1
|
Yakkou L, Houida S, El Baaboua A, Bilen S, Chelkha M, Okyay Kaya L, Aasfar A, Ameen F, Ahmad Bhat S, Raouane M, Amghar S, El Harti A. Unveiling resilience: coelomic fluid bacteria's impact on plant metabolism and abiotic stress tolerance. PLANT SIGNALING & BEHAVIOR 2024; 19:2363126. [PMID: 38832593 DOI: 10.1080/15592324.2024.2363126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
Earthworms' coelomic fluid (CF) has been discovered to possess properties that promote plant development. In particular, the earthworm's coelomic fluid-associated bacteria (CFB) are the primary factor influencing the plants' response. To investigate this, we used bacteria isolated from the CF and selected based on different plant growth-promoting traits, in a mesocosm ecosystem that includes plants. This experiment aimed to assess their impact on the metabolism of plants growing under abiotic stress environments (alkaline soil and nitrogen (N), phosphate (P), and potassium (K) deficit) and compare the lipid profiles of plants under the various treatments. We used seven different bacterial species isolated from the CF of Aporrectodea molleri and as a plant model Zea mays L. For the metabolomic analysis method, we used gas chromatography-mass spectrometry lipidomic. After observing the metabolomic profiles, we found that a few molecular pathways are involved in how plants react to bacterial biostimulants. The bacterial isolates belonging to Pantoea vagans, Pseudomonas aeruginosa, Bacillus paramycoides, and Bacillus thuringiensis have led to a significant increase in synthesizing several metabolites belonging to various chemical categories. Contrary to predictions, abiotic stress did not cause a drop in the composition and concentration of lipids in plants treated with the CFB, demonstrating the rigidity of the protective mechanisms. The statistical analysis based on the Pearson method revealed a positive significant correlation between plant growth parameters (length of the aerial part, surface of the leaves, and biomass) and some metabolites belonging to fatty acids, carboxylic acids, benzene derivatives, and alkanes. Moreover, the standard metabolic components of all treatments in much higher concentrations during bacterial treatments than the control treatment suggests that the bacteria have stimulated the overexpression of these metabolic components. According to these results, we could assume that plants treated with CFB exhibit an adaptability of abiotic stress defense mechanisms, which may be attributed to the upregulation of genes involved in lipid biosynthesis pathways.
Collapse
Affiliation(s)
- Lamia Yakkou
- Laboratory of Microbial Biotechnologies and Plant Protection (LBVRN), Faculty of Sciences Agadir, University Ibn Zohr, Agadir, Morocco
- Faculty of Applied Sciences- Ait Melloul, University Ibn Zohr, Agadir, Morocco
| | - Sofia Houida
- Laboratory of Mycobacteria and Tuberculosis, Institut Pasteur of Morocco, Casablanca, Morocco
| | - Aicha El Baaboua
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Science, Abdelmalek-Essaadi University, Tetouan, Morocco
| | - Serdar Bilen
- Soil Science and Plant Nutrition Department, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Maryam Chelkha
- Department of Entomology, Cornell University, Cornell AgriTech, Geneva, NY, USA
| | - Leyla Okyay Kaya
- Soil Science and Plant Nutrition Department, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Abderrahim Aasfar
- Plant and Microbial Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Mohammed Raouane
- Research Team «Lumbricidae, Improving Soil Productivity and Environment (LAPSE)», Center "Water, Natural Resources, Environment and Sustainable Development, Ecole Normale Supérieure (ENS), Mohammed V University, Rabat, Morocco
| | - Souad Amghar
- Research Team «Lumbricidae, Improving Soil Productivity and Environment (LAPSE)», Center "Water, Natural Resources, Environment and Sustainable Development, Ecole Normale Supérieure (ENS), Mohammed V University, Rabat, Morocco
| | - Abdellatif El Harti
- Research Team «Lumbricidae, Improving Soil Productivity and Environment (LAPSE)», Center "Water, Natural Resources, Environment and Sustainable Development, Ecole Normale Supérieure (ENS), Mohammed V University, Rabat, Morocco
| |
Collapse
|
2
|
Li H, Luo J, Cao M, Luo W, Li X, Shao Z, Zhu L, Feng S. Influences of earthworm activity and mucus on Cd phytoremediation based on harvesting different leaf types of tall fescue (Festuca arundinacea). PLoS One 2024; 19:e0304689. [PMID: 38875285 PMCID: PMC11178194 DOI: 10.1371/journal.pone.0304689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/16/2024] [Indexed: 06/16/2024] Open
