of As at Beluluane site and As, Cd, and Cr at Matola site exceeded reference limits of the Food and Agriculture Organization/World Health Organization, showing heavy metal contamination. At Beluluane site, all studied vegetables presented As and Pb levels higher than reference limits, Cd concentrations were higher than the reference limit in cabbage, lettuce, and cassava leaves. At Matola site crops concentrations of As, Cd, Cr, and Pb exceeded the reference limits. Zinc exceeded the reference limit in all crops except in cabbage. HIs for vegetables from Beluluane exceeded 1.0 in cabbage (2.66), lettuce (2.27), and cassava leaves (2.37). Likewise, at Matola, HIs exceeded 1.0 in lettuce (1.67), cassava leaves (1.65), and root tubers (13). We found that vegetables cultivated in industrial parks present high carcinogenic risk due to heavy metal contamination, rendering them unsuitable for human consumption.
Collapse
Affiliation(s)
- Mário Machunguene
- Department of Biological Sciences, Faculty of Sciences, Eduardo Mondlane University, Maputo, Mozambique
| | - Sónia V Guilundo
- Department of Biological Sciences, Faculty of Sciences, Eduardo Mondlane University, Maputo, Mozambique
| | - Rui S Oliveira
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Célia M Martins
- Department of Biological Sciences, Faculty of Sciences, Eduardo Mondlane University, Maputo, Mozambique
| | - Orlando A Quilambo
- Department of Biological Sciences, Faculty of Sciences, Eduardo Mondlane University, Maputo, Mozambique
| |
Collapse
|
10
|
Zheng M, Yu H, An T, Shen X. Association between urinary multiple metals and platelet-related parameters: A cross-sectional study in a metal-contaminated area of China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:7828-7836. [PMID: 38170364 DOI: 10.1007/s11356-023-31775-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
Previous works have shown that hematological system can be affected by exposure to lead; however, the effects of multiple metals on platelets remain elusive within the population from metal-contaminated areas. Hence, the study enrolled 609 participants, with 396 from a metal-exposed area and 213 from a control area. Platelet count (PLT), mean platelet volume (MPV), thrombocytocrit (PCT), platelet to large cell ratio (P-LCR), and platelet distribution width (PDW) were selected to evaluate platelet function. Stepwise regression and Lasso regression were utilized to identify the most influential metals. Moreover, the generalized linear model (GLM), Bayesian kernel machine regression (BKMR) models, and quantile g-computation were employed to estimate the individual or combined effects associations between 12 urinary metals and platelet indices. The results revealed all metals except vanadium, copper, strontium, and molybdenum were significantly higher in the exposed group. The GLM models indicated that urinary metals, including lead, antimony, and arsenic, exhibited associations with PLT, MPV, P-LCR, and PDW. Quantile g-computation and BKMR demonstrated negative correlations between metal mixtures and MPV as well as PDW. In conclusion, the study highlights the associations between multiple metal exposures and platelet indices, suggesting that elevated levels of the metal mixture may impede platelet activation in the population in metal-contaminated areas.
Collapse
Affiliation(s)
- Min Zheng
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Hang Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiantao Shen
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China.
| |
Collapse
|
11
|
Xiao Y, Chen L, Teng K, Ma J, Xiang S, Jiang L, Liu G, Yang B, Fang J. Potential roles of the rhizospheric bacterial community in assisting Miscanthus floridulus in remediating multi-metal(loid)s contaminated soils. ENVIRONMENTAL RESEARCH 2023; 227:115749. [PMID: 36965787 DOI: 10.1016/j.envres.2023.115749] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/23/2023] [Accepted: 03/22/2023] [Indexed: 05/08/2023]
Abstract
Phytoremediation technology is an important approach applied to heavy metal remediation, and how to improve its remediation efficiency is the key. In this study, we compared the rhizospheric bacterial communities and metals contents in Miscanthus floridulus (M. floridulus) of four towns, including Huayuan Town (HY), Longtan Town (LT), Maoer Village (ME), and Minle Town (ML) around the lead-zinc mining area in Huayuan County, China. The roles of rhizospheric bacterial communities in assisting the phytoremediation of M. floridulus were explored. It was found that the compositions of the rhizospheric bacterial community of M. floridulus differed in four regions, but majority of them were heavy metal-resistant bacteria that could promote plant growth. Results of bioconcentration factors showed the enrichment of Cu, Zn, and Pb by M. floridulus in these four regions were significantly different. The Zn enrichment capacity of ML was the strongest for Cu and stronger than LT and ME for Pb. The enrichment capacity of LT and ML was stronger than HY and ME. These bacteria may influence the different heavy metals uptake of M. floridulus by altering the soil physiochemical properties (e.g., soil peroxidase, pH and moisture content). In addition, co-occurrence network analysis also showed that LT and ML had higher network stability and complexity than HY and ME. Functional prediction analysis of the rhizospheric bacterial community showed that genes related to protein synthesis (e.g., zinc-binding alcohol dehydrogenase/oxidoreductase, Dtx R family transcriptional regulators and ACC deaminase) also contributed to phytoremediation in various ways. This study provides theoretical guidance for selecting suitable microorganisms to assist in the phytoremediation of heavy metals.
Collapse
Affiliation(s)
- Yunhua Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Liang Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Kai Teng
- Hunan Tobacco Science Institute, Changsha, 410004, China
| | - Jingjing Ma
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Sha Xiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Lihong Jiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Bo Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
12
|
Sabir MA, Guo W, Nawaz MF, Yasin G, Yousaf MTB, Gul S, Hussain T, Rahman SU. Assessing the effects of limestone dust and lead pollution on the ecophysiology of some selected urban tree species. FRONTIERS IN PLANT SCIENCE 2023; 14:1144145. [PMID: 37255552 PMCID: PMC10225577 DOI: 10.3389/fpls.2023.1144145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/14/2023] [Indexed: 06/01/2023]
Abstract
Soil and air pollution caused by heavy metals and limestone dust are prevalent in urban environments and they are an alarming threat to the environment and humans. This study was designed to investigate the changes in morphological and physiological traits of three urban tree species seedlings (Bombax ceiba, Conocarpus lancifolius, and Eucalyptus camaldulensis) under the individual as well as synergetic effects of heavy metal lead (Pb) and limestone dust toxicities. The tree species were grown under controlled environmental conditions with nine treatments consisting of three levels of dust (0, 10, and 20 g) and three levels of Pb contaminated water irrigation (0, 5, and 10 mg L-1). The results depicted that the growth was maximum in T1 and minimum in T9 for all selected tree species. B. ceiba performed better under the same levels of Pb and limestone dust pollution as compared with the other two tree species. The B. ceiba tree species proved to be the most tolerant to Pb and limestone pollution by efficiently demolishing oxidative bursts by triggering SOD, POD, CAT, and proline contents under different levels of lead and dust pollution. The photosynthetic rate, stomatal conductance, evapotranspiration rate, and transpiration rate were negatively influenced in all three tree species in response to different levels of lead and dust applications. The photosynthetic rate was 1.7%, 3.1%, 7.0%, 11.03%, 16.2%, 23.8%, 24.8%, and 30.7%, and the stomatal conductance was 5%, 10.5%, 23.5%, 40%, 50.01%, 61.5%, 75%, and 90.9%, greater in T2, T3, T4, T5, T6, T7, T8, and T9 plants of B. ceiba, respectively, as compared to T1. Based on the findings, among these three tree species, B. ceiba is strongly recommended for planting in heavy metal and limestone dust-polluted areas followed by E. camaldulensis and C. lancifolius due to their better performance and efficient dust and heavy metal-scavenging capability.
Collapse
Affiliation(s)
| | - Wei Guo
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, Henan, China
| | | | - Ghulam Yasin
- Department of Forestry and Range Management, Bahauddin Zakariya University, Multan, Pakistan
| | | | - Sadaf Gul
- Department of Botany, University of Karachi, Karachi, Pakistan
| | - Tanveer Hussain
- Institute of Forest Sciences, The Islamia University, Bahawalpur, Pakistan
| | - Shafeeq Ur Rahman
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
13
|
Enrichment and distribution characteristics of heavy metal(loid)s in native plants of abandoned farmlands in sewage irrigation area. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:50471-50483. [PMID: 36795208 DOI: 10.1007/s11356-023-25810-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/04/2023] [Indexed: 02/17/2023]
Abstract
Soil samples and native plants were collected from abandoned farmlands with a long history of sewage irrigation along Dongdagou stream, Baiyin City. We investigated the concentrations of heavy metal(loid)s (HMMs) in soil-plant system to evaluate the accumulation and transportation ability of HMMs in native plants. Results indicated that soils in study area were severely polluted by Cd, Pb, and As. With the exception of Cd, the correlation between total HMM concentrations in soil and plant tissues was poor. Among all investigated plants, no one was close to the criteria for the HMM concentrations of hyperaccumulators. The concentrations of HMMs in most plants were reached the phytotoxic level and the abandoned farmlands could not be used as forages, which showed that native plants may possess resistance capabilities or high tolerance for As, Cu, Cd, Pb, and Zn. The FTIR (Fourier transform infrared spectrometer) results suggested that the detoxification of HMMs in plants may depend on the functional groups (-OH, C-H, C-O, and N-H) of some compounds. Bioaccumulation factor (BAF), bioconcentration factor (BCF), and biological transfer factor (BTF) were used to identify the accumulation and translocation characteristics of HMMs by native plants. S. glauca had the highest mean values of BTF for Cd (8.07) and Zn (4.75). C. virgata showed the highest mean BAFs for Cd (2.76) and Zn (9.43). P. harmala, A. tataricus, and A. anethifolia also presented high accumulation and translocation abilities for Cd and Zn. High HMMs (As, Cu, Cd, Pb, and Zn) accumulation in the aerial parts of plants may lead to increased accumulation of HMMs in the food chain; additional research is desperately required. This study demonstrated the HM enrichment characteristics of weeds and provided a basis for the management of abandoned farmlands.
