1
|
Li M, Wang H, Chen Z, Liu H, Zhao H, Rong X, Xia R, Wang X, Zhou J. Contribution, absorption mode, and model prediction of atmospheric deposition to copper and lead accumulation in soybean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177448. [PMID: 39521081 DOI: 10.1016/j.scitotenv.2024.177448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Atmospheric deposition plays a significant role in the introduction of trace metals into agricultural ecosystems; however, accurately determining its impact on the accumulation of metals in crops remains a challenge. Here, the contribution, absorption mode, and model prediction of atmospheric deposition to trace metal accumulation in soybean were investigated by a three-year full factorial atmospheric and soil exposure experiment near a large copper (Cu) smelter. The results showed that newly deposited (one-year atmospheric deposition) metals only accounted for 0.2 %-14 % of total soil pools, while they contributed 8 %-77 % of Cu and 14 %-84 % of lead (Pb) in soybean plants. Meanwhile, the extension of soil exposure time to atmospheric deposition (two- and three-year atmospheric deposition) did not lead to significant increase in the bioavailable fraction of Cu and Pb in soil plough horizon and the bioaccumulation in soybean tissues. This suggested that the newly atmospheric deposition during the growth period was the key source of Cu and Pb in soybean plants. Furthermore, foliar absorption was an important pathway for metal accumulation in aboveground tissues as evidenced by its relative high contributions in metal bioaccumulation, i.e., 17 %-62 %, 26 %-70 %, 19 %-75 %, and 20 %-46 % of Cu and Pb in stem, leaf, hull, and seed, respectively. Besides, two models were developed to predict the Cu and Pb concentrations in soybean seeds using multiple regression analysis with atmospherically deposited metals and soil metals as variables. Compared with models based on a single variable, these models significantly improved the prediction accuracy of Cu and Pb concentrations in soybean seeds (adjusted R2 = 0.936 and 0.995). The model prediction results suggested that the threshold value of atmospherically deposited Pb to ensure the safe production of soybean was 17.7 mg/m2/year. This study offers new insights into the effective management of metal pollution in soybeans, focusing on atmospheric deposition and foliar absorption.
Collapse
Affiliation(s)
- Min Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, PR China
| | - Haotian Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, PR China
| | - Ziqi Chen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, PR China
| | - Hailong Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, PR China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China.
| | - Huan Zhao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, PR China
| | - Xiuting Rong
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, PR China
| | - Ruizhi Xia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, PR China
| | - Jun Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China.
| |
Collapse
|
2
|
Liu H, Rong X, Zhao H, Xia R, Li M, Wang H, Cui H, Wang X, Zhou J. Bioaccumulation of Atmospherically Deposited Cadmium in Soybean: Three-Year Field Experiment Combined with Cadmium Isotopes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17703-17716. [PMID: 39317642 DOI: 10.1021/acs.est.4c07961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Atmospheric deposition plays a significant role in introducing cadmium (Cd) into agroecological systems; however, accurately determining its accumulation in crops through foliar and root uptake presents challenges. This study investigated the bioaccumulation of atmospherically deposited Cd in soybean using a three-year fully factorial atmospheric exposure experiment incorporating Cd isotope analysis. Results shown that atmospheric deposition accounted for 1-13% of soil Cd pools, yet contributed 11-72% of Cd to soybean tissues during the growing seasons. Over the course of soil exposure to atmospheric deposition ranging from 1 to 3 years, no notable variations were observed in Cd concentrations in soil solutions and soybean tissues, nor in isotope ratios. Newly deposited Cd was a major source in soybean plants, and the bioavailability of deposited Cd rapidly aged in soils. Atmospheric Cd enriched in lighter isotopes induced negative isotope shifts in soybean plants. By employing an optimized isotope mixing model in conjunction with a mass balance approach, foliar Cd uptake contributed 13-51%, 16-45%, and 21-56% to stem, leaf, and seed, respectively. This study highlights substantial contribution of foliar uptake of atmospheric deposition to Cd levels in soybean and controlling foliar uptake as a potential strategy in agroecological systems experiencing high atmospheric Cd deposition.
Collapse
Affiliation(s)
- Hailong Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P.R. China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, P.R. China
| | - Xiuting Rong
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P.R. China
| | - Huan Zhao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P.R. China
| | - Ruizhi Xia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Min Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P.R. China
| | - Haotian Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P.R. China
| | - Hongbiao Cui
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, P.R. China
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P.R. China
| | - Jun Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
3
|
Ashade AO, Obayori OS, Salam LB, Fashola MO, Nwaokorie FO. Effects of anthropogenic activities on the microbial community diversity of Ologe Lagoon sediment in Lagos State, Nigeria. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:918. [PMID: 39256206 DOI: 10.1007/s10661-024-13025-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 08/15/2024] [Indexed: 09/12/2024]
Abstract
The impact of pollution on the Ologe Lagoon was assessed by comparing physicochemical properties, hydrocarbon concentrations and microbial community structures of the sediments obtained from distinct sites of the lagoon. The locations were the human activity site (OLHAS), industrial-contaminated sites (OLICS) and relatively undisturbed site (OLPS). The physicochemical properties, heavy metal concentrations and hydrocarbon profiles were determined using standard methods. The microbial community structures of the sediments were determined using shotgun next-generation sequencing (NGS), taxonomic profiling was performed using centrifuge and statistical analysis was done using statistical analysis for metagenomics profile (STAMP) and Microsoft Excel. The result showed acidic pH across all sampling points, while the nitrogen content at OLPS was low (7.44 ± 0.085 mg/L) as compared with OLHAS (44.380 ± 0.962 mg/L) and OLICS (59.485 ± 0.827 mg/L). The levels of the cadmium, lead and nickel in the three sites were above the regulatory limits. The gas chromatography flame ionization detector (GC-FID) profile revealed hydrocarbon contaminations with nC14 tetradecane > alpha xylene > nC9 nonane > acenaphthylene more enriched at OLPS. Structurally, the sediments metagenomes consisted of 43 phyla,75 classes each, 165, 161, 166 orders, 986, 927 and 866 bacterial genera and 1476, 1129, 1327 species from OLHAS, OLICS and OLPS, respectively. The dominant phyla in the sediments were Proteobacteria, Firmicutes, Actinobacteria, and Chloroflexi. The principal component ordination (PCO) showed that OLPS microbial community had a total variance of 87.7% PCO1, setting it apart from OLHAS and OLICS. OLICS and OLHAS were separated by PCO2 accounting for 12.3% variation, and the most polluted site is the OLPS.