Abstract
To explore cost-effective and efficient phytoremediation strategies, this study investigated the distinct roles of earthworm activity and mucus in enhancing Cd phytoextraction from soils contaminated by Festuca arundinacea, focusing on the comparative advantages of selective leaf harvesting versus traditional whole-plant harvesting methods. Our study employed a horticultural trial to explore how earthworm activity and mucus affect Festuca arundinacea' s Cd phytoremediation in soils using control, earthworm, and mucus treatments to examine their respective effects on plant growth and Cd distribution. Earthworm activity increased the dry weight of leaves by 13.5% and significantly increased the dry weights of declining and senescent leaves, surpassing that of the control by more than 40%. Earthworm mucus had a similar, albeit less pronounced, effect on plant growth than earthworm activity. This study not only validated the significant role of earthworm activity in enhancing Cd phytoextraction by Festuca arundinacea, with earthworm activity leading to over 85% of Cd being allocated to senescent tissues that comprise only approximately 20% of the plant biomass, but also highlighted a sustainable and cost-effective approach to phytoremediation by emphasizing selective leaf harvesting supported by earthworm activity. By demonstrating that earthworm mucus alone can redistribute Cd with less efficiency compared to live earthworms, our findings offer practical insights into optimizing phytoremediation strategies and underscore the need for further research into the synergistic effects of biological agents in soil remediation processes.
Collapse
Affiliation(s)
- Hongwei Li
- YUNNAN CHIHONG Zn & Ge CO, Ltd., Qujing, China
| | - Jie Luo
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Min Cao
- University of Leicester, Leicester, United Kingdom
| | - Wenquan Luo
- YUNNAN CHIHONG Zn & Ge CO, Ltd., Qujing, China
| | - Xingying Li
- YUNNAN CHIHONG Zn & Ge CO, Ltd., Qujing, China
| | - Zongqi Shao
- YUNNAN CHIHONG Zn & Ge CO, Ltd., Qujing, China
| | | | - Siyao Feng
- College of Resources and Environment, Yangtze University, Wuhan, China
| |
Collapse
|
3
|
Wang J, Liu J, Chang L, Pan Y, Zhai L, Shen Z, Shi L, Chen Y. The characteristic difference between non-drilosphere and drilosphere-aged biochar: Revealing that earthworms accelerate the aging of biochar. CHEMOSPHERE 2023; 321:138141. [PMID: 36804251 DOI: 10.1016/j.chemosphere.2023.138141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Numerous researches have been conducted on the effects of biotic and abiotic-induced aging on the physicochemical characteristics and functions of biochar; however, the impacts of earthworm-induced aging on biochar have not been reported. Hence, we conducted a microscopic experiment simulating a 'drilosphere' to explore the influence of earthworm activity on the natural aging of rice husk biochar (RHBC) through the difference in biochar characteristics after aging in drilosphere and non-drilosphere. The earthworm activity increases the available nitrogen (AN) and dissolved organic matter (DOM) contents of aged RHBC and changes its composition. The increase of DOM and AN content may recruit more microorganisms to colonize biochar and accelerate the biological oxidation of biochar. Furthermore, earthworm activity significantly increased the contents of oxygen (O) and O-containing functional groups in the aged RHBC and decreased the stability (aromaticity) of the aged RHBC, suggesting that the earthworm activity accelerates the natural aging of biochar. Earthworm feeding promotes physical damage to biochar. Besides, the earthworm activity decreased the pH, hydrophilicity and specific surface area (SSA) of aged RHBC but enhanced the adsorption capacity of aged RHBC for heavy metals. The higher content of O-containing functional groups on the surface of drilosphere-aged RHBC was the main reason for its higher adsorption performance. Earthworm feeding promotes physical damage to biochar. These results indicate that earthworm activity can accelerate the natural aging of biochar and alter its physicochemical characteristics and functions. This study illustrates how biochar characteristics change in earthworm-soil systems, which will help scientifically evaluate the long-term effectiveness of biochar.
