1
|
Nazir MM, Li G, Nawaz M, Noman M, Zulfiqar F, Ahmed T, Jalil S, Ijaz M, Kuzyakov Y, Du D. Ionic and nano calcium to reduce cadmium and arsenic toxicity in plants: Review of mechanisms and potentials. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109169. [PMID: 39369650 DOI: 10.1016/j.plaphy.2024.109169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/12/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
Contamination of agricultural soils with heavy metal(loid)s like arsenic (As) and cadmium (Cd) is an ever increasing concern for crop production, quality, and global food security. Numerous in-situ and ex-situ remediation approaches have been developed to reduce As and Cd contamination in soils. However, field-scale applications of conventional remediation techniques are limited due to the associated environmental risks, low efficacy, and large capital investments. Recently, calcium (Ca) and Ca-based nano-formulations have emerged as promising solutions with the large potential to mitigate As and Cd toxicity in soil for plants. This review provides comprehensive insights into the phytotoxic effects of As and Cd stress/toxicity and discusses the applications of Ca-based ionic and nano-agrochemicals to alleviate As and Cd toxicity in important crops such as rice, wheat, maize, and barley. Further, various molecular and physiological mechanisms induced by ionic and nano Ca to mitigate As and Cd stress/toxicity in plants are discussed. This review also critically analyzes the efficiency of these emerging Ca-based approaches, both ionic and nano-formulations, in mitigating As and Cd toxicity in comparison to conventional remediation techniques. Additionally, future perspectives and ecological concerns of the remediation approaches encompassing ionic and nano Ca have been discussed. Overall, the review provides an updated and in-depth knowledge for developing sustainable and effective strategies to address the challenges posed by As and Cd contamination in agricultural crops.
Collapse
Affiliation(s)
- Muhammad Mudassir Nazir
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, China
| | - Guanlin Li
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Mohsin Nawaz
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, China
| | - Muhammad Noman
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; College of Arts and Sciences, Gulf University for Science and Technology, Kuwait
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Temoor Ahmed
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Department of Life Sciences, Western Caspian University, Baku, Azerbaijan; MEU Research Unit, Middle East University, Amman, Jordan
| | - Sanaullah Jalil
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Munazza Ijaz
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, University of Göttingen, Göttingen, Germany
| | - Daolin Du
- Jingjiang College, Institute of Environment and Ecology, School of Emergency Management, School of Environment and Safety Engineering, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Duan X, Liu L, Lu T, Wang S, Wang C, Qiu G. Mechanism for Fe(III) to decrease cadmium uptake of wheat plant: Rhizosphere passivation, competitive absorption and physiological regulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172907. [PMID: 38703846 DOI: 10.1016/j.scitotenv.2024.172907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/28/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
The presence of dissolved Fe(III) and Fe(III)-containing minerals has been found to alleviate cadmium (Cd) accumulation in wheat plants grown in Cd-contaminated soils, but the specific mechanism remains elusive. In this work, hydroponic experiments were conducted to dissect the mechanism for dissolved Fe(III) (0-2000 μmol L-1) to decrease Cd uptake of wheat plants and study the influence of Fe(III) concentration and Cd(II) pollution level (0-20 μmol L-1) on the Cd uptake process. The results indicated that dissolved Fe(III) significantly decreased Cd uptake through rhizosphere passivation, competitive absorption, and physiological regulation. The formation of poorly crystalline Fe(III) oxides facilitated the adsorption and immobilization of Cd(II) on the rhizoplane (over 80.4 %). In wheat rhizosphere, the content of CaCl2-extractable Cd decreased by 52.7 % when Fe(III) concentration was controlled at 2000 μmol L-1, and the presence of Fe(III) may reduce the formation of Cd(II)-organic acid complexes (including malic acid and succinic acid secreted by wheat roots), which could be attributed to competitive reactions. Down-regulation of Cd uptake genes (TaNramp5-a and TaNramp5-b) and transport genes (TaHMA3-a, TaHMA3-b and TaHMA2), along with up-regulation of the Cd efflux gene TaPDR8-4A7A, contributed much to the reduction of Cd accumulation in wheat plants in the presence of Fe(III). The inhibitory effect of Fe(III) on Cd uptake and transport in wheat plants declined with increasing Cd(II) concentration, particularly at 20 μmol L-1. This work provides important implications for remediating Cd-contaminated farmland soil and ensuring the safe production of wheat by using dissolved Fe(III) and Fe(III)-containing minerals.