Collapse
Affiliation(s)
| | | | - Lateef Babatunde Salam
- Department of Biological Sciences, Microbiology Unit, Elizade University, Ilara-Mokin, Ondo State, Nigeria
| | | | | |
Collapse
|
4
|
Zhang X, Murakami T, Wang J, Aikawa M. Unexpected/contrary behavior of aerosol mass concentration in response to the individual components' concentration reduction in Kitakyushu, Japan. J Environ Sci (China) 2024; 135:630-639. [PMID: 37778834 DOI: 10.1016/j.jes.2022.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 08/25/2022] [Accepted: 09/17/2022] [Indexed: 10/03/2023]
Abstract
In the suburbs of Kitakyushu, Japan, the inorganic aerosol mass concentration (IAM) was about 32.7 µg/m3, with the aerosol pH of 3.3. To study the thermodynamics of aerosol when its individual components' concentration is reduced, sensitive tests were performed using the ISORROPIA II model, in which the seven control species-TNaCl, TNH4+, TSO42-, TNO3-, TMg2+, TK+, and TCa2+-were taken into account. IAM and inorganic aerosol pH after reducing TNaCl, TNO3-, TMg2+, TK+, and TCa2+ responded linearly (0% ≤ concentration reduction ratio (CRR) ≤ 100%, with the exception of 100% in TNaCl); the nonlinear variations of these two parameters could be observed by controlling TNH4+ and TSO42-. Unexpected aerosol behavior occurred at 100% reduction of TNaCl, which was caused by the sudden increase of NO3-, NH4+, and aerosol liquid water content (ALWC); the increase of IAM was also observed after controlling TSO42- (60% ≤ CRR ≤ 100%) and TCa2+ (0% ≤ CRR ≤ 100%), which was mainly related to the variation of ALWC driven by the response of CaSO4. Multiple regression analysis showed that ALWC was statistically and strongly related to the variations of NO3-, Cl-, SO42-, HSO4-, HNO3, and NH3 (P < 0.05), with regression coefficients of 1.68, 5.23, 1.83, 2.81, 0.34, and 0.57, respectively. The highest coefficient (5.23) was found for Cl-, revealing that sea salts significantly influenced particle responses. Overall, this study comprehensively investigated aerosol characteristics and inner responses for the reduction of components, which is of great significance for a better understanding of atmospheric chemistry in Kitakyushu, Japan.
Collapse
Affiliation(s)
- Xi Zhang
- Faculty of Environmental Engineering, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0135, Japan; Resources and Environment Innovation Research Institute, School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Takuya Murakami
- Faculty of Environmental Engineering, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0135, Japan
| | - Jinhe Wang
- Resources and Environment Innovation Research Institute, School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Masahide Aikawa
- Faculty of Environmental Engineering, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0135, Japan.
| |
Collapse
|
5
|
Zhang X, Sun M, Aikawa M. Characteristics of PM 2.5-bound metals in Japan over six years: Spatial distribution, health risk, and source analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118750. [PMID: 37573701 DOI: 10.1016/j.jenvman.2023.118750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/12/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
Air sampling campaigns were conducted at 100 survey sites across Japan from April 2014 to February 2020, and a comprehensive database of atmospheric particles was obtained. In this study, the characteristics of PM2.5 and 26 metals were investigated in depth. Spatially, the concentration of PM2.5 gradually increased from the northeast to the southwest of Japan. The pollution in Kitakyushu City was the most serious, reaching 19.8 μg m-3. As an important particle component, metals did not show obviously spatial variation in Japan, with a sum concentration of 0.4 μg m-3. Anthropogenic metals only accounted for about 8% of the total metals, but they could pose a serious threat to public health. For children, the non-carcinogenic risk and carcinogenic risk due to exposure to anthropogenic metals could not be neglected in Japan; the corresponding HI and CR values at 100 survey sites ranged from 2.7 to 15.0 and 4.1 × 10-5 to 3.4 × 10-4, respectively. Adults faced lower health risks than children, with HI values ranging from 0.2 to 2.0 and CR values ranging from 2.0 × 10-5 to 1.6 × 10-4. The integrated health risk assessment results showed that the coastal region of the Seto Inland Sea and the north Tohoku Region were the most heavily polluted areas of Japan; in this study, 20 survey sites were finally determined to be high-risk sites, among which pollution control for Niihama City, Kitakyushu City, Hachinohe City, and Shimonoseki City were of first priority. With further combination with a positive matrix factorization model, it can be known that these four cities mainly had five to seven metal sources, and their heavy pollution was mainly caused by ship emissions, industrial emissions, biomass burning, and coal combustion. Overall, our study comprehensively revealed the regional patterns of PM2.5-bound metal pollution across Japan, which can help in making cost-effective risk management policies with limited national/local budgets.