Collapse
Affiliation(s)
- Jie Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiaqiang Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Luo Chang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuting Pan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lulu Zhai
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China; National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liang Shi
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China; National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China; National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
4
|
Chu X, Bai N, Zheng X, Wang Q, Pan X, Li S, Zhang J, Zhang H, He W, Zhong F, Lv W, Zhang H. Effects of straw returning combined with earthworm addition on nitrification and ammonia oxidizers in paddy soil. Front Microbiol 2022; 13:1069554. [PMID: 36590424 PMCID: PMC9800607 DOI: 10.3389/fmicb.2022.1069554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Soil ammonia oxidation, which acts as the first and rate-limiting step of nitrification, is driven by ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA) and complete ammonia oxidizer (comammox, amoA gene of clade-A and clade-B). Straw returning, widely used ecological technology in China, is an effective measure for promoting straw decomposition and soil nutrient cycling when combined with earthworm addition. However, the effects of straw returning combined with earthworm addition on soil ammonia oxidizers remain poorly understood. Methods A 2-year plot experiment was conducted with 5 treatments: no fertilizer (CK); regular fertilization (RT); straw returning (SR); earthworm addition (W); straw returning + earthworm addition (SRW). The AOA, AOB, comammox clade-A and clade-B community microbial diversities and structures were investigated by high-throughput sequencing. Results The results showed that (1) compared to RT treatment, W, SR, and SRW treatments all significantly increased the richness of AOA and comammox clade-A and clade-B (p < 0.05), and the richness of AOB was only significantly promoted by SRW treatment (p < 0.05). However, only SRW had a higher comammox clade-B diversity index than RT. (2) The ammonia oxidizer community structures were altered by both straw returning and earthworm addition. Soil NH4 +-N was the critical environmental driver for altering the ammonia oxidizer community structure. (3) Compared with RT treatment, the soil potential nitrification rate (PNR) of W and SRW treatments increased by 1.19 and 1.20 times, respectively. The PNR was significantly positively correlated with AOB abundance (path coefficient = 0.712, p < 0.05) and negatively correlated with clade-B abundance (path coefficient = -0.106, p < 0.05). Discussion This study provides scientific support for the application of straw returning combined with earthworm addition to improve soil nitrification with respect to soil ammonia-oxidizing microorganisms.
Collapse
Affiliation(s)
- Xiangqian Chu
- Shanghai Academy of Agricultural Sciences, Eco-environmental Protection Institute, Shanghai, China
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Naling Bai
- Shanghai Academy of Agricultural Sciences, Eco-environmental Protection Institute, Shanghai, China
- Shanghai Agricultural Academy of Sciences, Key Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Xianqing Zheng
- Shanghai Academy of Agricultural Sciences, Eco-environmental Protection Institute, Shanghai, China
- Shanghai Agricultural Academy of Sciences, Key Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Quanhua Wang
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xi Pan
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Shuangxi Li
- Shanghai Academy of Agricultural Sciences, Eco-environmental Protection Institute, Shanghai, China
- Shanghai Agricultural Academy of Sciences, Key Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Juanqin Zhang
- Shanghai Academy of Agricultural Sciences, Eco-environmental Protection Institute, Shanghai, China
- Shanghai Agricultural Academy of Sciences, Key Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Haiyun Zhang
- Shanghai Academy of Agricultural Sciences, Eco-environmental Protection Institute, Shanghai, China
- Shanghai Agricultural Academy of Sciences, Key Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Wenjie He
- Faculty of Resources and Environmental Science, Hubei University, Wuhan, China
| | - Feng Zhong
- Faculty of Resources and Environmental Science, Hubei University, Wuhan, China
| | - Weiguang Lv
- Shanghai Academy of Agricultural Sciences, Eco-environmental Protection Institute, Shanghai, China
- Shanghai Agricultural Academy of Sciences, Key Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Hanlin Zhang
- Shanghai Academy of Agricultural Sciences, Eco-environmental Protection Institute, Shanghai, China
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
- Agricultural Environment and Farmland Conservation Experiment Station of Ministry Agriculture, Shanghai, China
| |
Collapse
|
5
|
Zhao S, Wang J, Feng S, Xiao Z, Chen C. Effects of ecohydrological interfaces on migrations and transformations of pollutants: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150140. [PMID: 34509841 DOI: 10.1016/j.scitotenv.2021.150140] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
With the rapid development of society, the soil and water environments in many countries are suffering from severe pollution. Pollutants in different phases will eventually gather into the soil and water environments, and a series of migrations and transformations will take place at ecohydrological interfaces with water flow. However, it is still not clear how ecohydrological interfaces affect the migration and the transformation of pollutants. Therefore, this paper summarizes the physical, ecological, and biogeochemical characteristics of ecohydrological interfaces on the basis of introducing the development history of ecohydrology and the concept of ecohydrological interfaces. The effects of ecohydrological interfaces on the migration and transformation of heavy metals, organic pollutants, and carbon‑nitrogen‑phosphorus (C-N-P) pollutants are emphasized. Lastly, the prospects of applying ecohydrological interfaces for the removal of pollutants from the soil and water environment are put forward, including strengthening the ability to monitor and simulate ecohydrological systems at micro and macro scales, enhancing interdisciplinary research, and identifying main influencing factors that can provide theoretical basis and technical support.