Collapse
Affiliation(s)
- Xianjie Duan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Ling Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Tao Lu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Sheliang Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Chuang Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agriculture Genomics Institute at Shenzhen, Chinese Academy of Agriculture Science, Shenzhen 518000, China
| | - Guohong Qiu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agriculture Genomics Institute at Shenzhen, Chinese Academy of Agriculture Science, Shenzhen 518000, China.
| |
Collapse
|
3
|
Jia H, Lei Y, Pan S, Zhu J, Shen Z, Tang L, Hou D. The impacts of exogenous phosphorus on Cd absorption in perennial ryegrass root cell: Kinetic and mechanism study. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108220. [PMID: 38039583 DOI: 10.1016/j.plaphy.2023.108220] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/01/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Abstract
Phosphorus (P) is critical to plants in metal-contaminated soils because it participates in various biochemical reactions during plant growth. However, the mechanisms of P in mitigating the toxicity of heavy metals to ryegrass root is still veiled. In this study, the physiological and biochemical dynamics of the ryegrass root under various cadmium (Cd) and P conditions were investigated in a hydroponic system. Cd stress decreased the length of the ryegrass root, but P application enhanced the root elongation to reduce the Cd concentration in the root. Both Cd and P dosages were positively correlated with hemicellulose 1 content, pectin content, and PME activity, while having a negative effect on cellulose content. Moreover, the addition of 80 mg L-1 P increased the contents of pectin and hemicellulose 1 by 2.5 and 5.8% even with 4 mg L-1 Cd. In addition, P supply increased pectin methylesterbase activity under Cd stress, which further changed the extra-cytoplasmic structures and cell wall composition. Thus, exogenous P promoted the immobilization of Cd onto the cell wall and protected protoplast primarily through indirectly regulating the binding capacity of the root cell wall for Cd.
Collapse
Affiliation(s)
- Hui Jia
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China; School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yuze Lei
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China
| | - Shizhen Pan
- Department of Environment in Yangtze Delta Region Institute of Tsinghua University, Zhejiang Provincial Key Laboratory of Water Science and Technology, Jiaxing, 314006, Zhejiang, China
| | - Jin Zhu
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Zhengtao Shen
- School of Earth and Engineering Sciences, Nanjing University, Nanjing, 210023, China.
| | - Lingyi Tang
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, T6G 2E3, Canada.
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
4
|
Jiang Y, Wei C, Jiao Q, Li G, Alyemeni MN, Ahmad P, Shah T, Fahad S, Zhang J, Zhao Y, Liu F, Liu S, Liu H. Interactive effect of silicon and zinc on cadmium toxicity alleviation in wheat plants. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131933. [PMID: 37421854 DOI: 10.1016/j.jhazmat.2023.131933] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/12/2023] [Accepted: 06/23/2023] [Indexed: 07/10/2023]
Abstract
Silicon (Si) and Zinc (Zn) have been frequently used to alleviate cadmium (Cd) toxicity, which are feasible strategies for crop safety production. However, the mechanisms underlying the interaction of Si and Zn on alleviating Cd toxicity are not well understood. A hydroponic system was adopted to evaluate morphological, physiological-biochemical responses, and related gene expression of wheat seedlings to Si (1 mM) and Zn (50 µM) addition under Cd stress (10 µM). Cd induced obvious inhibition of wheat growth by disturbing photosynthesis and chlorophyll synthesis, provoking generation of reactive oxygen species (ROS) and interfering ion homeostasis. Cd concentration was decreased by 68.3%, 43.1% and 73.3% in shoot, and 78.9%, 44.1% and 85.8% in root by Si, Zn, and combination of Si with Zn, relative to Cd only, respectively. Si and Zn effectively ameliorated Cd toxicity and enhanced wheat growth; but single Si or combination of Si with Zn had more efficient ability on alleviating Cd stress than only Zn, indicating Si and Zn have synergistic effect on Cd toxicity; Interaction of them alleviated oxidative stress by reducing ROS content, improving AsA-GSH cycle and antioxidant enzymes activities, and regulating Cd into vacuole through PC-Cd complexes transported by HMA3 transporter. Our results suggest that fertilizers including Si and Zn should be made to reduce Cd content, which will beneficial for food production and safety.