Collapse
Affiliation(s)
- Xi Zhang
- Faculty of Environmental Engineering, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu, Kitakyushu, Fukuoka, 808-0135, Japan.
| | - Meng Sun
- Faculty of Environmental Engineering, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Masahide Aikawa
- Faculty of Environmental Engineering, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu, Kitakyushu, Fukuoka, 808-0135, Japan.
| |
Collapse
|
6
|
Goyal I, Agarwal M, Bamola S, Goswami G, Lakhani A. The role of chemical fractionation in risk assessment of toxic metals: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1098. [PMID: 37626242 DOI: 10.1007/s10661-023-11728-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
The identification of highly toxic metals like Cd, Ni, Pb, Cr, Co or Cu in ambient particulate matter (PM) has garnered a lot of interest recently. Exposure to toxic metals, including carcinogenic ones, at levels above recommended limits, can significantly affect human health. Prolonged exposure to even trace amounts of toxic or essential metals can also have negative health impacts. In order to assess significant risks, it is crucial to govern the concentrations of bioavailable/bio-accessible metals that are available in PM. Estimating the total metal concentrations in PM is only an approximation of metal toxicity. This review provides an overview of various procedures for extracting soluble toxic metals from PM and the importance of chemical fractionation in risk assessment. It is observed that the environmental risk indices such as bioavailability index (BI), contamination factor (CF) and risk assessment code (RAC) are specifically influenced by the concentration of these metals in a particular fraction. Additionally, there is compelling evidence that health risks assessed using total metal concentrations may be overestimated, therefore, the metal toxicity assessment is more accurate and more sensitive to the concentration of the bioavailable/bio-accessible fraction than the total metal concentrations. Hence, chemical fractionation of toxic metals can serve as an effective tool for developing environmental protection laws and improving air quality monitoring programs for public health.
Collapse
Affiliation(s)
- Isha Goyal
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra, 282005, UP, India
| | - Muskan Agarwal
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra, 282005, UP, India
| | - Simran Bamola
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra, 282005, UP, India
| | - Gunjan Goswami
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra, 282005, UP, India
| | - Anita Lakhani
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra, 282005, UP, India.
| |
Collapse
|
7
|
Gai A, Li Y, Zhan F, Zhang J, Li R. Preparation of Activated Boron Nitride and Its Adsorption Characteristics for Zn, Cu, and Cd in Flue Gas. ACS OMEGA 2023; 8:27612-27620. [PMID: 37546616 PMCID: PMC10399184 DOI: 10.1021/acsomega.3c03348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 06/28/2023] [Indexed: 08/08/2023]
Abstract
Developing non-carbon-based adsorbents is essential for removing heavy metals from post-incineration flue gas. In this study, a new high-temperature-resistant adsorbent-activated boron nitride (BN) was prepared using precursors combined with a high-temperature activation method. The adsorption characteristics of BN for Zn, Cu, and Cd in simulated flue gas and sludge incineration flue gas were investigated using gas-phase heavy metal adsorption experiments. The results showed that BN prepared at 1350 °C for 4 h had defect structures, abundant pores, functional groups, and a high specific surface area of 658 m2/g. The adsorption capacity of BN in simulated flue gases decreases with increasing adsorption temperature, whereas it is always higher than that of activated carbon (AC). The total adsorption capacities for Zn, Cu, and Cd were the highest at 50 °C with 48.3 mg/g. BN had strong adsorption selectivity for Zn, with a maximum adsorption capacity of 54.45 mg/g, and its adsorption process occurred mainly on the surface. Cu and Cd inhibited Zn adsorption, leading to a decrease in the Zn adsorption capacity. In sludge incineration flue gas, BN can quickly reach adsorption equilibrium. The BN had a synergistic disposal capacity for heavy metals and fine particulate matter. The maximum adsorption capacity was reduced compared to the simulated flue gas adsorption capacity, which was 5.1 mg/g. However, BN still exhibited a strong adsorption selectivity for Zn, and its adsorption capacity was always greater than that of AC. The rich functional groups and high specific surface area enable BN to physically and chemically double-adsorb heavy metals.
Collapse
|
8
|
Wei T, Yang S, Wang L. Operational parameters impact on spatial and temporal distribution and multifractal characteristics of particulate matter concentration under the sink effect. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Li Z, Ma T, Sheng Y. Ecological risks assessment of sulfur and heavy metals in sediments in a historic mariculture environment, North Yellow Sea. MARINE POLLUTION BULLETIN 2022; 183:114083. [PMID: 36067678 DOI: 10.1016/j.marpolbul.2022.114083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/24/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
The environment behaviors of sulfur and heavy metals in sediments are closely related to sediment aging in mariculture area. In this study, the distributions and ecological risks of reduced inorganic sulfur (RIS) and heavy metals were investigated, along with the relationships between different occurrences of RIS and heavy metals. The results indicated that the adequate organic matter in mariculture sediments significantly enhanced the accumulation of acid volatile sulfur (AVS) compared to the control area. In shellfish farming area, biological sedimentation contributed to accumulation of AVS. The chromium (II)-reducible sulfur (CRS) was the main component of RIS in mariculture area. The environmental risks of heavy metals in mariculture area presented low levels. Principal component analysis (PCA) showed that distribution of Cu closely related to mariculture activities compared to other heavy metals. For ecological risks of heavy metals, the ratio of ∑(acid-soluble fraction (F1) + reducible fraction (F2) + oxidizable fraction (F3))/AVS was the appropriate index rather than conventional simultaneous extraction of heavy metals (SEM)/AVS, because SEM/AVS would overestimate the toxicity of heavy metals. AVS/RIS ratios significantly positively correlated with Pb (F2/(F1 + F2 + F3 + residual fraction (F4)), F2/∑F), Pb (F3/∑F), and Zn (F3/∑F), while significantly negatively correlated with Pb (F4/∑F) and Cu (F1/∑F). These results indicated that the accumulation of AVS during the mariculture process was conducive to the formation of F2 and F3 of Pb, and F3 of Zn, conversely to the formation for F4 of Pb and F1 of Cu, because it was opposite to the accumulation of CRS.