Collapse
Affiliation(s)
- Shan Zhao
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China; College of Civil Engineering, Tongji University, Shanghai 200092, China
| | - Jianhua Wang
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Shijin Feng
- College of Civil Engineering, Tongji University, Shanghai 200092, China.
| | - Zailun Xiao
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Chunyan Chen
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| |
Collapse
|
6
|
Dai Y, Lin X, Luo Y, Sun J, Tian Y. Molecular analysis of microbial nitrogen transformation and removal potential in mangrove wetlands under anthropogenic nitrogen input. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145632. [PMID: 33940741 DOI: 10.1016/j.scitotenv.2021.145632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/28/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
Mangrove ecosystems are natural nitrogen removal systems that are primarily mediated by nitrogen cycle microorganisms, but their relative contributions to nitrogen transformation and removal in mangrove sediments under anthropogenic nitrogen input needs further resolution and characterization. Here, we investigated the responses and the relative contributions of ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), anaerobic ammonium oxidizing (anammox) bacteria and denitrifying bacteria after spiking urea into mangrove sediments incubated in a laboratory microcosm experiment for four weeks. During incubation, the diversity, abundances and transcription levels of the hzo genes for anammox bacteria, amoA genes for AOA and AOB, and nirS genes for denitrifying bacteria were monitored using targeted gene clone library analyses and quantitative PCR assays at the DNA and RNA levels. The results showed that mangrove sediments harbour habitat-specific anammox bacteria which related to Candidatus Scalindua and Candidatus Kuenenia clades. Mangrove specific AOA related to deep branched clades within Candidatus Nitrososphaera and Candidatus Nitrosotalea, and AOB related to Nitrosomonas and Nitrosospira were also detected in the collected sediment samples. Growth and activity of AOA were detected at all levels of amendment of nitrogen input, whereas AOB growth was detectable only at the high-level nitrogen input (1.5 mg urea per gram of dry sediment) with no amoA transcripts and lower abundance than AOA. The abundance and transcription levels of the nirS gene were higher (~1000 times) than those of the hzo gene in all groups. Pearson correlation analysis demonstrated that the abundance of both AOA and AOB amoA genes had a significant positive correlation with the nirS gene (p < 0.01). These results indicated that nitrification (primarily mediated by the AOA)-denitrification process played the most important role in nitrogen removal from the amendment of nitrogen short-term input in the mangrove sediments.
Collapse
Affiliation(s)
- Yujie Dai
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xiaolan Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yi Luo
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jing Sun
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yun Tian
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
7
|
Cheng Q, Lu C, Shen H, Yang Y, Chen H. The dual beneficial effects of vermiremediation: Reducing soil bioavailability of cadmium (Cd) and improving soil fertility by earthworm (Eisenia fetida) modified by seasonality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142631. [PMID: 33065505 DOI: 10.1016/j.scitotenv.2020.142631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to assess earthworm's capability of reducing the bioavailability of cadmium (Cd) in soil and increasing soil fertility with the modification of seasonal variations of ambient temperatures on the efficacy of vermiremediation. Earthworms were exposed in soil fortified with 0, 5, 10, and 20 mg Cd kg-1, for 7, 14 and 21 days in winter and spring. The bioavailability of Cd in soil, which is represented in the form of diethylenetriaminepentaacetic acid-extractable fraction (DTPA-Cd), were significantly reduced, ranging from 7.9 to 18.3% in winter and 8.8 to 20.8% in spring. Meanwhile, we found earthworm activities could significantly improve the soil fertility as the results of increasing the availability of nitrogen, phosphorous, and potassium in soil, a prominent advantage of vermiremediation in heavy metal-contaminated soil. Although seasonality could increase Cd toxicity in earthworms, higher ambient temperature in spring season also promoted the reduction of Cd bioavailability and the increase of soil fertility, due to significant increase of microbial populations. In conclusion, we reported the dual beneficial effects of vermiremediation in reducing bioavailability of Cd in soil and simultaneously improving soil fertility in which both outcomes were modified by seasonality.