Collapse
Affiliation(s)
- Ying Jiang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Chang Wei
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Qiujuan Jiao
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Gezi Li
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama, 192301 Jammu and Kashmir, India
| | - Tariq Shah
- Plant Science Research Unit, United States Department for Agriculture (USDA), ARS, Raleigh, NC, USA
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Jingjing Zhang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Ying Zhao
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Fang Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Shiliang Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Haitao Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China.
| |
Collapse
|
5
|
Liu H, Zhang Y, Wang H, Zhang B, He Y, Wang H, Zhu Y, Holm PE, Shi Y. Comparing cadmium uptake kinetics, xylem translocation, chemical forms, and subcellular distribution of two tobacco (Nicotiana tabacum L.) cultivars. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114738. [PMID: 36905848 DOI: 10.1016/j.ecoenv.2023.114738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Tobacco (Nicotiana tabacum L.) is a potential phytoremediator that can reduce soil cadmium (Cd) contamination. Pot and hydroponic experiments were conducted to investigate the difference in absorption kinetics, translocation patterns, accumulation capacity, and extraction amounts between two leading tobacco cultivars in China. We studied the chemical forms and subcellular distribution of Cd in the plants to understand the diversity of the detoxification mechanism of the cultivars. The concentration-dependent kinetics of Cd accumulation in leaves, stems, roots, and xylem sap for cultivars Zhongyan 100 (ZY100) and K326, fitted well with the Michaelis-Menten equation. K326 exhibited high biomass, Cd tolerance, Cd translocation, and phytoextraction abilities. The acetic acid, sodium chloride, and water-extractable fractions accounted for > 90% of Cd in all ZY100 tissues but only in K326 roots and stems. Moreover, the acetic acid and NaCl fractions were the predominant storage forms, while the water fraction was the transport form. The ethanol fraction also contributed significantly to Cd storage in K326 leaves. As the Cd treatment increased, more NaCl and water fractions were found in K326 leaves, while only NaCl fractions increased in ZY100 leaves. For subcellular distribution, > 93% Cd proportions were primarily stored in both cultivars' soluble or cell wall fraction. The proportion of Cd in the cell wall fraction of ZY100 roots was less than that of K326, while that proportion in the soluble fraction in ZY100 leaves was higher than in K326 leaves. These findings demonstrate that Cd accumulation patterns, detoxification, and storage strategies differ between the cultivars, providing a deeper understanding of Cd tolerance and accumulation mechanism in tobacco plants. It also guides the screening of germplasm resources or gene modification to improve the Cd phytoextraction efficiency of tobacco.