Collapse
Affiliation(s)
- Zhaoran Li
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Tao Ma
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yanqing Sheng
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.
| |
Collapse
|
10
|
Ma C, Xie P, Yang J, Lin L, Zhang K, Zhang H. Evaluating the contributions of leaf organ to wheat grain cadmium at the filling stage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155217. [PMID: 35429556 DOI: 10.1016/j.scitotenv.2022.155217] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) is an element of global concern in agricultural fields owing to its high bioavailability and its risk to human health via the consumption of wheat products. However, whether wheat leaves can directly absorb atmospheric Cd and transport them to the grains along with the contribution of leaves to Cd accumulation in the grains is not clear. We evaluated this mechanism through three comparative treatments: 1) exposure to atmospheric deposition (CK), 2) no exposure to atmospheric deposition (T1), and 3) exposure to atmospheric deposition with leaf cutting (T2). The Cd accumulation rate of grains in the CK, T1, and T2 groups all showed an increasing trend, followed by a decreasing trend, which was consistent with the trend of filling rate. Moreover, the critical period for leaf Cd accumulation in the grains was the early filling period, and its contribution decreased gradually as filling progressed. The contribution of the leaves to grain Cd reached 31.73% at maturity, with the reactivation of stored Cd in leaves pre-flowering and the newly absorbed atmospheric Cd by leaves post-flowering contributing 19.76% and 11.97% to Cd accumulation in grains, respectively, at maturity. Sub-microstructure analysis of the leaves further confirmed that the direct Cd absorption by leaves from atmospheric deposition through stomata contributed to Cd accumulation in wheat grains. Therefore, controlling the sources of atmospheric Cd pollution and reducing Cd absorption by leaves during grain filling can effectively control Cd pollution of wheat grains. This study provides significant insights on how to more effectively control the Cd content of edible part of wheat and ensure food security.
Collapse
Affiliation(s)
- Chuang Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Pan Xie
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Jun Yang
- Institute of Geographical Sciences and Natural Resource Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Lin Lin
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Ke Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Hongzhong Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| |
Collapse
|
11
|
Inhalation Bioaccessibility and Risk Assessment of Metals in PM 2.5 Based on a Multiple-Path Particle Dosimetry Model in the Smelting District of Northeast China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19158915. [PMID: 35897292 PMCID: PMC9331668 DOI: 10.3390/ijerph19158915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023]
Abstract
PM2.5 can deposit and partially dissolve in the pulmonary region. In order to be consistent with the reality of the pulmonary region and avoid overestimating the inhalation human health risk, the bioaccessibility of PM2.5 heavy metals and the deposition fraction (DF) urgently needs to be considered. This paper simulates the bioaccessibility of PM2.5 heavy metals in acidic intracellular and neutral extracellular deposition environments by simulating lung fluid. The multipath particle dosimetry model was used to simulate DF of PM2.5. According to the exposure assessment method of the U.S. Environmental Protection Agency, the inhalation exposure dose threshold was calculated, and the human health risk with different inhalation exposure doses was compared. The bioaccessibility of heavy metals is 12.1−36.2%. The total DF of PM2.5 in adults was higher than that in children, and children were higher than adults in the pulmonary region, and gradually decreased with age. The inhalation exposure dose threshold is 0.04−14.2 mg·kg−1·day−1 for the non-carcinogenic exposure dose and 0.007−0.043 mg·kg−1·day−1 for the carcinogenic exposure dose. Cd and Pb in PM2.5 in the study area have a non-carcinogenic risk to human health (hazard index < 1), and Cd has no or a potential carcinogenic risk to human health. A revised inhalation health risk assessment may avoid overestimation.
Collapse
|
12
|
Zhi M, Zhang K, Zhang X, Herrmann H, Gao J, Fomba KW, Tang W, Luo Y, Li H, Meng F. A statistic comparison of multi-element analysis of low atmospheric fine particles (PM 2.5) using different spectroscopy techniques. J Environ Sci (China) 2022; 114:194-203. [PMID: 35459484 DOI: 10.1016/j.jes.2021.08.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/15/2021] [Accepted: 08/15/2021] [Indexed: 06/14/2023]
Abstract
Over the past few decades, the metal elements (MEs) in atmospheric particles have aroused great attention. Some well-established techniques have been used to measure particle-bound MEs. However, each method has its own advantages and disadvantages in terms of complexity, accuracy, and specific elements of interest. In this study, the performances of inductively coupled plasma-optical emission spectrometry (ICP-OES) and total reflection X-ray fluorescence spectroscopy (TXRF) were evaluated for quality control to analyze data accuracy and precision. The statistic methods (Deming regression and significance testing) were applied for intercomparison between ICP-OES and TXRF measurements for same low-loading PM2.5 samples in Weizhou Island. The results from the replicate analysis of standard filters (SRM 2783) and field filters samples indicated that 10 MEs (K, Ca, V, Cr, Mn, Fe, Ni, Cu, Zn, and Pb) showed good accuracies and precision for both techniques. The higher accuracy tended to the higher precision in the MEs analysis process. In addition, the interlab comparisons illustrated that V and Mn all had good agreements between ICP-OES and TXRF. The measurements of K, Cu and Zn were more reliable by TXRF analysis for low-loading PM2.5. ICP-OES was more accurate for the determinations for Ca, Cr, Ni and Pb, owing to the overlapping spectral lines and low sensitivity during TXRF analysis. The measurements of Fe, influenced by low-loading PM2.5, were not able to determine which instrument could obtain more reliable results. These conclusions could provide reference information to choose suitable instrument for the determination of MEs in low-loading PM2.5 samples.
Collapse
Affiliation(s)
- Minkang Zhi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Kai Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Xi Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Faculty of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0135, Japan
| | - Hartmut Herrmann
- Atmospheric Chemistry Department (ACD), Leibniz-Institute for Tropospheric Research (TROPOS), Leipzig 04318, Germany
| | - Jian Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Khanneh Wadinga Fomba
- Atmospheric Chemistry Department (ACD), Leibniz-Institute for Tropospheric Research (TROPOS), Leipzig 04318, Germany
| | - Wei Tang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yuqian Luo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Huanhuan Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fan Meng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
13
|
Zhang X, Wang J, Zhang K, Shang X, Aikawa M, Zhou G, Li J, Li H. Year-round observation of atmospheric inorganic aerosols in urban Beijing: Size distribution, source analysis, and reduction mechanism. J Environ Sci (China) 2022; 114:354-364. [PMID: 35459498 DOI: 10.1016/j.jes.2021.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 06/14/2023]
Abstract
To investigate particle characteristics and find an effective measure to control severe particle pollution, year-round observation of size-segregated inorganic aerosols was conducted in Beijing from January to December, 2016. The sampled atmospheric particles all presented bimodal size distribution at four pollution levels (clear, slight pollution, moderate pollution and severe pollution), and peak values appeared at the size range of 0.7-2.1 μm and >9.0 μm, respectively. As dominant particle compositions, NO3-, SO42-, and NH4+ in four pollution levels all showed significant peaks in fine mode, especially at the size range of 1.1-2.1 μm. Secondary inorganic aerosols accounted for about 67.6% (36.3% (secondary sulfates) + 31.3% (secondary nitrates)) of the total sources of fine particles in urban Beijing. Severe pollution of fine particles was mainly caused by the air masses transported from nearby western and southern areas, which are industrial and densely populated region, respectively. Sensitivity tests further revealed that the control measures focusing on ammonium emission reduction was the most effective for particle pollution mitigation, and fine particles all showed nonlinear responses after reducing ammonium, nitrate, and sulfate concentrations, with the fitting curves of y = -120.8x - 306.1x2 + 290.2x3, y = -43.5x - 67.8x2, and y = -25.8x - 110.4x2 + 7.6x3, respectively (y and x present fine particle mass variation (μg/m3) and concentration reduction ratio (CRR)/100 (dimensionless)). Overall, our study presents useful information for understanding the characteristics of atmospheric inorganic aerosols in urban Beijing, as well as offers policy makers with effective measure for mitigating particle pollution.