Collapse
|
14
|
Borah P, Rene ER, Rangan L, Mitra S. Phytoremediation of nickel and zinc using Jatropha curcas and Pongamia pinnata from the soils contaminated by municipal solid wastes and paper mill wastes. ENVIRONMENTAL RESEARCH 2023; 219:115055. [PMID: 36574797 DOI: 10.1016/j.envres.2022.115055] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/14/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
The primary source of soil pollution is a complex mixture of numerous inorganic and organic compounds (including chlorinated compounds, nutrients, and heavy metals, etc.). The presence of all of these compounds makes remediation and cleanup difficult. In this study, the phytoremediation ability of Jatropha curcas and Pongamia pinnata was tested to remove nickel (Ni) and Zinc (Zn) from paper mill and municipal landfill contaminated soils, to understand the uptake potential and to estimate the accumulation pattern of Ni and Zn in the vegetative parts of the plant. The experiments were carried out in pots (3 kg capacity) and the different combinations of soil were made by mixing the contaminated soil with a reference soil (forest soil) as T0, T25, T50, T75 and T100. The plant biomass, chlorophyll content, proline, nitrate reductase activity and metal removal efficiency (%)were determined after 120 DAS (i.e., the days after sowing). The results of the study showed that with increasing metal stress, there is a reduction in the above-ground biomass content in both the plant species with a slightly less impact on the root biomass. Over a period of 4 months, J. curcas and P. pinnata removed 82-86% and 93-90% Ni, respectively. The removal of Zn was significantly less as compared to Ni as most of the Zn remained in the belowground part (roots) and in the soil. Besides, the phytostabilization capacities of the plants were calculated on the basis of their tolerance index (TI), bioaccumulation factor (BAF) and translocation factor (TF). The low BAF and TF values with increasing heavy metals (HMs) content indicates its higher phytostabilization capacity in the root and rhizospheric region as compared to phytoaccumulation.
Collapse
Affiliation(s)
- Pallabi Borah
- Department of Environmental Science, Royal Global University, Guwahati, Assam, 781035, India
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands
| | - Latha Rangan
- Applied Biodiversity Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Assam, 781039, India
| | - Sudip Mitra
- Agro-ecotechnology Laboratory, School of Agro & Rural Technology, Indian Institute of Technology Guwahati (IITG), Assam, 781039, India; Centre for Disaster Management and Research, Indian Institute of Technology Guwahati (IITG), Assam, 781039, India.
| |
Collapse
|
15
|
Xiao Y, Chen L, Li C, Ma J, Chen R, Yang B, Liu G, Liu S, Fang J. Role of the rhizosphere bacterial community in assisting phytoremediation in a lead-zinc area. FRONTIERS IN PLANT SCIENCE 2023; 13:1106985. [PMID: 36874912 PMCID: PMC9982732 DOI: 10.3389/fpls.2022.1106985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Heavy metals (HMs) contamination and vegetation destruction in the mining area caused by mining activities are severely increasing. It is urgent to restore vegetation and stabilize HMs. In this study, we compared the ability of HMs phytoextraction/phytostabilization of three dominant plants, including Artemisia argyi (LA), Miscanthus floridulus (LM), and Boehmeria nivea (LZ) in a lead-zinc mining area in Huayuan County (China). We also explored the role of the rhizosphere bacterial community in assisting phytoremediation using 16S rRNA sequencing technology. Bioconcentration factor (BCF) and translocation factor (TF) analysis showed that LA preferred accumulating Cd, LZ preferred accumulating Cr and Sb, and LM preferred accumulating Cr and Ni. Significant (p < 0.05) differences were found among the rhizosphere soil microbial communities of these three plants. The key genera of LA were Truepera and Anderseniella, that of LM were Paracoccus and Erythrobacter, and of LZ was Novosphingobium. Correlation analysis showed some rhizosphere bacterial taxa (e.g., Actinomarinicola, Bacillariophyta and Oscillochloris) affected some soil physicochemical parameters (e.g., organic matter and pH) of the rhizosphere soil and enhanced the TF of metals. Functional prediction analysis of soil bacterial community showed that the relative abundances of genes related to the synthesis of some proteins (e.g., manganese/zinc-transporting P-type ATPase C, nickel transport protein and 1-aminocyclopropane-1-carboxylate deaminase) was positively correlated with the phytoextraction/phytostabilization capacity of plants for heavy metals. This study provided theoretical guidance on selecting appropriate plants for different metal remediation applications. We also found some rhizosphere bacteria might enhance the phytoremediation of multi-metals, which could provide a reference for subsequent research.
Collapse
Affiliation(s)
- Yunhua Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Liang Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Chunxiao Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Jingjing Ma
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Rui Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Bo Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Shuming Liu
- College of Chemical and Environmental Sciences, YiLi Normal University, YiLi, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
16
|
Li M, Yao J, Sunahara G, Hawari J, Duran R, Liu J, Liu B, Cao Y, Pang W, Li H, Li Y, Ruan Z. Novel microbial consortia facilitate metalliferous immobilization in non-ferrous metal(loid)s contaminated smelter soil: Efficiency and mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120042. [PMID: 36044947 DOI: 10.1016/j.envpol.2022.120042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/13/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Exposure to toxic metals from nonferrous metal(loid) smelter soils can pose serious threats to the surrounding ecosystems, crop production, and human health. Bioremediation using microorganisms is a promising strategy for treating metal(loid)-contaminated soils. Here, a native microbial consortium with sulfate-reducing function (SRB1) enriched from smelter soils can tolerate exposures to mixtures of heavy metal(loid)s (e.g., As and Pb) or various organic flotation reagents (e.g., ethylthionocarbamate). The addition of Fe2+ greatly increased As3+ immobilization compared to treatment without Fe2+, with the immobilization efficiencies of 81.0% and 58.9%, respectively. Scanning electronic microscopy-energy dispersive spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy confirmed that the As3+ immobilizing activity was related to the formation of arsenic sulfides (AsS, As4S4, and As2S3) and sorption/co-precipitation of pyrite (FeS2). High-throughput 16S rRNA gene sequencing of SRB1 suggests that members of Clostridium, Desulfosporosinus, and Desulfovibrio genera play an important role in maintaining and stabilizing As3+ immobilization activity. Metal(loid)s immobilizing activity of SRB1 was not observed at high and toxic total exposure concentrations (220-1181 mg As/kg or 63-222 mg Pb/kg). However, at lower concentrations, SRB1 treatment decreased bioavailable fractions of As (9.0%) and Pb (28.6%) compared to without treatment. Results indicate that enriched native SRB1 consortia exhibited metal(loid) transformation capacities under non-toxic concentrations of metal(loid)s for future bioremediation strategies to decrease mixed metal(loid)s exposure from smelter polluted soils.
Collapse
Affiliation(s)
- Miaomiao Li
- Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Jun Yao
- Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China.
| | - Geoffrey Sunahara
- Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China; Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Drive, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Jalal Hawari
- École Polytechnique de Montréal, Département des génies civil, géologique et des mines, 2900 boul. Édouard-Montpetit, Montréal, Québec, H3T 1J4, Canada
| | - Robert Duran
- Universite de Pau et des Pays de l'Adour, UPPA/E2S, IPREM CNRS 5254, Pau, France
| | - Jianli Liu
- Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Bang Liu
- Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Ying Cao
- Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Wancheng Pang
- Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Hao Li
- Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Yangquan Li
- School of Landscape Architecture, Beijing University of Agriculture, Beijing, 100082, China
| | - Zhiyong Ruan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
17
|
Wang P, Shen F, Li R, Guo D, Liang W, Liu T, Zhang Z. Remediation of Cd and Zn contaminated soil by zero valent iron (Fe 0): A field trial. ENVIRONMENTAL TECHNOLOGY & INNOVATION 2022; 28:102603. [DOI: 10.1016/j.eti.2022.102603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
18
|
Zhou Z, Peng C, Liu X, Jiang Z, Guo Z, Xiao X. Pollution and Risk Assessments of Heavy Metal(loid)s in the Soil around Lead-Zinc Smelteries via Data Integration Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9698. [PMID: 35955055 PMCID: PMC9368718 DOI: 10.3390/ijerph19159698] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 06/01/2023]
Abstract
Pb-Zn smelting is a major cause of heavy metal(loid) contaminations in soils. We collected data on heavy metal(loid)s in the soils near Pb-Zn smelteries globally from 54 peer-reviewed reports to study the metals' distribution, pollution index, and potential ecological and health risks. We observed that 90% of the studied Pb-Zn smelteries were distributed in Asia and Europe. Heavy metal(loid)s were mainly deposited within a 2 km distance to the smelteries, with mean concentrations (mg/kg) of 208.3 for As, 26.6 for Cd, 191.8 for Cu, 4192.6 for Pb, and 4187.7 for Zn, respectively. Cd and Pb concentrations in the soil exceeded their corresponding upper continental crust values several hundred folds, suggesting severe contamination. The smelting area had the highest heavy metal(loid) contamination in soil, followed by the forest land, farmland, and living area. Compared with the soil environmental standard values from various countries, As, Cd, Pb, and Zn were considered priority pollutants for protecting the ecosystem and human health. Likewise, As, Cd, and Pb were suggested as the priority pollutants for protecting groundwater safety. The potential ecological and health risks of heavy metal(loid)s in the soil within 2 km of Pb-Zn smelteries were severe and should be of concern.