Collapse
Affiliation(s)
- Haiwei Liu
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs; Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Yan Zhang
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs; Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Haiyun Wang
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs; Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Biao Zhang
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs; Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yuan He
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs; Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Haohao Wang
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs; Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yingying Zhu
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs; Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Peter E Holm
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark; Sino-Danish Center for Education and Research (SDC), Denmark
| | - Yi Shi
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs; Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
6
|
He C, Zhou J, Yang C, Song Z, He J, Huang Z, Deng Y, Wang J, Xiong Y, Dang Z. Accumulation, transportation, and distribution of tetracycline and cadmium in rice. J Environ Sci (China) 2023; 126:58-69. [PMID: 36503784 DOI: 10.1016/j.jes.2022.03.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 06/17/2023]
Abstract
Co-exposure to heavy metal and antibiotic pollution might result in complexation and synergistic interactions, affecting rice growth and further exacerbating pollutant enrichment. Therefore, our study sought to clarify the influence of different Tetracycline (TC) and Cadmium(Cd) concentration ratios (both alone and combined) on rice growth, pollutant accumulation, and transportation during the tillering stage in hydroponic system. Surprisingly, our findings indicated that the interaction between TC and Cd could alleviate the toxic effects of TC/Cd on aerial rice structures and decrease pollutant burdens during root elongation. In contrast, TC and Cd synergistically promoted the accumulation of TC/Cd in rice roots. However, their interaction increased the accumulation of TC in roots while decreasing the accumulation of Cd when the toxicant doses increased. The strong affinity of rice to Cd promoted its upward transport from the roots, whereas the toxic effects of TC reduced TC transport. Therefore, the combined toxicity of the two pollutants inhibited their upward transport. Additionally, a low concentration of TC promoted the accumulation of Cd in rice mainly in the root tip. Furthermore, a certain dose of TC promoted the upward migration of Cd from the root tip. Laser ablation-inductively coupled plasma mass spectrometry demonstrated that Cd mainly accumulated in the epidermis and stele of the root, whereas Fe mainly accumulated in the epidermis, which inhibited the absorption and accumulation of Cd by the rice roots through the generation of a Fe plaque. Our findings thus provide insights into the effects of TC and Cd co-exposure on rice growth.
Collapse
Affiliation(s)
- Chunfeng He
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jini Zhou
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chen Yang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China.
| | - Zhiyi Song
- Department of Environmental Sciences, The State University of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA; Guangdong Institute of Ecological Environment and Soil, Guangzhou 510650, China
| | - Junheng He
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Ziqing Huang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yurong Deng
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jinling Wang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yu Xiong
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zhi Dang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| |
Collapse
|
7
|
Liu J, Zhang D, Yuan Y, Chen P, Zhang P, Jin F, Yang Q, Feng B. A promising crop for cadmium-contamination remediation: Broomcorn millet. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112669. [PMID: 34419643 DOI: 10.1016/j.ecoenv.2021.112669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) pollution highly threatens food security and human health, and phytoremediation with Cd-tolerant plants is a cost-effective in situ method for remediation of Cd contamination. Broomcorn millet is known for its strong abiotic stress resistance and can be used as a pioneer crop in both marginal regions and newly reclaimed land. To evaluate their potential in remediation of Cd contamination, a total of 288 broomcorn millet core collections were investigated under hydroponic conditions to compare their capabilities in Cd tolerance, translocation, and accumulation. The core collections varied considerably in their growth parameters, Cd concentration, Cd translocation factor, Cd bioaccumulation factor, and Cd accumulation under Cd stress. According to the Cd tolerance index (TI) values, 160 varieties were Cd tolerant. The Cd TI was significantly positively correlated with Cd accumulation, and the shoot Cd concentrations of five Cd-tolerant varieties were more than 100 mgkg-1, the threshold for being Cd hyperaccumulators. Moreover, the concentrations of essential metal elements were significantly decreased in shoots, and Cd concentration had a significantly positive relationship with magnesium (Mg) and zinc (Zn) concentrations in roots under Cd stress. These results demonstrate that broomcorn millet shows considerable tolerance to Cd stress and great differences in Cd accumulation abilities among varieties. Accordingly, broomcorn millet is a promising plant species for Cd bioremediation, with valuable varieties that have been identified for further study on Cd tolerance mechanisms and the remediation of Cd contamination.