Collapse
Affiliation(s)
- Xi Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Resources and Environment Innovation Research Institute, School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China; Faculty of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0135, Japan
| | - Jinhe Wang
- Resources and Environment Innovation Research Institute, School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China.
| | - Kai Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Xiaona Shang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Masahide Aikawa
- Faculty of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0135, Japan
| | - Guanhua Zhou
- School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing 100191, China
| | - Jie Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Huanhuan Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
14
|
Zhang X, Eto Y, Aikawa M. Risk assessment and management of PM 2.5-bound heavy metals in the urban area of Kitakyushu, Japan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148748. [PMID: 34328942 DOI: 10.1016/j.scitotenv.2021.148748] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
The sampling campaign of PM2.5 was carried out in Kitakyushu City on the western edge of Japan from 2013 to 2019, and 29 heavy metals loaded in PM2.5 were measured in this study. During the whole sampling period, the PM2.5 mass concentration ranged from 6.3 μg·m-3 to 57.5 μg·m-3, with a median value of 21.3 μg·m-3, and the sum concentration of heavy metals only accounted for 3%. According to the enrichment factor (EF) and geo-accumulation index (Igeo) analysis, it can be known that Se, Mo, Pb, As, Zn, W, Sb, Cu, V, Cr, Ni, and Cs were mainly from anthropogenic sources, which had EF values larger than 10 and Igeo values larger than 0. The comprehensive ecological risk index for these 12 anthropogenic metals was far greater than 600. This large index showed severe metal pollution and very high ecological risk in the urban area of Kitakyushu, Japan, which should be paid great attention. The human health assessment result further revealed that children living at the sampling site faced severe non-carcinogenic risk (HI = 7.8) and moderate carcinogenic risk (CR = 1.2 × 10-4), and oral ingestion was basically the most important exposure pathway, followed by dermal contact and inhalation. The priority control metals included Mo, Se, As, Pb, Sb, and Cr; moreover, the concentration-weighted trajectory analysis (CWT) indicated that Mo, Sb, and Cr were from ship emissions because some shipping routes around the Kyushu area were identified as their potential pollution source regions, while Se, As, and Pb were carried by the air masses from the Asian landmass. Overall, although the PM2.5 concentration in the urban area of Kitakyushu, Japan was not high, the heavy metal risk cannot be overlooked; it is necessary to strengthen the source control of high-risk metals and raise public protection awareness.
Collapse
Affiliation(s)
- Xi Zhang
- Faculty of Environmental Engineering, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0135, Japan
| | - Yuko Eto
- Institute of Health and Environmental Sciences, City of Kitakyushu, 1-2-1 Shin-ike, Tobata-ku, Kitakyushu, Fukuoka 804-0082, Japan
| | - Masahide Aikawa
- Faculty of Environmental Engineering, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0135, Japan.
| |
Collapse
|
15
|
Fu S, Yue D, Lin W, Hu Q, Yuan L, Zhao Y, Zhai Y, Mai D, Zhang H, Wei Q, He L. Insights into the source-specific health risk of ambient particle-bound metals in the Pearl River Delta region, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112642. [PMID: 34399126 DOI: 10.1016/j.ecoenv.2021.112642] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 05/16/2023]
Abstract
Quantification of source-specific health risks of PM2.5 plays an essential role in health-oriented air pollution control. However, there is limited evidence supporting the source-based risk apportionment of particle-bound metals. In this study, source-specific cancer and non-cancer risk characterization of 12 particle-bound metals was performed in the Pearl River Delta (PRD) region, China. A combination of health risk assessment model and receptor-based source apportionment modeling with positive matrix factorization (PMF) was applied for characterizing the spatial-temporal patterns for inhalation health risks of particle-bound metals in three main city clusters, inland area and coastal area in the region from December 2014 through July 2016. Results showed that the carcinogenic risk of particle-bound metals for adults (4.13 × 10-5) was higher than that for children (9.53 × 10-6) in the PRD region. The highest and significant non-carcinogenic risk was found in the northwest city cluster. Industrial emission (63.3%) were the dominant contributors to the cancer risk, while the main contributors to the non-cancer risk were the vehicle emission source (33.2%) in the dry season and industrial emission (30.8%) in the wet season. Our results provide important evidence for spatial source-specific health risks with temporal characteristics of particle-bound metals in most densely populated areas in the southern China, and suggest that reduction of industrial and vehicle emissions could facilitate more cost-effective PM2.5 control measures to improve human health.