Collapse
Affiliation(s)
| | - Chi Peng
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | | | | | | | | |
Collapse
|
19
|
Growth Response, Enrichment Effect, and Physiological Response of Different Garden Plants under Combined Stress of Polycyclic Aromatic Hydrocarbons and Heavy Metals. COATINGS 2022. [DOI: 10.3390/coatings12081054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The combined pollution of heavy metals and polycyclic aromatic hydrocarbons is very common in China and needs urgent addressal. The use of resistant garden plants for phytoremediation accounts for both ecological restoration and ornamental value and has great application potential. In this study, cadmium (Cd) and pyrene (Pyr) were used as contaminants, and the growth responses, enrichment characteristics, and physiological responses of common garden plants were studied using greenhouse pot experiments. The Cd-Pyr compound stress affected the growth responses of plants. Chinese Pennisetum and lotus exhibited the best Cd-Pyr removal effect: the removal rates of Cd were 68.91% and 60.25%, respectively, and those of Pyr were 77.52% and 63.74%, respectively. Compound stress promoted the protective enzymes of ryegrass, lotus, and Chinese Pennisetum. Malondialdehyde (MDA) content in the leaves of the five plants was higher than that in the control group, whereas the chlorophyll and carotenoid content were lower. Overall, the order of resistance of the five garden plants tested under Cd-Pyr compound stress was: Chinese Pennisetum, lotus > ryegrass > Hemerocallis, Purple Coneflower.
Collapse
|
20
|
Wang P, Shen F, Xu Y, Wang X, Huang H, Li R, Liu T, Guo D, Du J, Guo Z, Zhang Z. Sustainable biochar effects on the remediation of contaminated soil: A 2-crop season site practice near a lead-zinc smelter in Feng County, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:119095. [PMID: 35247509 DOI: 10.1016/j.envpol.2022.119095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
It is of great significance to explore the remediation pattern in actual heavy metal (HM) contaminated sites. The field trial was carried out to research the remediation effect of biochar near a lead-zinc smelter in Feng County, China, under the rotation condition of different crops. This kind of cultivation mode is very representative in northern of China. And the pattern of production and restoration is suitable for scarce land resources and large food demand in China. The changes of soil physiochemical properties with the biochar addition, crop growth and the accumulated HMs by crops were focused on. The results showed the biochar application was excellent in improving soil nutrient elements and crop growth. The contents of TK were more obvious than those of TN and TP, with an increase of 2.6%-28.2% compared with the controls (without the addition of biochar). The yield of first season crops, i.e., soybean and corn, increased by 30%-42% and 34%-61%, respectively, and the second season crops, i.e., rape and wheat, with the increment of 25%-41% and 9%-29%, respectively. The availability forms of Cd and Pb decreased by 1.07-10.0% and 2.92-8.35%, respectively. While the improvement on the status of the HMs accumulated by crops was disappointing. The contents of HMs accumulated by crops increased to varying degrees (e.g., Pb and Zn in root, Cu and Pb in grain, and Cd in stems and leaves). Moreover, the concentrations of HMs in seeds of crops were higher than the limited levels given by the Chinese directive. Considering the results of the study and food safety, it is suggested to change the nature of the land around the smelter into woodland or construction land to prohibit the cultivation of food crops in this area.
Collapse
Affiliation(s)
- Ping Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Feng Shen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Yaqiong Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Xuejia Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Hui Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Di Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Juan Du
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Zhanyu Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China.
| |
Collapse
|
21
|
Anaman R, Peng C, Jiang Z, Liu X, Zhou Z, Guo Z, Xiao X. Identifying sources and transport routes of heavy metals in soil with different land uses around a smelting site by GIS based PCA and PMF. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153759. [PMID: 35151753 DOI: 10.1016/j.scitotenv.2022.153759] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 05/15/2023]
Abstract
Identifying sources and transport routes of heavy metals in soil is necessary for pollution control. This study integrated principal component analysis (PCA), positive matrix factorization (PMF), and geographic information system (GIS) mapping to identify the sources, transport routes, and apportion heavy metals in soil based on land uses around a smelting site. The results revealed that the mean concentrations of As, Hg, Cd, Pb, Zn, and Cu in the soil exceeded their background values except for Cr, Mn, and Fe, which were slightly higher. According to the mean Igeo values, the soils were most polluted with As, Cd, Pb, and Cu, followed a decreasing order of grassland (1.71, 2.38, 2.10, and 1.73) > agricultural land (0.632, 2.32, 1.19, and 1.08) > forestland (0.255, 0.952, 0.654, and 0.148). Smelter emissions and soil parent materials were the primary sources of heavy metals. The PCA and PMF factor hotspots visualized by GIS were mostly distributed within the smelting site, slag and wastewater runoff areas, and in the dominant wind direction. The GIS based PCA and PMF results confirmed that As, Cd, Pb, Cu, and Zn were transported mainly by surface runoff and atmospheric deposition, while Hg was mostly from atmospheric deposition. Grassland and agricultural land soils received heavy metals from surface runoff and atmospheric deposition, while forestland soils only received from atmospheric deposition. The integrated approach was useful in identifying the sources, transport routes, and contributions of the heavy metals among different land uses, thereby assisting policymakers in understanding the sources and transport routes of heavy metals in the soil around smelting areas.
Collapse
Affiliation(s)
- Richmond Anaman
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, China
| | - Chi Peng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, China.
| | - Zhichao Jiang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, China
| | - Xu Liu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, China
| | - Ziruo Zhou
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, China
| | - Zhaohui Guo
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, China
| | - Xiyuan Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, China
| |
Collapse
|
22
|
Chen H, Wang L, Hu B, Xu J, Liu X. Potential driving forces and probabilistic health risks of heavy metal accumulation in the soils from an e-waste area, southeast China. CHEMOSPHERE 2022; 289:133182. [PMID: 34883131 DOI: 10.1016/j.chemosphere.2021.133182] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 06/13/2023]
Abstract
The integrated analysis of the distribution characteristics, health risks, and source identification of heavy metals is crucial for formulating prevention and control strategies for soil contamination. In this study, the area around an abandoned electronic waste dismantling center in China was selected as the research area. The probabilistic health risks caused by heavy metals were evaluated by the Monte Carlo simulation. Random forest, partial least squares regression, and generalized linear models were utilized to predict heavy metal distributions and identify the potential driving factors affecting heavy metal accumulation in soil. The relationships of spatial variation between the heavy metal contents and environmental variables were further visualized. The results revealed that cadmium (Cd) and copper (Cu) were the primary soil pollutants in the study area and caused high ecological risks. The probabilistic health risk assessment indicated that the non-carcinogenic and carcinogenic risks for all populations were acceptable. However, children are more susceptible to heavy metal soil contamination than adults. The sensitivity analyses indicated that the total contents of soil heavy metals and soil ingestion rate were the dominant factors affecting human health. The random forest model, with R2 values of 0.41, 0.65, 0.57, 0.71, and 0.58 for Cd, Cu, Ni, Zn, and Pb, respectively, predicted the heavy metal concentrations better than the other two models. The distance to the nearest industrial enterprise, industrial output, and agricultural chemical input were the main factors affecting Cd, Cu, Zn, and Pb accumulations in the soil, and soil pH and soil parent material were the primary factors influencing Ni accumulation in the soil. The visualization results of the geographically weighted regression model showed a significant relationship between soil heavy metal contents and industrial activity level. This study could be utilized as a reference for policymakers to formulate prevention and control strategies for heavy metal pollution in agricultural areas.