Collapse
Affiliation(s)
- Jiajia Liu
- College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Dazhong Zhang
- College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Yuhao Yuan
- College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Pengliang Chen
- College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Panpan Zhang
- College of Life Science, Yulin University, Yulin, Shaanxi 719000, PR China
| | - Fei Jin
- College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Qinghua Yang
- College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, PR China.
| | - Baili Feng
- College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
8
|
Zhang W, Li H, Tan X, Li Z, Zhong C, Xiao W, Xiong Y, Zhang W, Yang L, Wu G. Fe-Mn Plaque Formation Mechanism Underlying the Inhibition of Cadmium Absorption by Rice Under Oxygation Conditions. ENVIRONMENTAL ENGINEERING SCIENCE 2021; 38:676-684. [PMID: 34321862 PMCID: PMC8312024 DOI: 10.1089/ees.2020.0434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/02/2021] [Indexed: 06/13/2023]
Abstract
Oxygation (O) is a water-saving and energy-saving irrigation method that can also influence the absorption of cadmium (Cd) by rice, but the related mechanism is still unclear. In this study, the relationship between O method and Fe-Mn plaque formation was tested through pot experiments. The Fe-Mn plaque content and Cd concentration were measured during different rice growth periods, and the fitted models based on their correlation were established. The results show that, Fe-Mn plaque formation was the most significant factor affecting Cd accumulation in rice under O conditions. The content of rice root Fe-Mn plaque was higher after the application of O during the filling and maturity stages of rice growth, and Fe-Mn plaque inhibited Cd accumulation in the rice roots and grains and reduced the translocation factors (TFs) from the rice dithionite-citrate-bicarbonate extract (DCB) to the roots (TFDCB-R) and from the roots to the straw (TFStraw-G). O may influence the Fe-Mn plaque formation on the root surface to impede Cd absorption by rice. This research provides theoretical support for the Cd absorption under O conditions.
Collapse
Affiliation(s)
- Wenping Zhang
- College of Water Resources and Civil Engineering, Hunan Agricultural University, Changsha, P.R. China
- College of Resources and Environment, Hunan Agricultural University, Changsha, P.R. China
| | - Hanchang Li
- College of Water Resources and Civil Engineering, Hunan Agricultural University, Changsha, P.R. China
| | - Xin Tan
- College of Water Resources and Civil Engineering, Hunan Agricultural University, Changsha, P.R. China
| | - Zhonghao Li
- College of Water Resources and Civil Engineering, Hunan Agricultural University, Changsha, P.R. China
| | - Cheng Zhong
- College of Water Resources and Civil Engineering, Hunan Agricultural University, Changsha, P.R. China
| | - Weihua Xiao
- College of Water Resources and Civil Engineering, Hunan Agricultural University, Changsha, P.R. China
| | - Yuanfu Xiong
- College of Resources and Environment, Hunan Agricultural University, Changsha, P.R. China
| | - Wenjun Zhang
- College of Water Resources and Civil Engineering, Hunan Agricultural University, Changsha, P.R. China
| | - Liangjiu Yang
- College of Water Resources and Civil Engineering, Hunan Agricultural University, Changsha, P.R. China
| | - Genyi Wu
- College of Resources and Environment, Hunan Agricultural University, Changsha, P.R. China
- Environmental Protection Department, Environmental Science Institute in South China, Guangzhou, P.R. China
| |
Collapse
|
9
|
Juang KW, Chu LJ, Syu CH, Chen BC. Assessing human health risk of arsenic for rice consumption by an iron plaque based partition ratio model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:142973. [PMID: 33498118 DOI: 10.1016/j.scitotenv.2020.142973] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 06/12/2023]
Abstract