Collapse
Affiliation(s)
- Shaojie Fu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Dingli Yue
- Guangdong Ecological and Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangzhou 510308, China
| | - Weiwei Lin
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Qiansheng Hu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Luan Yuan
- Guangdong Ecological and Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangzhou 510308, China
| | - Yan Zhao
- Guangdong Ecological and Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangzhou 510308, China
| | - Yuhong Zhai
- Guangdong Ecological and Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangzhou 510308, China
| | - Dejian Mai
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Hedi Zhang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qing Wei
- Experimental Teaching Center, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Lingyan He
- Key Laboratory for Urban Habitat Environmental Science and Technology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| |
Collapse
|
16
|
Source Analysis and Human Health Risk Assessment Based on Entropy Weight Method Modification of PM2.5 Heavy Metal in an Industrial Area in the Northeast of China. ATMOSPHERE 2021. [DOI: 10.3390/atmos12070852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In this study, PM2.5 was analyzed for heavy metals at two sites in industrial northeast China to determine their sources and human health risks during heating and non-heating periods. A positive matrix factorization (PMF) model determined sources, and US Environmental Protection Agency (USEPA) and entropy weight methods were used to assess human health risk. PM2.5 heavy metal concentrations were higher in the heating period than in the non-heating period. In the heating period, coal combustion (59.64%) was the primary heavy metal source at Huagong Hospitals, and the contribution rates of industrial emissions and traffic emissions were 21.06% and 19.30%, respectively. Industrial emissions (42.14%) were the primary source at Xinqu Park, and the contribution rates of coal combustion and traffic emissions were 34.03% and 23.83%, respectively. During the non-heating period, coal combustion (45.29%) and industrial emissions 45.29% and 44.59%, respectively, were the primary sources at Huagong Hospital, and the traffic emissions were 10.12%. Industrial emissions (43.64%) were the primary sources at Xinqu Park, where the coal combustion and traffic emissions were 25.35% and 31.00%, respectively. In the heating period, PM2.5 heavy metals at Xinqu Park had noncarcinogenic and carcinogenic risks, and the hazard index of children (5.74) was higher than that of adult males (5.28) and females (4.49). However, adult males and females had the highest lifetime carcinogenic risk (1.38 × 10−3 and 1.17 × 10−3) than children (3.00 × 10−4). The traditional USEPA and entropy weight methods both produced reasonable results. However, when there is a difference between the two methods, the entropy weight method is recommended to assess noncarcinogenic health risks.
Collapse
|
17
|
Ma J, Zhong B, Khan MA, Wu D, Zhu Y, Wang Y, Xie X, Liu H, Liu D. Transport of Mobile Particles in Heavy Metal Contaminated Soil with Simulated Acid Rain Leaching. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 106:965-969. [PMID: 34043030 DOI: 10.1007/s00128-021-03269-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 05/15/2021] [Indexed: 06/12/2023]
Abstract
The soil contaminated with heavy metals requires special attention due to its adverse effects on health of human and animals. The effects of simulated acid rain with different pH values on transport of heavy metal in contaminated soil of Phyllostachys pubescens forest were studied by indoor leaching column test. The results revealed that particle size of soil was mainly concentrated in range of more than 50 μm. The content of heavy metals in particles less than 50 μm was relatively high. The Pb and Zn were mainly adsorbed on colloidal particles and were transported during simulated acid rain. The release of Fe and Al increased the release of particulate matter in soil leaching solution. The mobility of Zn was increased at low pH.
Collapse
Affiliation(s)
- Jiawei Ma
- The Key Nuturing Station for the State Key Laboratory of Subtropical Silviculture, Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Lin'an, 311300, Zhejiang, China
| | - Bin Zhong
- The Key Nuturing Station for the State Key Laboratory of Subtropical Silviculture, Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Lin'an, 311300, Zhejiang, China
| | - Mohammad Aman Khan
- Department of Biotechnology, Quid-e-Azam University, Islamabad, Pakistan
| | - Dongtao Wu
- Agricultural and Rural Bureau of Lishui City, Lishui, 323000, Zhejiang, China
| | - Youwei Zhu
- Cultivated Land Quality and Fertilizer Administration of Zhejiang, Hangzhou, 310025, China
| | - Ying Wang
- The Key Nuturing Station for the State Key Laboratory of Subtropical Silviculture, Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Lin'an, 311300, Zhejiang, China
| | - Xiaocui Xie
- The Key Nuturing Station for the State Key Laboratory of Subtropical Silviculture, Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Lin'an, 311300, Zhejiang, China
| | - Hong Liu
- The Key Nuturing Station for the State Key Laboratory of Subtropical Silviculture, Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Lin'an, 311300, Zhejiang, China
| | - Dan Liu
- The Key Nuturing Station for the State Key Laboratory of Subtropical Silviculture, Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Lin'an, 311300, Zhejiang, China.
- Zhejiang Province Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration, Zhejiang A & F University, Lin'an, 311300, China.
| |
Collapse
|
18
|
Zhang X, Murakami T, Wang J, Aikawa M. Sources, species and secondary formation of atmospheric aerosols and gaseous precursors in the suburb of Kitakyushu, Japan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:143001. [PMID: 33131869 DOI: 10.1016/j.scitotenv.2020.143001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/31/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
The simultaneous assessment of source apportionment and secondary formation processes was comprehensively studied in a suburban area located on the western edge of Japan by combining year-round daily observation using a filter-pack method with model calculations. Secondary formation was the most important pollution source, accounting for ca. 45% (23% (secondary sulfates) + 22% (secondary nitrates)) of the sources of total atmospheric aerosol mass. For the secondary aerosol composition at this suburban site in western Japan, the secondary sulfates were mainly derived from volcanic eruptions (Sakurajima volcano and/or Aso volcano), the oxidation of SO2 from industrial combustion, ship emissions in the Kyushu area, and long-distance transportation from several coastal cities in Eastern China. Multiple regression results further revealed that the secondary sulfate formation process was significantly influenced by and related to HNO3, HCl, and the relative humidity (RH) (p < 0.01). While the potential pollution source region of secondary nitrates was located in the northwest region of the sampling site, where air masses pass through Mongolia and Northern China, the formation mechanism of secondary nitrates was more complicated, with the important driving factors being Ox, NO2, NH3, HCl, temperature (T), and RH. In addition, if the presence of atmospheric HNO3 was ignored, the nitrogen oxidation rate (NOR) would be significantly underestimated, especially at relative humidity levels less than 60% and temperatures greater than 16 °C. The results of this study clearly demonstrate the source contribution and characteristics of secondary aerosols in the suburban area of western Japan and can be adopted as the important basis to mitigate particle pollution.