Collapse
Affiliation(s)
- Qing Cheng
- College of Resources and Environment, Southwest University, Chongqing, 400715, People's Republic of China
| | - Chensheng Lu
- College of Resources and Environment, Southwest University, Chongqing, 400715, People's Republic of China; State Cultivation Base of Eco-agriculture for Southwest Mountainous Land, Southwest University, Chongqing, 400715, People's Republic of China
| | - Hong Shen
- College of Resources and Environment, Southwest University, Chongqing, 400715, People's Republic of China
| | - Yuhan Yang
- People's Liberation Army Logistical Engineering University, Chongqing, 404000, People's Republic of China
| | - Hong Chen
- College of Resources and Environment, Southwest University, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
8
|
Liu X, Xiao R, Li R, Amjad A, Zhang Z. Bioremediation of Cd-contaminated soil by earthworms (Eisenia fetida): Enhancement with EDTA and bean dregs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115191. [PMID: 32663730 DOI: 10.1016/j.envpol.2020.115191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/27/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
The remediation of cadmium (Cd) contaminated soil has become a global problem due to its toxicity to living organisms. In this study, earthworm (Eisenia fetida) alone or combined with EDTA or bean dregs were used for Cd removal from soils. The total and available Cd in soils, soil physicochemical and biological (soil enzyme) properties, Cd accumulation in the earthworm and its antioxidant responses towards Cd, were determined during the 35 days of soil incubation experiment. Our results showed that earthworms were capable of removing Cd from soils, and the remediation process was accelerated by both EDTA and bean dregs. By translocation of Cd from soils, the content of Cd in earthworm steadily increased with the exposure time to 8.11, 12.80, and 9.26 mg kg-1 on day 35 for T2 (earthworm alone), T3 (EDTA enhancement), and T4 (bean dregs enhancement), respectively. Consequently, a great reduction in the Cd contents in soils was achieved in T3 (36.53%) and T4 (30.8%) compared with T2 (28.95%). The concentrations of water/DTPA extractable Cd were also reduced, indicating the low Cd mobility after amendment. Finally, the soil became more fertile and active after wermi-remediation. The soil pH, EC, NO3--N, available P, and K contents increased, while soil SOM, DOC, and NH4+-N contents were decreased. There were higher soil enzyme activities (including acid phosphatase activity, β-glucosidase activity, and urease activity) among treatments with earthworms. Additionally, the operational taxonomic units (OTUs) increased by 100-150 units, and the higher chao1 and Shannon indexes indicated the enhanced microbial community after wermi-remediation, especially among treatment with EDTA and bean dregs. Therefore, we concluded that earthworms, alone or combined with EDTA and bean dregs, are feasible for the remediation of Cd-contaminated soil.