A field experiment was conducted to study the transport and uptake of arsenic (As) from soil to rice roots and the subsequent translocation from roots to shoots and grains. Twelve rice cultivars were used in the field experiment. The amount of As accumulated in rice grains and sequestered by root iron plaque and rhizosphere soil, were determined to establish the relationship between As concentrations in brown rice and As sequestration by iron oxides. Human health risk was then assessed for Taiwan's population exposed to As through rice consumption. The result of this study showed that the mean total As concentrations in the experimental site and in brown rice were 93.02 mg/kg and 0.158 mg/kg, respectively. The As sequestration by iron oxides on root plaque (3.48-9.51) was higher than that of the rhizosphere soil (1.86-4.09) for all tested rice cultivars. Therefore, the partition ratio (PR) representing the relative tendency of As sequestration by rhizosphere soil to that in root iron plaque was all less than 1. In addition, there was a significant negative linear relationship between inorganic As concentration (iAs) in brown rice and PR value (r2 = 0.38, p < 0.05). Based on the iAs in brown rice, the median value of hazard quotient (HQ) and target cancer risk (TR) was 1.13 and 5.10 × 10-4, respectively, indicating potential cancer and non-cancer risk for Taiwan residents exposed to As through the consumption of rice grown on the studied site. Various PR values were then successfully used for estimating risk, implying that screening the PR of the rice plant before harvest could serve as an early warning signal for protecting consumers' health. However, more experiments with different rice cultivars for the paddy soils were suggested in the future to establish a comprehensive relationship between iAs in brown rice and PR value.
Collapse
Affiliation(s)
- Kai-Wei Juang
- Department of Agronomy, National Chiayi University, Chiayi, Taiwan
| | - Li-Jia Chu
- Department of Agronomy, National Chiayi University, Chiayi, Taiwan; Department of Natural Biotechnology, Nanhua University, Chiayi, Taiwan
| | - Chien-Hui Syu
- Agricultural Chemistry Division, Taiwan Agricultural Research Institute, Taiwan
| | - Bo-Ching Chen
- Department of Natural Biotechnology, Nanhua University, Chiayi, Taiwan.
| |
Collapse
|
10
|
Wu J, Song Q, Zhou J, Wu Y, Liu X, Liu J, Zhou L, Wu Z, Wu W. Cadmium threshold for acidic and multi-metal contaminated soil according to Oryza sativa L. Cadmium accumulation: Influential factors and prediction model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111420. [PMID: 33080421 DOI: 10.1016/j.ecoenv.2020.111420] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/14/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd) contamination in soil-rice systems has become a global public concern. However, influencing factors and the contamination threshold of Cd in soils remain largely unknown owing to soil heterogeneity, which limits our ability to assess the risk to human health and to draft appropriate environmental policies. In this study, we selected the soil-rice system of Longtang and Shijiao town in southern China, which was characterized by multi-metal acidic soil contamination due to improper electronic waste recycling activities, as a case to analyze the influence of different soil properties on the Cd threshold in the soil and Cd accumulation in rice. The results showed that soil organic matter (SOM) was the main factor regulating Cd accumulation in the soil-rice system. Moreover, compared with the total Cd concentration, the DTPA-extractable Cd concentration in the soil was a better predictor of Cd transportation in the soil-rice system. According to the prediction model, when SOM was < 35 g kg-1, the CdDTPA threshold was 0.16 mg kg-1 with a 95% likelihood of Cdrice accumulation above the Chinese food standard limit (0.2 mg kg-1). Conversely, when SOM was ≥ 35 g kg-1, the CdDTPA threshold was only 0.03 mg kg-1. This study of the influence of SOM on Cd accumulation in a soil-rice system confirms that SOM is a crucial parameter for better and safer rice production, especially in multi-metal contaminated acidic soils.
