1
|
Qu S, Liang Y, Deng S, Li Y, Yang Y, Liu T, Chen L, Li Y. Pharmacotherapeutic Strategies for Fine Particulate Matter-Induced Lung and Cardiovascular Damage: Marketed Drugs, Traditional Chinese Medicine, and Biological Agents. Cardiovasc Toxicol 2025:10.1007/s12012-025-09985-3. [PMID: 40113640 DOI: 10.1007/s12012-025-09985-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Fine particulate matter (PM2.5), defined as airborne particles with a diameter of ≤ 2.5 μm, represents a major constituent of air pollution and has been globally implicated in exacerbating public health burdens by elevating morbidity and mortality rates associated with respiratory and cardiovascular diseases (CVDs). Adverse health effects of PM2.5 exposure manifest across diverse susceptibility profiles and durations of exposure, spanning both acute and chronic timelines. While prior reviews have predominantly focused on elucidating the toxicological mechanisms underlying PM2.5-induced pathologies, there remains a paucity of comprehensive summaries addressing therapeutic interventions for cardiopulmonary damage. This review systematically synthesizes pharmacological agents with potential therapeutic efficacy against PM2.5-induced pulmonary and cardiovascular injury. By integrating mechanistic insights with translational perspectives, this work aims to provide a foundational framework for advancing research into novel therapeutic strategies targeting PM2.5-associated cardiopulmonary disorders.
Collapse
Affiliation(s)
- Shuiqing Qu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine, Beijing Institute for Drug Control, Beijing, 102206, China
| | - Yan Liang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shuoqiu Deng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yu Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yuanmin Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Tuo Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lina Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yujie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
2
|
Lee TL, Shen WC, Chen YC, Lai TC, Lin SR, Lin SW, Yu IS, Yeh YH, Li TK, Lee IT, Lee CW, Chen YL. Mir221- and Mir222-enriched adsc-exosomes mitigate PM exposure-exacerbated cardiac ischemia-reperfusion injury through the modulation of the BNIP3-MAP1LC3B-BBC3/PUMA pathway. Autophagy 2025; 21:374-393. [PMID: 39245438 PMCID: PMC11760231 DOI: 10.1080/15548627.2024.2395799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024] Open
Abstract
Epidemiology has shown a strong relationship between fine particulate matter (PM) exposure and cardiovascular disease. However, it remains unknown whether PM aggravates myocardial ischemia-reperfusion (I/R) injury, and the related mechanisms are unclear. Our previous study has shown that adipose stem cell-derived exosomes (ADSC-Exos) contain high levels of Mir221 and Mir222. The present study investigated the effects of PM exposure on I/R-induced cardiac injury through mitophagy and apoptosis, as well as the potential role of Mir221 and Mir222 in ADSC-Exos. Wild-type, mir221- and mir222-knockout (KO), and Mir221- and Mir222-overexpressing transgenic (TG) mice were intratracheally injected with PM (10 mg/kg). After 24 h, mice underwent left coronary artery ligation for 30 min, followed by 3 h of reperfusion (I/R). H9c2 cardiomyocytes were cultured under 1% O2 for 6 h, then reoxygenated for 12 h (hypoxia-reoxygenation [H/R]). PM aggravated I/R (or H/R) cardiac injury by increasing ROS levels and causing mitochondrial dysfunction, which increased the expression of mitochondrial fission-related proteins (DNM1L/Drp1 and MFF) and mitophagy-related proteins (BNIP3 and MAP1LC3B/LC3B) in vivo and in vitro. Treatment with ADSC-Exos or Mir221- and Mir222-mimics significantly reduced PM+I/R-induced cardiac injury. Importantly, ADSC-Exos contain Mir221 and Mir222, which directly targets BNIP3, MAP1LC3B/LC3B, and BBC3/PUMA, decreasing their expression and ultimately reducing cardiomyocyte mitophagy and apoptosis. The present data showed that ADSC-Exos treatment regulated mitophagy and apoptosis through the Mir221 and Mir222-BNIP3-MAP1LC3B-BBC3/PUMA pathway and significantly reduced the cardiac damage caused by PM+I/R. The present study revealed the novel therapeutic potential of ADSC-Exos in alleviating PM-induced exacerbation of myocardial I/R injury.Abbreviation: ADSC-Exos: adipose-derived stem cell exosomes; AL: autolysosome; ATP: adenosine triphosphate; BBC3/PUMA: BCL2 binding component 3; BNIP3: BCL2/adenovirus E1B interacting protein 3; CASP3: caspase 3; CASP9: caspase 9; CDKN1B/p27: cyclin dependent kinase inhibitor 1B; CVD: cardiovascular disease; DCFH-DA: 2',7'-dichlorodihydrofluorescein diacetate; DHE: dihydroethidium; DNM1L/Drp1: dynamin 1-like; EF: ejection fraction; FS: fractional shortening; H/R: hypoxia-reoxygenation; I/R: ischemia-reperfusion; LDH: lactate dehydrogenase; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MFF: mitochondrial fission factor; miRNA: microRNA; NAC: N-acetylcysteine; OCR: oxygen consumption rate; PIK3C3/Vps34: phosphatidylinositol 3-kinase catalytic subunit type 3; PM: particulate matter; PRKAA1/AMPK: protein kinase AMP-activated catalytic subunit alpha 1; ROS: reactive oxygen species; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; TRP53/p53: transformation related protein 53; TUNEL: terminal deoxynucleotidyl transferase dUTP nick end labeling.