Collapse
Affiliation(s)
- Hanrui Chen
- College of Environmental Natural Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, 310058, China
| | - Lu Wang
- College of Environmental Natural Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, 310058, China
| | - Bifeng Hu
- Department of Land Resource Management, School of Tourism and Urban Management, Jiangxi University of Finance and Economics, Nanchang, 330013, China
| | - Jianming Xu
- College of Environmental Natural Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, 310058, China
| | - Xingmei Liu
- College of Environmental Natural Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, 310058, China.
| |
Collapse
|
23
|
Kayode OT, Aizebeokhai AP, Odukoya AM. Geophysical and contamination assessment of soil spatial variability for sustainable precision agriculture in Omu-Aran farm, Northcentral Nigeria. Heliyon 2022; 8:e08976. [PMID: 35252601 PMCID: PMC8889146 DOI: 10.1016/j.heliyon.2022.e08976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 12/01/2021] [Accepted: 02/14/2022] [Indexed: 11/29/2022] Open
Abstract
The spatial and temporal variability of soil properties (fluid composition, structure, and water content) and hydrogeological properties employed for sustainable precision agriculture can be obtained from geoelectrical resistivity methods. For sustainable precision agricultural practices, site-specific information is paramount, especially during the planting season. An integrated one-dimensional (1D) and two-dimensional (2D) electrical resistivity survey have been adopted to characterize the subsoil parameters and delineate the aquifer unit of large farm areas, especially in precision agricultural practices. Also, contamination assessment reveals the soil quality status of farmlands. This study aims to determine the site-specific soil parameters of a commercial farm in Omu-Aran, Northcentral, Nigeria. The subsoil features from the geoelectrical resistivity surveys indicate 3 to 4 distinctive lithology to a depth of 43.4 m into the subsurface of the farm. The ID (Vertical Electrical Sounding) and 2D resistivity inversion models results have revealed the heterogeneity nature of the topsoil, also known as the stone zone comprising of reworked clayey soil and sandy gravelly soil, the weathered/saprolite zone (gravelly sandy/sandy soil), the fractured basement and the fresh basement rock. Contamination factor (Cf), pollution load index (PLI) and Nemerow integrated pollution index (NIPI) were used to assess the contamination index on the farmland. Toxic elements such as arsenic, cadmium, chromium, cobalt, lead, manganese, nickel, and zinc have low to moderate contamination in the farm. The depth of investigation (≤3m) covers the upper root zone of significant crops grown in the area. The findings can assess soil contamination, delineate basement features, subsoil variability, soil profiling, and determine the subsoil hydrological properties.
Collapse
Affiliation(s)
- O T Kayode
- Department of Physics, College of Science and Technology, Covenant University, Ota, Nigeria
| | - A P Aizebeokhai
- Department of Physics, College of Science and Technology, Covenant University, Ota, Nigeria
| | - A M Odukoya
- Department of Geosciences, College of Science, University of Lagos, Nigeria
| |
Collapse
|
24
|
Wu B, Luo H, Wang X, Liu H, Peng H, Sheng M, Xu F, Xu H. Effects of environmental factors on soil bacterial community structure and diversity in different contaminated districts of Southwest China mine tailings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149899. [PMID: 34464792 DOI: 10.1016/j.scitotenv.2021.149899] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/10/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
A mass of tailings left by mineral exploitation have caused serious environmental pollution. Although many studies have shown that soil microorganisms have the potential to remediate environmental pollution, the interaction mechanism between microorganisms and the surrounding environment of tailings is still unclear. In this study, 15 samples around pyrite mine tailing were collected to explore the ecological effects of environmental factors on bacterial community. The results showed that most of the samples were acidic and contaminated by multiple metals. Cadmium (Cd), copper (Cu), nickel (Ni) migrated and accumulated to into downstream farmlands while chromium (Cr) was the opposite. Proteobacteria, Chloroflex and Actinobacteria were the dominant phyla. Soil pH, total phosphorus (TP), total nitrogen (TN), available potassium (AK), available phosphorus (AP), the bacteria abundance and diversity all gradually increased with the increase of the distance from the tailing. Invertase, acid phosphatase, total organic carbon (TOC), pH, TP and Cr were the main influencing factors to cause the variation of bacterial community. This work could help us to further understand the changes in soil microbial communities around pollution sources.
Collapse
Affiliation(s)
- Bohan Wu
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Huanyan Luo
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Xitong Wang
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Huakang Liu
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - He Peng
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Mingping Sheng
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Fei Xu
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China.
| | - Heng Xu
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China; Key Laboratory of Environment Protection, Soil Ecological Protection and Pollution Control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu 610065, Sichuan, PR China.
| |
Collapse
|
25
|
Ali A, Li Y, Arockiam Jeyasundar PGS, Azeem M, Su J, Wahid F, Mahar A, Shah MZ, Li R, Zhang Z. Streptomyces pactum and Bacillus consortium influenced the bioavailability of toxic metals, soil health, and growth attributes of Symphytum officinale in smelter/mining polluted soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118237. [PMID: 34592330 DOI: 10.1016/j.envpol.2021.118237] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 09/14/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Soil microbes influence the uptake of toxic metals (TMs) by changing soil characteristics, bioavailability and translocation of TMs, and soil health indicators in polluted environment. The potential effect of Streptomyces pactum (Act12) and Bacillus consortium (B. subtilis and B. licheniformis; 1:1) on soil enzymes and bacterial abundance, bioavailability and translocation of Zn and Cd by Symphytum officinale, and physiological indicators in soil acquired from Fengxian (FX) mining site. Act12 and Bacillus consortium were applied at 0 (CK), 0.50 (T1), 1.50 (T2), and 2.50 (T3) g kg-1 in a split plot design and three times harvested (H). Results showed that soil pH significantly dropped, whereas, electrical conductivity increased at higher Act12 and Bacillus doses. The extractable Zn lowered and Cd increased at each harvest compared to their controls. Soil β-glucosidase, alkaline phosphatase, urease and sucrase improved, whereas, dehydrogenase reduced in harvest 2 and 3 (H2 and H3) as compared to harvest 1 (H1) after Act12 and Bacillus treatments. The main soil phyla individually contributed ∼5-55.6%. Soil bacterial communities' distribution was also altered by Act12 and Bacillus amendments. Proteobacteria, Acidobacteria, and Bacteroidetes increased, whereas, the Actinobacteria, Chloroflexi, and Gemmatimonadetes decreased during the one-year trial. The Zn and Cd concentration significantly decreased in shoots at each harvest, whereas, the roots concentration was far higher than the shoots, implicating the rhizoremediation by S. officinale. Accumulation factor (AF) and bioconcentration ratio (BCR) of Zn and Cd in shoots were lower and remained higher in case of roots than the standard level (≥1). BCR values of roots indicated that S. officinale can be used for rhizoremediation of TMs in smelter/mines-polluted soils. Thus, field trials in smelter/mines contaminated soils and the potential role of saponin and tannin exudation in metal translocation by plant will broaden our understanding about the mechanism of rhizoremediation of TMs by S. officinale.
Collapse
Affiliation(s)
- Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yiman Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | | | - Muhammad Azeem
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Fazli Wahid
- Department of Agriculture, University of Swabi, Swabi, 23340, Pakistan
| | - Amanullah Mahar
- Centre for Environmental Sciences, University of Sindh, Jamshoro, 76080, Pakistan
| | - Muhammad Zahir Shah
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
26
|
Xu L, Dai H, Skuza L, Wei S. Comprehensive exploration of heavy metal contamination and risk assessment at two common smelter sites. CHEMOSPHERE 2021; 285:131350. [PMID: 34265711 DOI: 10.1016/j.chemosphere.2021.131350] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/18/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
This study investigated the horizontal, vertical and fractional distribution of heavy metals in the soil and the pollution and risk assessment of two smelter sites in Daye (a Cu smelter) and Zhuzhou (a Zn oxide smelter). Nine sampling points were reasonably established at each site, and nine soil samples were collected in each soil profile, with a total of 81 samples at each site. The results indicated that only As concentration was exceeded in most of the samples from the Daye site, and several were contaminated with multiple heavy metals, i.e. As, Cd and Pb; the values exceeding the standard were significant. Most of the samples at the Zhuzhou site were contaminated with many heavy metals, i.e. As, Cd, Pb and Ni. With increasing depth, the proportion of the acid-soluble and reducible heavy metal fraction decreased, while the proportion of the oxidized and residual fraction increased. The pollution index (PI) indicated that As at all positions, and Cd and Pb at several positions at the Daye site, as well as Cd and Pb at all points of Zhuzhou should have received more attention. The Nemerow integrated pollution index (NIPI) showed that a few sampling points in Daye were severely polluted, i.e. the points D5 with the value of 77.49 and the point D7 with 62.33, were more than the threshold value with 3 of severe pollution. Almost all sampling points in Zhuzhou were severely polluted, but the pollution degree was slightly lower than at Daye. The hazard index (HI) indicated the potential non-carcinogenic risk at the Daye and Zhuzhou sites. These values were unacceptable for both adults and children. The carcinogenic risk (CR) index indicated that the potential carcinogen risk due to As and Ni contamination were unacceptable at both sites, especially for children with 9.27E-03 and 1.99E-03 of As and Ni at Daye site, while 4.55E-03 and 4.09E-03 at Zhuzhou site. Strict control of industrial waste residues and smelters emissions into the soil is necessary to avoid further aggravation of heavy metal pollution.