Collapse
Affiliation(s)
- Jiahui Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Qingmei Song
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Jingyan Zhou
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Yingxin Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Xiaowen Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Junjun Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Lingli Zhou
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Zhuohao Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Wencheng Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China.
| |
Collapse
|
11
|
Hsueh YM, Lin YC, Huang YL, Shiue HS, Pu YS, Huang CY, Chung CJ. Effect of plasma selenium, red blood cell cadmium, total urinary arsenic levels, and eGFR on renal cell carcinoma. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:141547. [PMID: 32858293 DOI: 10.1016/j.scitotenv.2020.141547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
High total urinary arsenic concentrations and low estimated glomerular filtration rate (eGFR) increase the risk of renal cell carcinoma (RCC). This study aimed to determine whether other metals or metalloids can affect RCC. A total of 401 patients with RCC and 774 age- and sex-matched controls were recruited between November 2006 and December 2012 in Taiwan. Surgical resection or image-guided biopsy of renal tumors was performed to pathologically verify RCC. High-performance liquid chromatography linked to a hydride generator and atomic absorption spectrometer were used to measure the urinary arsenic species concentrations. Inductively coupled plasma mass spectrometry was used to determine plasma selenium and red blood cell cadmium and lead concentration. Plasma selenium levels were inversely related to RCC, whereas red blood cell cadmium levels were directly related to RCC. The odds ratio (OR) and 95% confidence interval (CI) were 0.14 (95% CI, 0.10-0.20) and 1.33 (95% CI, 1.03-1.72), respectively. A low plasma selenium level tended to interact with high total urinary arsenic levels or with high red blood cell cadmium concentration to increase the OR of RCC. In particular, low eGFR multiplicatively interacted with high red blood cell cadmium concentration to increase the OR of RCC (Pinteraction=0.003). This study was the first to find a significant multiplicative interaction between eGFR and the red blood cell cadmium levels on the increased OR of RCC.
Collapse
Affiliation(s)
- Yu-Mei Hsueh
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ying-Chin Lin
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Geriatric Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ya-Li Huang
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Horng-Sheng Shiue
- Department of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yeong-Shiau Pu
- Department of Urology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chao-Yuan Huang
- Department of Urology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Chi-Jung Chung
- Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan; Department of Medical Research, China Medical University and Hospital, Taichung, Taiwan.
| |
Collapse
|
12
|
Chiao WT, Chen BC, Syu CH, Juang KW. Aspects of cultivar variation in physiological traits related to Cd distribution in rice plants with a short-term stress. BOTANICAL STUDIES 2020; 61:27. [PMID: 33044614 PMCID: PMC7550440 DOI: 10.1186/s40529-020-00304-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/30/2020] [Indexed: 06/01/2023]
Abstract
BACKGROUND Genotypic variations are seen in cadmium (Cd) tolerance and accumulation in rice plants. Cultivars that show low Cd translocation from the root into shoot can be selected to reduce Cd contamination in rice grains. This study aims to clarify the physiological regulation related to Cd absorption by rice plants for screening out the cultivars, which have relatively low Cd accumulation in grains. Eight Taiwan mega cultivars of paddy rice: japonica (TY3, TK9, TNG71, and KH145 cultivars), indica (TCS10 and TCS17 cultivars), and glutinous (TKW1 and TKW3 cultivars), which are qualified with the criteria for rice grain quality by the Council of Agriculture, Taiwan, were used for illustration. An experiment in hydroponics was conducted for the rice seedlings with a treatment of 50 μM CdCl2 for 7 days. RESULTS AND DISCUSSION After the Cd treatment, the reductions in shoot growth were more significant than those in root growth; however, Cd absorbed in the rice plant was sequestered much more in the root. The malondialdehyde (MDA) was preferentially accumulated in rice root but the hydrogen peroxide (H2O2) was increased more significantly in the shoot; the antioxidative enzymes, superoxide dismutase (SOD) and ascorbate peroxidase (APX), were pronounced more in rice shoot. CONCLUSIONS The rice cultivars preferentially accumulated Cd in the root rather than the shoot with the Cd treatment, which resulted in significant enhancements of MDA and growth reductions in the root. However, H2O2 accumulation was toward the shoot to retard shoot growth suddenly and then the root could keep a gradual growth. Also, the rice cultivars, which preferentially accumulate Cd in the root, would have the regulation tendency of SOD toward the shoot. Due to that SOD is responsible for H2O2 production, H2O2 accumulation would be thus toward the shoot. Moreover, the cultivars, which have a less regulation tendency of APX toward the shoot, would present higher translocation of Cd into the shoot.