Collapse
Affiliation(s)
- Xi Zhang
- Faculty of Environmental Engineering, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0135, Japan; School of Municipal and Environmental Engineering, Co-Innovation Center for Green Building of Shandong Province, Shandong Jianzhu University, Jinan 250101, China
| | - Takuya Murakami
- Faculty of Environmental Engineering, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0135, Japan
| | - Jinhe Wang
- School of Municipal and Environmental Engineering, Co-Innovation Center for Green Building of Shandong Province, Shandong Jianzhu University, Jinan 250101, China
| | - Masahide Aikawa
- Faculty of Environmental Engineering, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0135, Japan.
| |
Collapse
|
19
|
Long Y, Jiang J, Hu X, Hu J, Ren C, Zhou S. The response of microbial community structure and sediment properties to anthropogenic activities in Caohai wetland sediments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111936. [PMID: 33482494 DOI: 10.1016/j.ecoenv.2021.111936] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/01/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
This study aimed to investigate the response of sediment microbial communities (including bacteria and archaeal groups) in Caohai Lake to anthropogenic activities. The sediment samples were collected from the regions with high anthropogenic interference and low anthropogenic interference. Their physicochemical properties and enzyme activities were analyzed, and the bacterial and archaeal communities were investigated using high-throughput sequencing technology. The results showed that the physicochemical characters changed by anthropogenic activities were the important factors that influenced enzyme activities, alpha diversity, key functional taxa, and community structure. And the impact of anthropogenic activities on microbial communities might follow a non-linear pattern. Furthermore, few significant differences of alpha indices between the high and low disturbed areas, but clear differences of microbial community composition analysis and beta-diversity analysis were observed. The hypothesis was proved that the intensity of anthropogenic impacts in Caohai had not reached the potential thresholds. The best distinguish biomarkers between the two areas and the most related key nodes among the network did not always have a high microbial abundance. The anthropogenic activities might influence the microbial community by affecting a small number of the key taxon in the ecological network. These findings provided a valuable understanding of how sediment microorganisms respond to anthropogenic activities in Caohai Lake.
Collapse
Affiliation(s)
- Yunchuan Long
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550003, PR China; Guizhou Academy of Sciences, Guiyang 550009, PR China
| | - Juan Jiang
- Guizhou Academy of Sciences, Guiyang 550009, PR China
| | - Xuejun Hu
- Guizhou Academy of Sciences, Guiyang 550009, PR China
| | - Jing Hu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550003, PR China; Guizhou Academy of Sciences, Guiyang 550009, PR China
| | - Chunguang Ren
- Guizhou Academy of Sciences, Guiyang 550009, PR China
| | - Shaoqi Zhou
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550003, PR China; Guizhou Academy of Sciences, Guiyang 550009, PR China.
| |
Collapse
|
20
|
Zhang X, Zhang K, Liu H, Lv W, Aikawa M, Liu B, Wang J. Pollution sources of atmospheric fine particles and secondary aerosol characteristics in Beijing. J Environ Sci (China) 2020; 95:91-98. [PMID: 32653197 DOI: 10.1016/j.jes.2020.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 05/16/2023]
Abstract
To investigate the secondary formation and pollution sources of atmospheric particles in urban Beijing, PM2.5 and its chemical components were collected and determined by URG-9000D ambient ion monitor (AIM) from March 2016 to January 2017. Among water-soluble ions (WSIs), NO3-, SO42- and NH4+ (SNA) had the largest proportion (77.8%) with the total concentration of 23.8 μg/m3. Moreover, as fine particle pollution worsened, the NO3-, SO42- and NH4+ concentrations increased basically, which revealed that secondary aerosols were the main cause of particle pollution in Beijing. Furthermore, the particle neutralization ratio (1.1), the ammonia to sulfate molar ratio (3.4) and the nitrate to sulfate molar ratio (2.2) showed that secondary aerosols are under ammonium-rich conditions with the main chemical forms of NH4NO3 and (NH4)2SO4, and vehicle emission could be the main anthropogenic source of secondary aerosols in Beijing. Source analysis further indicated that secondary aerosols, solid fuel combustion, dust and marine aerosol were the principal pollution sources of PM2.5, accounting for about 46.1%, 22.4% and 13.0%, respectively, and Inner Mongolia and Hebei Provinces could be considered as the main potential sources of PM2.5 in urban Beijing. In addition, secondary formation process was closely related with gaseous precursor emission amounts (SO2, NO2, NH3 and HONO), atmospheric ozone concentration (O3), meteorological conditions (temperature and relative humidity) and particle components. Sensitive analysis of the thermodynamic equilibrium model (ISORROPIA II) revealed that controlling total nitrate (TN) is the effective measure to mitigate fine particle pollution in Beijing.
Collapse
Affiliation(s)
- Xi Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Municipal and Environmental Engineering, Co-Innovation Center for Green Building of Shandong Province, Shandong Jianzhu University, Jinan 250101, China; Faculty of Environmental Engineering, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0135, Japan
| | - Kai Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Huiping Liu
- Qingdao Hongrui Electric Power Engineering Consulting Co., Ltd, Qingdao 266100, China
| | - Wenli Lv
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Masahide Aikawa
- Faculty of Environmental Engineering, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0135, Japan
| | - Bing Liu
- Resources and Environment Innovation Research Institute, School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Jinhe Wang
- School of Municipal and Environmental Engineering, Co-Innovation Center for Green Building of Shandong Province, Shandong Jianzhu University, Jinan 250101, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China.