Collapse
Affiliation(s)
- Lei Xu
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Huiping Dai
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Shaanxi University of Technology, Hanzhong, 723001, China.
| | - Lidia Skuza
- Institute of Biology, Centre for Molecular Biology and Biotechnology, University of Szczecin, Szczecin, 71-415, Poland
| | - Shuhe Wei
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| |
Collapse
|
27
|
Yan D, Guo Z, Xiao X, Peng C, He Y, Yang A, Wang X, Hu Y, Li Z. Cleanup of arsenic, cadmium, and lead in the soil from a smelting site using N,N-bis(carboxymethyl)-L-glutamic acid combined with ascorbic acid: A lab-scale experiment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113174. [PMID: 34237673 DOI: 10.1016/j.jenvman.2021.113174] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 06/05/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
Chemical washing has been carried out to remediate soil contaminated with heavy metals. In this study, the appropriate washing conditions for N,N-bis(carboxymethyl)-L-glutamic acid (GLDA) combined with ascorbic acid were determined to remove As, Cd, and Pb in the soil from the smelting site. The mechanism of heavy metal removal by the washing agent was also clarified. The results showed that heavy metals in the soil from the smelting site can be effectively removed. The removal percentages of As, Cd, and Pb in the soil from the smelting site were found to be 34.49%, 63.26%, and 62.93%, respectively, under optimal conditions (GLDA and ascorbic acid concentration ratio of 5:20, pH of 3, washing for 60 min, and the liquid-to-solid ratio of 10). GLDA combined with ascorbic acid efficiently removes As, Cd, and Pb from the soil through synergistic proton obstruction, chelation, and reduction. GLDA can chelate with iron and aluminum oxides while directly chelate with Cd and Pb. Ascorbic acid can reduce both Fe(III) to Fe(II) and As(III) to As0. The dissolution of As was promoted by indirectly preempting the binding sites of iron and aluminum in the soil while those of Cd and Pb were improved by directly interrupting the binding sites. This study suggested that GLDA combined with ascorbic acid is an effective cleanup technology to remove As, Cd, and Pb simultaneously from contaminated smelting site soils.
Collapse
Affiliation(s)
- Demei Yan
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Zhaohui Guo
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
| | - Xiyuan Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Chi Peng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Yalei He
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Andi Yang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Xiaoyan Wang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Yulian Hu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Zhihui Li
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| |
Collapse
|
28
|
Wu B, Peng H, Sheng M, Luo H, Wang X, Zhang R, Xu F, Xu H. Evaluation of phytoremediation potential of native dominant plants and spatial distribution of heavy metals in abandoned mining area in Southwest China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112368. [PMID: 34082243 DOI: 10.1016/j.ecoenv.2021.112368] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 05/17/2021] [Accepted: 05/23/2021] [Indexed: 05/22/2023]
Abstract
A field investigation on the content of heavy metals in soils and dominant plants was conducted in three sites (A<0.5 km, B<1.0 km, C<1.5 km) with different distances of mine tailings. The spatial distribution of heavy metals and the accumulation in plants were compared, and the candidate species for ecosystem restoration were selected. The results indicated that the soil was polluted by chromium (Cr), Cadmium (Cd), copper (Cu), nickel (Ni) in varying degrees, which is 2.07, 2.60, 1.79, and 4.49 times higher than the Class-Ⅱ standard in China. The concentrate of Ni, Cd, and Zinc (Zn) increased, while Cr, Lead (Pb), and Cu decreased with the distance from the mine tailings. 73 species (34 families) were found and mainly herbaceous plants. The concentrate of Cd, Cu, Cr, and Ni in 29 dominant plants were measured and 66.67%, 21.43%, 100%, 47.62% plants exceeded the normal concentration range. Based on the comparative analysis of heavy metal content, bioconcentration factor, and translocation factor in plants, Polygonum capitatum has good phytoextraction ability, Boehmeria nivea, Chrysanthemum indicum, Miscanthus floridulus, Conyza canadensis, Rubus setchuenensis, Senecio scandens, and Arthraxon hispidus showed remarkable phytostabilization abilities of Cr, Cd, Ni, and Cu, which can be used as potential phytoremediation candidate.
Collapse
Affiliation(s)
- Bohan Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - He Peng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Mingping Sheng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Huanyan Luo
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Xitong Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Rong Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Fei Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China.
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China; Key Laboratory of Environment Protection, Soil Ecological Protection and Pollution Control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu 610065, Sichuan, PR China.
| |
Collapse
|
29
|
Wang JX, Xu DM, Fu RB, Chen JP. Bioavailability Assessment of Heavy Metals Using Various Multi-Element Extractants in an Indigenous Zinc Smelting Contaminated Site, Southwestern China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:8560. [PMID: 34444310 PMCID: PMC8392273 DOI: 10.3390/ijerph18168560] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 11/16/2022]
Abstract
Despite recent studies have investigated the strong influences of smelting activities on heavy metal contamination in the soil environment, little studies have been conducted on the current information about the potential environmental risks posed by toxic heavy metals in smelting contaminated sites. In the present study, a combination of the bioavailability, speciation, and release kinetics of toxic heavy metals in the indigenous zinc smelting contaminated soil were reliably used as an effective tool to support site risk assessment. The bioavailability results revealed that the bioavailable metal concentrations were intrinsically dependent on the types of chemical extractants. Interestingly, 0.02 mol/L EDTA + 0.5 mol/L CH3COONH4 was found to be the best extractant, which extracted 30.21% of Cu, 31.54% of Mn, 2.39% of Ni and 28.89% of Zn, respectively. The sequential extraction results suggested that Cd, Pb, and Zn were the most mobile elements, which would pose the potential risks to the environment. The correlation of metal bioavailability with their fractionation implied that the exchangeable metal fractions were easily extracted by CaCl2 and Mehlich 1, while the carbonate and organic bound metal fractions could be extracted by EDTA and DTPA with stronger chelating ability. Moreover, the kinetic modeling results suggested that the chemical desorption mechanism might be the major factor controlling heavy metal release. These results could provide some valuable references for the risk assessment and management of heavy metals in the smelting contaminated sites.
Collapse
Affiliation(s)
- Jun-Xian Wang
- Centre for Environmental Risk Management and Remediation of Soil and Groundwater, Tongji University, Shanghai 200092, China;
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Da-Mao Xu
- Centre for Environmental Risk Management and Remediation of Soil and Groundwater, Tongji University, Shanghai 200092, China;
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China;
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Rong-Bing Fu
- Centre for Environmental Risk Management and Remediation of Soil and Groundwater, Tongji University, Shanghai 200092, China;
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China;
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jia-Peng Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China;
| |
Collapse
|
30
|
Jiang Z, Guo Z, Peng C, Liu X, Zhou Z, Xiao X. Heavy metals in soils around non-ferrous smelteries in China: Status, health risks and control measures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 282:117038. [PMID: 33838438 DOI: 10.1016/j.envpol.2021.117038] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/21/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
Non-ferrous smelting is a primary cause of serious soil pollution. Contamination and health risks of heavy metals in soils around various types of non-ferrous smelteries in China were assessed using data from peer-reviewed papers published between 2000 and 2019. Development in the relevant environmental policy in China was discussed. The studied non-ferrous smelting sites were mainly located in provinces that produced non-ferrous metals on a large scale. The average concentrations of the heavy metals in soils around the non-ferrous smelteries (in mg per kg of soil) were as follows: Cd, 19.8; Cu, 265; Pb, 1536; and Zn, 1371; the concentrations greatly exceeded their corresponding background values. The smelting sites with high soil contamination in terms of metal concentrations, geo-accumulation (Igeo), and pollution index (PI) were mainly distributed in several provinces of China, including Guangxi, Gansu, Hunan, Hubei, Chongqing, and Liaoning. Soils near smelteries that processed copper were the most polluted based on Igeo and PI. The accumulation of Cd and Pb in soils around non-ferrous smelteries would pose potentially high risks to residents. A series of environmental policies have proven successful in lowering the emissions of contaminants from the non-ferrous in China. The findings of the study suggested that the strategies to control soil pollution around non-ferrous smelteries should primarily focus on Cd and Pb.
Collapse
Affiliation(s)
- Zhichao Jiang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Zhaohui Guo
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Chi Peng
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
| | - Xu Liu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Ziruo Zhou
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Xiyuan Xiao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| |
Collapse
|
31
|
Guo D, Ali A, Zhang Z. Streptomyces pactum and sulfur mediated the rhizosphere microhabitats of potherb mustard after a phytoextraction trial. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 281:116968. [PMID: 33799203 DOI: 10.1016/j.envpol.2021.116968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
To explore the performance of Streptomyces pactum (Act12) alone (A) and jointly with sulfur (SA) in the phytoextraction practice of potentially toxic elements (PTEs) (Cd and Zn), as well as their effects on soil chemical properties and microbial community composition, this paper selected potherb mustard (Brassica juncea, Coss.) as the test plant to assess the feedback of soil-plant ecosystems. Metal uptake values in lone Act12 treatments were higher than that of Act12 + sulfur treatments, and showed dose dependent with Act12 due to the higher biomass production. According to the biochemical analyses of rhizosphere soils, Act12 inoculation significantly increased urease (20.4%) and dehydrogenase (58.5%) while reducing alkaline phosphatase (68.0%) activity. The production of soil organic acids was, in descending order, formic acid > oxalic acid > malic acid > propionic acid and indicated a stimulated variation under treatments (SA > A > control). High-throughput sequencing revealed that bacterial community compositions were consistent in both phylum and genus taxonomies, while the final overall proportions were modified. The populations of the predominant phyla Proteobacteria and Bacteroidetes increased after sulfur application. The contribution of Act12 to the relative abundance of microbiota was minor compared to sulfur. Based on a redundancy analysis, soil chemical properties are the drivers of microbial activities and the main contributor to plant growth. Our results suggested Act12 inoculation may be part of an effective strategy enhancing phytoremediation of PTE-contaminated soils through chemical and biotic processes, and provided important implications for sustainable land utilization and crop production.