Collapse
Affiliation(s)
- Wan-Ting Chiao
- Athena Institute of Holistic Wellness, Wuyi University, Wuyishan, Fujian, China
| | - Bo-Ching Chen
- Department of Natural Biotechnology, Nanhua University, Chiayi County, Taiwan, ROC
| | - Chien-Hui Syu
- Agricultural Chemistry Division, Taiwan Agricultural Research Institute, Wufeng Dist., Taichung City, Taiwan, ROC
| | - Kai-Wei Juang
- Department of Agronomy, National Chiayi University, Chiayi City, Taiwan, ROC.
| |
Collapse
|
13
|
Zou R, Wang L, Li YC, Tong Z, Huo W, Chi K, Fan H. Cadmium absorption and translocation of amaranth (Amaranthus mangostanus L.) affected by iron deficiency. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113410. [PMID: 31679873 DOI: 10.1016/j.envpol.2019.113410] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/01/2019] [Accepted: 10/14/2019] [Indexed: 05/27/2023]
Abstract
Amaranth (Amaranthus mangostanus L.) has superior capability for accumulating cadmium (Cd) and has the potential to be used for phytoremediation of Cd contaminated soils. Iron (Fe) is chemically similar to Cd and may mediate Cd-induced physiological or metabolic impacts in plants. The purpose was to investigate the model of time-dependent and concentration-dependent kinetics of Cd absorption under Fe deficiency, understanding the physiological mechanism of Cd absorption in amaranth roots. The kinetic characteristics of Cd uptake by amaranth grown in Cd enriched nutritional solution with or without Fe addition and with methanol-chloroform, carbonyl cyanide 3-chlorophenylhydrazone (CCCP), and lanthanum chloride (LaCl3) were compared using 109Cd2+ isotope labeling technique. The results showed that Cd uptake was time-dependent and about 90-93% of uptake occurred during the first 150 min. The kinetics of Cd uptake showed that two stages were involved. The saturation stage fitted the Michaelis-Menten model when concentrations of Cd were lower than 12.71 μmol/L and then the absorption of Cd by roots was increased linearly during the second stage. Only linear absorption was observed with methanol-chloroform treatment while the metabolic inhibitor CCCP inhibited only the saturation absorption process, and the Ca channel inhibitor LaCl3 partially inhibited the two stages of absorption. These results indicated that the root absorption of 109Cd2+ was enhanced under Fe deficiency which induced more Fe transporters in the root cell membrane, and the Ca channel, apoplastic and symplastic pathways enhanced the Cd absorption in roots.
Collapse
Affiliation(s)
- Rong Zou
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Beijing 100081, China
| | - Li Wang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Beijing 100081, China
| | - Yuncong C Li
- Department of Soil and Water Sciences, Tropical Research and Education Center, IFAS, University of Florida, Homestead, FL 33031, USA
| | - Zhaohui Tong
- Department of Agricultural and Biological Engineering, IFAS, University of Florida, Gainesville, FL 32611, USA
| | - Wenmin Huo
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Beijing 100081, China; School of Land Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Keyu Chi
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Beijing 100081, China; Beijing Construction Engineering Group Environmental Remediation Co., Ltd. Beijing 100015, China
| | - Hongli Fan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Beijing 100081, China; Department of Soil and Water Sciences, Tropical Research and Education Center, IFAS, University of Florida, Homestead, FL 33031, USA; Department of Agricultural and Biological Engineering, IFAS, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|