Collapse
Affiliation(s)
- Xiangyu Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Ran Xiao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China; College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Ali Amjad
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| |
Collapse
|
9
|
Xiao L, Li MH, Dai J, Motelica-Heino M, Chen XF, Wu JL, Zhao L, Liu K, Zhang C. Assessment of earthworm activity on Cu, Cd, Pb and Zn bioavailability in contaminated soils using biota to soil accumulation factor and DTPA extraction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110513. [PMID: 32213370 DOI: 10.1016/j.ecoenv.2020.110513] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 06/10/2023]
Abstract
The study aims to investigate effect of earthworm activity on metal bioavailability in soils using their BSAF-metals. Based on a microcosmic laboratory experiment, epigeic species Amynthas corticis (A. corticis) and endogeic species Amynthas robustus (A. robustus) were cultured in two types of soils contaminated by Cd, Zn, Pb and Cu for 120 days. Earthworm characteristics (i.e. numbers, biomass and BSAF), soil properties (i.e. pH, organic C and N contents along with their components such as mineralization and microbial masses) and DTPA extracted metals in soil were determined. After the incubation, the biomass and survival numbers of both earthworm species decreased significantly (P < 0.05). The accumulation of Cd, Zn and Pb in earthworm tissues and BSAF-metals were earthworm species dependent. According to two-way ANOVA, BSAF-Pb clearly showed the effect of different species of earthworms while BSAF-Cu indicated an interactive effect of earthworms and soil type. Earthworms changed soil properties significantly, especially for mineralized C (Cmin), dissolved N (Ndis) and pH (P < 0.05). Earthworm activity increase DTPA extracted Zn and Cu, and the effect of A. robustus were stronger than for A. corticis. Redundancy analysis (RDA) showed that BSAF-Cu and BSAF-Pb contributed for respectively 51.9% and 51.7% of soil properties and DTPA metal changes, indicating that the effects of BSAF-Cu and BSAF-Pb on soil properties and on metal bioavailability in soil were similar. BSAF-Cu, indicating the interactive effect of earthworms and soil, accounted for 38.5% and 45.1% of soil properties and soil metal bioavailability changes. BSAF-Pb, representing the effect of earthworm species, accounted for 13.3% and 6.6% of soil property and soil metal bioavailability variations. Stepwise regression indicated that earthworm might change soil properties through their activities and interactions with soil, and hence increase heavy metal bioavailability. It suggested that BSAF is an important indicator for evaluating the effect of earthworm activity on soil metal bioavailability and designing remediation strategies.
Collapse
Affiliation(s)
- Ling Xiao
- Key Laboratory of the Ministry of Agriculture for Arable Land Conservation in South China, Key Laboratory of Guangdong Province for Land Use and Consolidation, College of Natural Resources and Environment, South China Agricultural University, 510642, Guangzhou, China; ISTO, UMR 7327, CNRS-Université D'Orléans, 41071, Orléans, France
| | - Ming-Hui Li
- Key Laboratory of the Ministry of Agriculture for Arable Land Conservation in South China, Key Laboratory of Guangdong Province for Land Use and Consolidation, College of Natural Resources and Environment, South China Agricultural University, 510642, Guangzhou, China
| | - Jun Dai
- Key Laboratory of the Ministry of Agriculture for Arable Land Conservation in South China, Key Laboratory of Guangdong Province for Land Use and Consolidation, College of Natural Resources and Environment, South China Agricultural University, 510642, Guangzhou, China.
| | | | - Xu-Fei Chen
- Key Laboratory of the Ministry of Agriculture for Arable Land Conservation in South China, Key Laboratory of Guangdong Province for Land Use and Consolidation, College of Natural Resources and Environment, South China Agricultural University, 510642, Guangzhou, China; Land Development and Reserve Bureau of Guangdong Province, 510635, Guangzhou, China
| | - Jia-Long Wu
- Key Laboratory of the Ministry of Agriculture for Arable Land Conservation in South China, Key Laboratory of Guangdong Province for Land Use and Consolidation, College of Natural Resources and Environment, South China Agricultural University, 510642, Guangzhou, China; Land Development and Reserve Bureau of Guangdong Province, 510635, Guangzhou, China
| | - Lanfeng Zhao
- Key Laboratory of the Ministry of Agriculture for Arable Land Conservation in South China, Key Laboratory of Guangdong Province for Land Use and Consolidation, College of Natural Resources and Environment, South China Agricultural University, 510642, Guangzhou, China
| | - Kexue Liu
- Key Laboratory of the Ministry of Agriculture for Arable Land Conservation in South China, Key Laboratory of Guangdong Province for Land Use and Consolidation, College of Natural Resources and Environment, South China Agricultural University, 510642, Guangzhou, China
| | - Chi Zhang
- Key Laboratory of the Ministry of Agriculture for Arable Land Conservation in South China, Key Laboratory of Guangdong Province for Land Use and Consolidation, College of Natural Resources and Environment, South China Agricultural University, 510642, Guangzhou, China; ISTO, UMR 7327, CNRS-Université D'Orléans, 41071, Orléans, France.
| |
Collapse
|