| |
Collapse
|
21
|
Huang B, Yuan Z, Li D, Zheng M, Nie X, Liao Y. Effects of soil particle size on the adsorption, distribution, and migration behaviors of heavy metal(loid)s in soil: a review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1596-1615. [PMID: 32657283 DOI: 10.1039/d0em00189a] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In recent years, toxic pollution from heavy metal(loid)s in soil has become a severe environmental problem worldwide. The migration and transformation of heavy metal(loid)s in soil have become hot topics in the field of environmental research. Soil particle size plays an important role in influencing the environmental behavior of heavy metal(loid)s in soil. This review collates and synthesizes the research on the adsorption, distribution, and migration of heavy metal(loid)s in soil particles. There is no unified method for soil particle separation, since the purposes of different studies are different. Regardless of adsorption or distribution characteristics, fine soil particles generally exhibit a higher capacity to combine heavy metal(loid)s; however, certain studies have also observed a contrary phenomenon, according to which heavy metal(loid)s were more enriched in coarser particles. The adsorption and distribution of heavy metal(loid)s in soil particles were essentially determined by the physicochemical properties of the soil particles. Land use obviously affected the distribution of heavy metal(loid)s in the soil particles. Organic matter had an important influence on the distribution and availability of heavy metal(loid)s in agricultural and forest soils, while for urban soils and sediments, clay minerals or metal (hydr)oxides may play the dominant role. Preferential surface migration of fine particles during erosion processes did not always lead to the enrichment of heavy metal(loid)s in the lost soil. Further research should be conducted to explore the relationships among the soil aggregates, organic matter, heavy metal(loid)s, and soil microorganisms; the association between the distribution and availability of heavy metal(loid)s and the properties of soil particles; and the migration patterns of heavy metal(loid)s in soil particles at different scales.
Collapse
Affiliation(s)
- Bin Huang
- Guangdong Engineering Center of Non-point Source Pollution Control, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environment Technology, Guangdong Academy of Sciences, Guangzhou, 510650, P. R. China. and National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, 510650, P. R. China and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
| | - Zaijian Yuan
- Guangdong Engineering Center of Non-point Source Pollution Control, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environment Technology, Guangdong Academy of Sciences, Guangzhou, 510650, P. R. China. and National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, 510650, P. R. China
| | - Dingqiang Li
- Guangdong Engineering Center of Non-point Source Pollution Control, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environment Technology, Guangdong Academy of Sciences, Guangzhou, 510650, P. R. China. and National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, 510650, P. R. China and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
| | - Mingguo Zheng
- Guangdong Engineering Center of Non-point Source Pollution Control, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environment Technology, Guangdong Academy of Sciences, Guangzhou, 510650, P. R. China. and National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, 510650, P. R. China
| | - Xiaodong Nie
- College of Resources and Environmental Sciences, Hunan Normal University, Changsha, 410081, P. R. China
| | - Yishan Liao
- Guangdong Engineering Center of Non-point Source Pollution Control, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environment Technology, Guangdong Academy of Sciences, Guangzhou, 510650, P. R. China. and National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, 510650, P. R. China
| |
Collapse
|
22
|
Fang Q, Zhao Q, Chai X, Li Y, Tian S. Interaction of industrial smelting soot particles with pulmonary surfactant: Pulmonary toxicity of heavy metal-rich particles. CHEMOSPHERE 2020; 246:125702. [PMID: 31927361 DOI: 10.1016/j.chemosphere.2019.125702] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/09/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
Inhalable particles can influence the interfacial behavior of pulmonary surfactant (PS) resulting in various pulmonary diseases. However, the effects of actually airborne particles on the interfacial behavior of PS and its role in the alteration for soluble metal fraction in particles are entirely unexplored. Herein, we investigated the interaction of PS extracted from porcine lungs with smelting soot fine particles as a model of inhaled heavy metal-rich particles. Our results showed that the phase behavior and foamability of PS were obviously altered in the presence of smelting soot fine particles. In addition, the soluble heavy metals in smelting soot fine particles notably increased in the presence of PS as compared to that of saline solution. Further experiments conducted by adding PS's major components (dipalmitoylphosphatidylcholine, DPPC; bovine serum albumin, BSA) demonstrated that comparison of DPPC, adsorbed BSA is beneficial for the dissolution of heavy metals in smelting soot fine particles. Dynamic light scattering experiments verified that the well dispersion of smelting soot fine particles in the presence of BSA may be responsible for the higher solubility of heavy metals. These findings indicate that PS's interfacial behavior change and PS-enhanced solubilization release of metal components may increase the potentially pulmonary risk in the exposure of airborne fine particles enriched with heavy metals.
Collapse
Affiliation(s)
- Qi Fang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Qun Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Xiaolong Chai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Yingjie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Senlin Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| |
Collapse
|
23
|
Shi J, Pang J, Liu Q, Luo Y, Ye J, Xu Q, Long B, Ye B, Yuan X. Simultaneous removal of multiple heavy metals from soil by washing with citric acid and ferric chloride. RSC Adv 2020; 10:7432-7442. [PMID: 35492199 PMCID: PMC9049904 DOI: 10.1039/c9ra09999a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/29/2020] [Indexed: 11/21/2022] Open
Abstract
Citric acid and ferric chloride exhibited synergistic effect on the removal of multiple heavy metals from soil.
Collapse
Affiliation(s)
- Jiyan Shi
- Department of Environmental Engineering
- College of Environmental and Resource Sciences
- Zhejiang University
- Hangzhou
- China
| | - Jingli Pang
- Department of Environmental Engineering
- College of Environmental and Resource Sciences
- Zhejiang University
- Hangzhou
- China
| | - Qinglin Liu
- Department of Environmental Engineering
- College of Environmental and Resource Sciences
- Zhejiang University
- Hangzhou
- China
| | - Yating Luo
- Department of Environmental Engineering
- College of Environmental and Resource Sciences
- Zhejiang University
- Hangzhou
- China
| | - Jien Ye
- Department of Environmental Engineering
- College of Environmental and Resource Sciences
- Zhejiang University
- Hangzhou
- China
| | - Qiao Xu
- Department of Environmental Engineering
- College of Environmental and Resource Sciences
- Zhejiang University
- Hangzhou
- China
| | - Bibo Long
- Guangzhou Sugarcane Industry Research Institute
- Guangdong Bioengineering Institute
- Guangzhou
- China
| | - Binhui Ye
- Chengbang Eco-Environment Co., Ltd
- Hangzhou
- China
| | - Xiaofeng Yuan
- College of Life Science
- Zhejiang Chinese Medical University
- Hangzhou
- China
| |
Collapse
|