Collapse
Affiliation(s)
- Di Guo
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shaanxi, 710129, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, China
| | - Zengqiang Zhang
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
32
|
Izydorczyk G, Mikula K, Skrzypczak D, Moustakas K, Witek-Krowiak A, Chojnacka K. Potential environmental pollution from copper metallurgy and methods of management. ENVIRONMENTAL RESEARCH 2021; 197:111050. [PMID: 33753074 DOI: 10.1016/j.envres.2021.111050] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
This paper presents the latest overview of the environmental impact of wastes from the non-ferrous metallurgical industry. Ashes, slags and dusts - by-products from mining and metal processing - are sources of toxic metals, such as Pb, Cd, Hg, As, Al, as well as particulate matter. Physical, chemical and biological processes transform industrial wastes and cause water, soil and air pollution. Improperly protected heaps are subject to wind erosion and rain water leaching. Heavy metals and particulate matter are transported over long distances, contaminating the soil, living areas, watercourses, while in combination with mist they create smog. Water erosion releases heavy metals, which are leached into groundwater or surface runoff. This paper focuses on the range of pollution emissions from non-ferrous metallurgy wastes, hazards, mechanisms of their formation and fallouts, on the current state of technology and technological risk reduction solutions. The impact of pollution on human health and the biosphere, and methods of waste reduction in this industry sector are also presented. A sustainable and modern mining industry is the first step to cleaner production.
Collapse
Affiliation(s)
- Grzegorz Izydorczyk
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372, Wrocław, Poland.
| | - Katarzyna Mikula
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372, Wrocław, Poland
| | - Dawid Skrzypczak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372, Wrocław, Poland
| | - Konstantinos Moustakas
- School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zographou Campus, GR-15780, Athens, Greece
| | - Anna Witek-Krowiak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372, Wrocław, Poland
| | - Katarzyna Chojnacka
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372, Wrocław, Poland
| |
Collapse
|
33
|
Hwang JI, Hinz FO, Albano JP, Wilson PC. Enhanced dissipation of trace level organic contaminants by floating treatment wetlands established with two macrophyte species: A mesocosm study. CHEMOSPHERE 2021; 267:129159. [PMID: 33321276 DOI: 10.1016/j.chemosphere.2020.129159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
This study evaluated removal efficiencies of six contaminants of emerging concern (CECs) in floating treatment wetland (FTW) mesocosms established with either Japanese Sweetflag (Acorus gramineus Sol. ex Aiton) or canna lilies (Canna Hybrida L. 'Orange King Humbert'). The CECs included: acetaminophen (APAP), atrazine (ATZ), carbamazepine (CBZ), perfluorooctanoic acid (PFOA), sulfamethoxazole (SMX), and 17β-estradiol (E2). Each treatment was planted with different numbers of plants (i.e., 0, 10, 15, and 20), and the experiments lasted for 17 weeks. Dissipation of CECs was greater in planted treatments than in non-planted controls, and the planting number had little effect on dissipation of CECs. All residues of APAP and E2 dissipated rapidly within 2 weeks in all planted treatments. At the end of the experiment, residues of ATZ and SMX completely dissipated in the canna treatments, but not in the sweetflag treatments (75.8-87.6% and 96.3-97.1%, respectively). During the 17 week study, moderate dissipation of CBZ was observed in treatments including cannas (79.5-82.6%) and sweetflag (69.4-82.3%), while less dissipation was observed for PFOA (9.0-15.0% with sweetflag and 58.4-62.3% with cannas). Principal component analysis indicates that aqueous persistency of CECs and species of plants used influenced the dissipation of CECs in FTWs. Of the two species evaluated, canna was the most promising plant species for FTW systems designed to remove these CECs from surface water.
Collapse
Affiliation(s)
- Jeong-In Hwang
- Soil and Water Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | | | - Joseph P Albano
- Agricultural Research Service, U.S. Department of Agriculture, Fort Pierce, FL, 34945, USA
| | | |
Collapse
|
34
|
Cruzado-Tafur E, Bierla K, Torró L, Szpunar J. Accumulation of As, Ag, Cd, Cu, Pb, and Zn by Native Plants Growing in Soils Contaminated by Mining Environmental Liabilities in the Peruvian Andes. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10020241. [PMID: 33513684 PMCID: PMC7922771 DOI: 10.3390/plants10020241] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/16/2021] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
The capability of native plant species grown in polluted post-mining soils to accumulate metals was evaluated in view of their possible suitability for phytoremediation. The study areas included two environmental liabilities in the Cajamarca region in the Peruvian Andes. The content of As, Ag, Cd, Cu, Pb, and Zn was determined in individual plant organs and correlated with soil characteristics. The degree of the pollution depended on the metal with results ranging from uncontaminated (Cd) to moderately (Zn), strongly (As, Cu), and extremely contaminated (Pb, Ag) soils. The metals were mainly present in the fractions with limited metal mobility. The bioaccumulation of the metals in plants as well the translocation into overground organs was determined. Out of the 21 plants evaluated, Pernettya prostrata and Gaultheria glomerate were suitable for Zn, and Gaultheria glomerata and Festuca sp. for Cd, phytostabilization. The native species applicable for Cd phytoremediation were Ageratina glechonophylla, Bejaria sp., whereas Pernettya prostrata Achyrocline alata,Ageratina fastigiate, Baccharis alnifolia, Calceolaria tetragona, Arenaria digyna, Hypericum laricifolium, Brachyotum radula, and Nicotiana thyrsiflora were suitable for both Cd and Zn. None of the studied plants appeared to be suitable for phytoremediation of Pb, Cu, As and Ag.
Collapse
Affiliation(s)
- Edith Cruzado-Tafur
- Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM UMR 5254, Hélioparc, 64053 Pau, France; (E.C.-T.); (K.B.)
- Geological Engineering Program, Faculty of Sciences and Engineering, Pontifical Catholic University of Peru (PUCP), Av. Universitaria 1801, San Miguel, Lima 15088, Peru;
| | - Katarzyna Bierla
- Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM UMR 5254, Hélioparc, 64053 Pau, France; (E.C.-T.); (K.B.)
| | - Lisard Torró
- Geological Engineering Program, Faculty of Sciences and Engineering, Pontifical Catholic University of Peru (PUCP), Av. Universitaria 1801, San Miguel, Lima 15088, Peru;
| | - Joanna Szpunar
- Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM UMR 5254, Hélioparc, 64053 Pau, France; (E.C.-T.); (K.B.)
| |
Collapse
|
35
|
Guo D, Ren C, Ali A, Zhang Y, Du J, Wang P, Li R, Zhang Z. A phytoextraction trial strengthened by Streptomyces pactum and plant nutrients: In view of plant bioindicators and phytoextraction indices. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114867. [PMID: 32504977 DOI: 10.1016/j.envpol.2020.114867] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/01/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
The present work was done to explore the joint effect of Streptomyces pactum (Act12) and plant nutrients on phytoremediation of smelter-contaminated soils. The physiological indicators and phytoextraction indices of potherb mustard (Brassica juncea, Coss) grown in Act12 inoculated soil with or without Hoagland's solution (H), humic acid (HA) and peat (PS) were evaluated. The results indicated that H, HA and PS acted synergistically with Act12, notably increasing chlorophyll and soluble protein contents and thereby promoting plant growth. Soil nutrient treatments reduced the antioxidant activities (PPO, CAT and POD) by 28.2-41.4%, 22.3-90.1% and 15.2-59.4% compared to control, respectively. Act12 and H treatments markedly facilitated plant to accumulate more cadmium (Cd) and zinc (Zn), but it was observed decreases when applied with HA and PS. Metal uptake (MU) values further indicated the differences in phytoextraction efficiency, i.e., H > PS > Control > HA. Taken together, Act12 combined with plant nutrients contributed to alleviating metal toxicity symptoms of plant. Hoagland's solution and peat were highlighted in the present phytoextraction trial, and recommended as soil additives.
Collapse
Affiliation(s)
- Di Guo
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chunyan Ren
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Amjad Ali
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yang Zhang
- Xi'an Solid Waste Management Center, Xi'an, Shannxi, 710038, China
| | - Juan Du
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ping Wang
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ronghua Li
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zengqiang Zhang
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
36
|
Zhang T, Li L, Xu F, Chen X, Du L, Wang X, Li Y. Assessing the remobilization and fraction of cadmium and lead in sediment of the Jialing River by sequential extraction and diffusive gradients in films (DGT) technique. CHEMOSPHERE 2020; 257:127181. [PMID: 32485515 DOI: 10.1016/j.chemosphere.2020.127181] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd) and lead (Pb) are two typical heavy metals of the Jialing River, and their threat to the river has been considered by the government in recent years. In this study, the diffusive gradient in thin films (DGT) technique and sequential extraction were employed together to analyse the remobilization and fraction of Cd and Pb in the sediments. The total concentration of Cd and Pb in four sampling sites both followed the order S3>S4>S2>S1. The sequential extraction results indicated that large amounts of Cd and Pb (over 50% of the total concentration) were bound to the exchangeable and reducible fraction. The DGT results showed that both Cd and Pb presented a significant increasing trend at the bottom of the DGT probe (-10 cm to -12 cm) and that the two metals had a significant positive correlation (r = 0.831, p < 0.01). The apparent diffusive flux result indicated that Cd and Pb had a potential risk of release from surface sediments. A significant correlation was observed between the DGT-labile fraction and sequential extraction at the surface sediments. A further correlation analysis found that the concentration of labile Cd/Pb measured by DGT (CDGT-Cd and CDGT-Pb) had a strong negative correlation with CDGT-Fe, and this process was mainly mitigated by the iron oxides in the sediments. In addition, the correspondence of a "dark area" of AgI gel with corresponding "hotspots" of Chelex gel also proved that the release of Cd and Pb may regulate the dissolved sulfide in the sediments.
Collapse
Affiliation(s)
- Tuo Zhang
- College of Environmental Science & Engineering, China West Normal University, Nanchong, Sichuan, 637009, China.
| | - Lijuan Li
- Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Fei Xu
- College of Environmental Science & Engineering, China West Normal University, Nanchong, Sichuan, 637009, China
| | - Xiangyu Chen
- College of Environmental Science & Engineering, China West Normal University, Nanchong, Sichuan, 637009, China
| | - Li Du
- College of Environmental Science & Engineering, China West Normal University, Nanchong, Sichuan, 637009, China
| | - Xinjian Wang
- College of Environmental Science & Engineering, China West Normal University, Nanchong, Sichuan, 637009, China
| | - Yunxiang Li
- College of Environmental Science & Engineering, China West Normal University, Nanchong, Sichuan, 637009, China
| |
Collapse
|
37
|
Response of Corchorus olitorius Leafy Vegetable to Cadmium in the Soil. PLANTS 2020; 9:plants9091200. [PMID: 32937806 PMCID: PMC7570089 DOI: 10.3390/plants9091200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/31/2022]
Abstract
Corchorus olitorius, a leafy vegetable with high nutrient content, is normally collected from the wild, in areas that are prone to cadmium (Cd) toxicity. However, studies on how Cd accumulation affects vegetative and reproductive traits of leafy vegetables in South Africa are limited. Therefore, this study tested the effect of Cd accumulation on C. olitorius morphological traits. Plants were grown under various Cd concentrations and studied for variation in vegetative and reproductive traits as well as accumulation in roots and shoots. Plants exposed to 5 mg/kg Cd had longer roots with higher moisture content, heavier fresh and dried stems, as well as dried leaves, which indicated a hormetic effect in C. olitorius after exposure to low Cd concentration in the soil. Again, plants treated with 5–10 mg/kg Cd, accumulated toxic (>10 mg/kg dry weight) Cd within shoots and roots, with minor morphological alterations. Plants could survive, with some morphological defects, Cd toxicity up to 20 mg/kg in soil. Only plants exposed to 5 mg/kg could reproduce. Cd accumulation increased with an increase in the soil, with higher accumulation in shoots. The translocation factor was high (>1) in all Cd concentrations. In conclusion, C. olitorius can accumulate toxic Cd, and yet grow and reproduce either normally or better than the control. The proposed dose of Cd that induces hormesis in C. olitorius is 5 mg/kg in the soil. Therefore, C. olitorius is suitable for phytoremediation of Cd contaminated soils, but unsafe for consumption when it grows in such areas.
Collapse
|
38
|
Hwang JI, Li Z, Andreacchio N, Ordonez Hinz F, Wilson PC. Potential use of floating treatment wetlands established with Canna flaccida for removing organic contaminants from surface water. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 22:1304-1312. [PMID: 32503369 DOI: 10.1080/15226514.2020.1768511] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Surface water bodies worldwide may be contaminated with various organic contaminants. In many cases, the actual toxicity thresholds to nontarget organisms are unknown, thus presenting unknown risks. This study evaluated the potential use of floating treatment wetlands (FTWs) planted with Canna flaccida (common name: Canna) for removing two pharmaceuticals (acetaminophen and carbamazepine) and one herbicide (atrazine) from contaminated water. Triplicate FTWs with varying plant densities were established in 378 L mesocosms. After dosing the mesocosms with the contaminants, water samples were collected over a 12-week period for analysis. The planted FTWs showed differing abilities for removing acetaminophen, atrazine, and carbamazepine. Plant densities on the FTWs did not affect dissipation of acetaminophen or atrazine, but did carbamazepine. All acetaminophen residues were removed from the water within 2 weeks, while all atrazine residues were removed within 12 weeks. Approximately, 79-92% of these residues removed were associated with the FTWs. In contrast, all of the carbamazepine was not removed after 12 weeks, at which time only 29-36.7% of the total removed was associated with the FTWs. Overall results suggest that FTWs established with C. flaccida are promising for removing trace concentrations of acetaminophen, atrazine, and carbamazepine from surface water.
Collapse
Affiliation(s)
- Jeong-In Hwang
- Soil and Water Sciences Department, University of Florida, Gainesville, FL, USA
| | - Zhuona Li
- Soil and Water Sciences Department, University of Florida, Gainesville, FL, USA
| | - Nick Andreacchio
- Soil and Water Sciences Department, University of Florida, Gainesville, FL, USA
| | | | | |
Collapse
|
39
|
Du J, Guo Z, Li R, Ali A, Guo D, Lahori AH, Wang P, Liu X, Wang X, Zhang Z. Screening of Chinese mustard (Brassica juncea L.) cultivars for the phytoremediation of Cd and Zn based on the plant physiological mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114213. [PMID: 32408418 DOI: 10.1016/j.envpol.2020.114213] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/26/2020] [Accepted: 02/16/2020] [Indexed: 06/11/2023]
Abstract
Brassica juncea L. is an attractive species in PTMs contaminated soil remediation ascribing to its high tolerance under stress and great accumulation capacity of metals. To identify the potential Cd/Zn accumulators from numerous different Chinese mustard cultivars for practical phytoremediation is a promising strategy in China. In present work, a pot experiment involving elevated Cd/Zn concentrations was performed among 21 cultivars. Regarding physiological and biochemical indicators under Cd/Zn stress, principal component analysis and cluster analysis were used for cultivar tolerance evaluation and classification. Results showed that BJ (Bao Jie, var. involutus) cultivar was distinguished as a potential phytoremediation candidate comparing with other cultivars. Moreover, BJ accumulated the maximum Cd content of 63.85 and 77.29 mg kg-1 DW in shoots and roots, respectively, and the maximum Zn uptake by BJ were 6693 and 4777 mg kg-1 DW in shoots and roots, respectively. Accordingly, BJ had the highest Cd/Zn tolerance, remarkable accumulation and translocation capacity (accumulation factor (AF) > 1 for Cd and Zn; translocation factor (TF) > 0.8 for Cd and TF > 1 for Zn). In addition, the superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities of the mustard increased initially under low Cd/Zn stress as compared to the control and then declined dramatically with the increasing metals exposure concentration. Therefore, the antioxidant enzymes may play a protective role against reactive oxygen species (ROS) under low Cd/Zn stress, whereas the defense system might be collapsed under relatively high Cd/Zn stress. Furthermore, the enhanced Cd/Zn exposure led to an increase in malondialdehyde (MDA) content in the mustard cultivars, indicating that Cd/Zn had induced more severe oxidative stress and higher degree of lipid peroxidation had occurred. The present investigation results indicated that BJ (Bao Jie, var. involutus), as a native cultivar, can be further applied in the field trials of phytoremediation practices in contaminated soil.
Collapse
Affiliation(s)
- Juan Du
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhanyu Guo
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Amjad Ali
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Di Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Altaf Hussain Lahori
- Department of Environmental Sciences, Sindh Madressatul Islam University, Karachi, 74000, Pakistan
| | - Ping Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiangyu Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xuejia Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
40
|
da Silva ICB, Marques ACR, Quadros FF, Sans GA, Soares VM, De Conti L, Ceretta CA, Ferreira PAA, Toselli M, Brunetto G. Spatial variation of herbaceous cover species community in Cu-contaminated vineyards in Pampa biome. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:13348-13359. [PMID: 32020452 DOI: 10.1007/s11356-020-07851-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
Study's objective was to evaluate spatial variability of herbaceous cover species community in vineyards cultivated in soil with increasing Cu levels in Pampa biome. Three vineyards, with increasing soil Cu available contents and a natural field area (NF), were selected. In each experimental area, soil Cu content, botanical composition, cumulative aerial biomass, and aerial part Cu concentration, in most frequent species, were evaluated. In total, 39 vascular plant species were identified, including four exotic species. Biodiversity indicators did not significantly correlate with soil Cu. However, botanical composition variation could be observed. In NF, Poaceae and Asteraceae families presented greater dry mass contribution, while this contribution decreased in higher soil Cu concentration areas. The Cu concentration and accumulation in plant aerial part were higher in older vineyards, as plant aerial part accumulated, in average, 13.8 mg Cu m-2. Among species found in experimental fields, Ageratum conyzoides, a species known to form Cu-tolerant populations, occurred in most areas, especially in vineyards, presenting higher aerial Cu concentrations, with a mean of 126.47 mg kg-1. Soil enrichment with Cu did not alter the vegetation's biodiversity, but may have contributed to the botanical composition modification. The native species, P. plicatulum and A. conyzoides, presented a high bio-accumulation factor and are potential candidates for phytoremediation techniques.
Collapse
Affiliation(s)
| | | | | | - Gabriel Alberto Sans
- Soil Science Department, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Vanessa Marques Soares
- Soil Science Department, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | | | - Carlos Alberto Ceretta
- Soil Science Department, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | | | | | - Gustavo Brunetto
- Soil Science Department, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| |
Collapse
|
41
|
Du J, Zhang L, Song S, Li R, Xiao R, Guo D, Ali A, Liu X, Guan W, Zhang Z. Effect of potentially toxic metals (PTMs) on the thermal decomposition of phytoremediation plant wastes: Thermokinetic and gas evolution analysis by TG-DTG-MS. BIORESOURCE TECHNOLOGY 2019; 293:122027. [PMID: 31454735 DOI: 10.1016/j.biortech.2019.122027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
Thermal conversion is a promising approach for the disposal of phytoremediation biowastes. The thermal characteristics of potherb mustard biowaste contaminated by potentially toxic metals were studied in this work. Thermogravimetric (TG) and derivative thermogravimetric (DTG) analyses of four feedstocks with different Cd/Zn content were conducted in an inert environment. Evolved gases were identified online by mass spectrometry (MS) coupled with TG. The TG-DTG profiles of the four feedstocks presented similar decomposition stages, whereas the samples with low Cd/Zn had a faster degradation rate, suggesting that the presence of Cd/Zn had little effect on thermal decomposition mechanism. The maximum evolution of H2 and CH4 occurred at 500-650 °C, while CO was released at a low temperature. PTMs could catalyze the H2 production during the pyrolysis of biowaste. This investigation revealed the effects of different Cd/Zn contents on thermal conversion, providing a practical reference for the thermal treatment of phytoremediation biowastes.
Collapse
Affiliation(s)
- Juan Du
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lei Zhang
- State Key Laboratory of Coal-Based Clean Energy, Xi'an Thermal Power Research Institute Co. Ltd, Xi'an, Shaanxi 710054, China
| | - Shuangshuang Song
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
| | - Ronghua Li
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ran Xiao
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Di Guo
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Amjad Ali
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiangyu Liu
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weidou Guan
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zengqiang Zhang
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
42
|
Xiao R, Ali A, Wang P, Li R, Tian X, Zhang Z. Comparison of the feasibility of different washing solutions for combined soil washing and phytoremediation for the detoxification of cadmium (Cd) and zinc (Zn) in contaminated soil. CHEMOSPHERE 2019; 230:510-518. [PMID: 31125879 DOI: 10.1016/j.chemosphere.2019.05.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 05/12/2019] [Accepted: 05/15/2019] [Indexed: 05/20/2023]
Abstract
Soil heavy metal contamination is a serious environmental problem needed to be addressed due to the toxicities of metals to both humans and living organisms. In this study, the remediation efficiencies of washing-coupled phytoremediation on Cd and Zn contaminated soils were evaluated with multiple washing reagents (i.e., hydrochloric acid (HCl), ethylene diamine tetraacetic acid (EDTA), nitrilotriacetic acid (NTA), several biodegradable natural low molecular mass organic acids (LMMOAs)) and ryegrass (Lolium perenne L.). Results indicated that soil washing with different reagents (at 100 mM) effectively removed metals from contaminated soils with the rates ranged from 4.73% to 81.0% and from 12.3% to 43.5% for Cd and Zn, respectively. Metal varieties and the properties washing reagents affected the detoxification performance. As for Cd, the removal rates decreased from over 80% to less than 10% in the order of EDTA > HCl > NTA > LMMOAs. By comparison, HCl and LMMOAs had higher removal efficiencies for Zn than other chelating reagents. The leaching of metals in the acid-extractable fraction was the main contribution to the overall metal removed. Additionally, soil nutrient contents, Ca specifically, were significantly decreased after washing, and the germination and growth of ryegrass were partly inhibited. Despite that, soil biota and enzyme activities responded differently among different treatments. This research also showed LMMOAs, especially citric acid (CA), were more suitable than HCl, EDTA, and NTA as reagents for the combined soil washing and phytoremediation, regarding their comparable metal removal efficiencies and less disturbing on soil fertilities and plant growth.
Collapse
Affiliation(s)
- Ran Xiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Amjad Ali
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Ping Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Xiaohong Tian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China.
| |
Collapse
|
43
|
Du J, Zhang L, Ali A, Li R, Xiao R, Guo D, Liu X, Zhang Z, Ren C, Zhang Z. Research on thermal disposal of phytoremediation plant waste: Stability of potentially toxic metals (PTMs) and oxidation resistance of biochars. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION 2019; 125:260-268. [DOI: 10.1016/j.psep.2019.03.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
44
|
Xiao R, Zhang H, Wang Z, Zhang Z, Du J, Li R, Luo N, Ali A, Sun Z, Zhang Z. Foliar litters: Sources of contaminants in phytoremediation sites by returning potentially toxic metals (PTMs) back to soils. CHEMOSPHERE 2019; 222:9-14. [PMID: 30684688 DOI: 10.1016/j.chemosphere.2019.01.090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 01/07/2019] [Accepted: 01/12/2019] [Indexed: 06/09/2023]
Abstract
Phytoremediation is regarded as one of the most cost-effective and environmentally friendly strategies for potentially toxic metals (PTMs) contaminated soil remediation. However, uncertainties still existed about the contribution of foliar litter on metal accumulation and mobility in phytoremediation sites. Thus, in this study, fallen leaves, decomposed leaves, and soils at different depths (i.e., 0-5 and 5-10 cm) were collected from a phytoremediation site near a Zn smelter factory. Metals content and mobility were evaluated. Results indicated that upper-layer soils (0-5 cm) were higher in the electrical conductivity (EC) and soil organic matter (SOM) content than the deeper-layer soils (5-10 cm). However, the pH was relatively lower in the upper-layer soils. Fallen leaves were sources of metals in the phytoremediation site, and significantly high amounts of Cd (16.08 ± 0.21 mg kg-1) and Zn (1130.30 ± 60.10 mg kg-1) were found in the decomposed leaves. Metals in the upper-layer soils demonstrated higher accumulation and mobility than the deeper-layer soils. Moreover, the accumulated metals in leaves would gradually return to the soil as the contents of extractable metals increased with the rising decomposition degree of leaves (i.e., cold-water extraction < 80 °C hot water extraction < 1 M HCl extraction). Results from this research are helpful for the guidance of phytoremediation site management.
Collapse
Affiliation(s)
- Ran Xiao
- Ningxia Key Laboratory of Resources Assessment and Environmental Regulation in Arid Regions, Yinchuan, 750021, Ningxia Province, China; China-Arab Joint International Research Laboratory for Featured Resources and Environmental Governance in Arid Regions, Yinchuan, 750021, Ningxia Province, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Han Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Zhen Wang
- Ningxia Key Laboratory of Resources Assessment and Environmental Regulation in Arid Regions, Yinchuan, 750021, Ningxia Province, China; China-Arab Joint International Research Laboratory for Featured Resources and Environmental Governance in Arid Regions, Yinchuan, 750021, Ningxia Province, China
| | - Ziyang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Juan Du
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Na Luo
- College of Science and Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Amjad Ali
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Zhaojun Sun
- Ningxia Key Laboratory of Resources Assessment and Environmental Regulation in Arid Regions, Yinchuan, 750021, Ningxia Province, China; China-Arab Joint International Research Laboratory for Featured Resources and Environmental Governance in Arid Regions, Yinchuan, 750021, Ningxia Province, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China.
| |
Collapse
|
45
|
Du J, Zhang L, Liu T, Xiao R, Li R, Guo D, Qiu L, Yang X, Zhang Z. Thermal conversion of a promising phytoremediation plant (Symphytum officinale L.) into biochar: Dynamic of potentially toxic elements and environmental acceptability assessment of the biochar. BIORESOURCE TECHNOLOGY 2019; 274:73-82. [PMID: 30500766 DOI: 10.1016/j.biortech.2018.11.077] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 05/25/2023]
Abstract
Symphytum officinale L., as a hyperaccumulator, was pyrolyzed into biochar at 350, 550, and 750 °C, respectively. PTEs could be enriched in biochars except Cd volatilized greatly at 750 °C. In order to evaluate the environmental acceptability of biochars, a series of sequential and single extractions and biochar oxidation procedures were performed for simulating different environmental conditions. There was a sharp decline in PTEs release under various conditions when the temperature above 550 °C, indicating PTEs might transform into more stable forms at higher temperature. Thus, increasing the pyrolysis temperature is helpful for reducing biochar phytotoxicity, suppressing biochar leaching and improving biochar environmental safety. Moreover, the economic feasibility analysis of the biochar confirmed the practicability of it. Findings from this work illustrated that biochars pyrolyzed from Symphytum officinale L. at the temperature higher than 550 °C might be environmental acceptable, which is beneficial for biochar application.
Collapse
Affiliation(s)
- Juan Du
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lei Zhang
- State Key Laboratory of Coal-Based Clean Energy, Xi'an Thermal Power Research Institute Co. Ltd., Xi'an, Shaanxi 710054, China
| | - Tao Liu
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ran Xiao
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ronghua Li
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Di Guo
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ling Qiu
- The West Scientific Observing and Experimental Station of Rural Renewable Energy Exploitation and Utilization of the Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Xuanmin Yang
- The West Scientific Observing and Experimental Station of Rural Renewable Energy Exploitation and Utilization of the Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Zengqiang Zhang
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|