Collapse
Affiliation(s)
- Tzu-Lin Lee
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Chi Shen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Chun Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tsai-Chun Lai
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Shu-Rung Lin
- Department of Bioscience Technology, College of Science, Chung Yuan Christian University, Taoyuan, Taiwan
- Center for Nanotechnology, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Shu-Wha Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - I-Shing Yu
- Laboratory Animal Center, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yen-Hsiu Yeh
- Department and Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tsai-Kun Li
- Department and Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Center for Biotechnology, National Taiwan University, Taipei, Taiwan
- Centers for Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chiang-Wen Lee
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi, Chiayi, Taiwan
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center Chang Gung University of Science and Technology, Puzi, Chiayi, Taiwan
- Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Yuh-Lien Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
3
|
Meng T, He J, Huo Q, Wang Y, Ren Q, Kang Y. Association of Stress Defense System With Fine Particulate Matter Exposure: Mechanism Analysis and Application Prospects. J Appl Toxicol 2024. [PMID: 39538419 DOI: 10.1002/jat.4724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
The association between the stress defense system and exposure to fine particulate matter (PM2.5) is a hot topic in the field of environmental health. PM2.5 pollution is an increasingly serious issue, and its impact on health cannot be ignored. The stress defense system is an important biological mechanism for maintaining cell and internal environment homeostasis, playing a crucial role in PM2.5-induced damage and diseases. The association between PM2.5 exposure and activation of the stress defense system has been reported. Moderate PM2.5 exposure rapidly mobilizes the stress defense system, while excessive PM2.5 exposure may exceed its compensatory and coping abilities, resulting in system imbalance and dysfunction that triggers pathological changes in cells and tissues, thereby increasing the risk of chronic diseases, such as respiratory diseases, cardiovascular diseases, and cancer. This detailed review focuses on the composition, function, and regulatory mechanisms of the antioxidant defense system, autophagy system, ubiquitin-proteasome system, and inflammatory response system, which are all components of the stress defiance system. In particular, the influence of PM2.5 exposure on each of these defense systems and their roles in responding to PM2.5-induced damage was investigated to provide an in-depth understanding of the pathogenesis of PM2.5 exposure, accurately assess potential hazards, and formulate prevention and intervention strategies for health damage caused by PM2.5 exposure.
Collapse
Affiliation(s)
- Tao Meng
- Institute of Brain Science, Datong Key Laboratory of Molecular and Cellular Immunology, Shanxi Datong University, Datong, China
- Doctoral Innovation Station of Shanxi Province, Key Laboratory of TCM Prevention and Treatment of Dementia Disease, The Fifth People's Hospital of Datong, Datong, China
| | - Jing He
- Institute of Brain Science, Datong Key Laboratory of Molecular and Cellular Immunology, Shanxi Datong University, Datong, China
| | - Qianru Huo
- Institute of Brain Science, Datong Key Laboratory of Molecular and Cellular Immunology, Shanxi Datong University, Datong, China
| | - Yajie Wang
- Institute of Brain Science, Datong Key Laboratory of Molecular and Cellular Immunology, Shanxi Datong University, Datong, China
| | - Qingchun Ren
- Institute of Brain Science, Datong Key Laboratory of Molecular and Cellular Immunology, Shanxi Datong University, Datong, China
| | - Yihui Kang
- Institute of Brain Science, Datong Key Laboratory of Molecular and Cellular Immunology, Shanxi Datong University, Datong, China
| |
Collapse
|
4
|
Feng B, Li X, Li Z, Zhao J, Liu K, Xie F, Zhang X. In vitro evaluation of the toxicological effects of cooking oil fumes using a self-designed microfluidic chip. Toxicol Mech Methods 2024; 34:1000-1009. [PMID: 38887111 DOI: 10.1080/15376516.2024.2369941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Cooking oil fumes (COFs) are widely acknowledged as substantial contributors to indoor air pollution, having detrimental effects on human health. Despite the existence of commercialized in vitro aerosol exposure platforms, assessment risks of aerosol pollutants are primarily evaluated based on multiwell plate experiments by trapping and redissolving aerosols to conduct comprehensive in vitro immersion exposure manner. Therefore, an innovative real-time exposure system for COF aerosol was constructed, featuring a self-designed microfluidic chip as its focal component. The chip was used to assess toxicological effects of in vitro exposure to COF aerosol on cells cultured at the gas-liquid interface. Meanwhile, we used transcriptomics to analyze genes that exhibited differential expression in cells induced by COF aerosol. The findings indicated that the MAPK signaling pathway, known for its involvement in inflammatory response and oxidative stress, played a crucial role in the biological effects induced by COF aerosol. Biomarkers associated with inflammatory response and oxidative stress exhibited corresponding alterations. Furthermore, the concentration of COF aerosol exposure and post-exposure duration exert decisive effects on these biomarkers. Thus, the study suggests that COF can induce oxidative stress and inflammatory response in BEAS-2B cells, potentially exerting a discernible impact on human health.
Collapse
Affiliation(s)
- Boyang Feng
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, PR China
| | - Xiang Li
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, PR China
- Beijing Life Science Academy, Beijing, PR China
| | - Zezhi Li
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, PR China
- Beijing Technology and Business University, Beijing, PR China
| | - Junwei Zhao
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, PR China
- Beijing Life Science Academy, Beijing, PR China
| | - Kejian Liu
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, PR China
| | - Fuwei Xie
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, PR China
| | - Xiaobing Zhang
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, PR China
| |
Collapse
|
5
|
Zhu G, Wen Y, Liang J, Wang T. Effect modification of diet and vitamins on the association between air pollution particles of different diameters and hypertension: A 12-year longitudinal cohort study in densely populated areas of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172222. [PMID: 38588735 DOI: 10.1016/j.scitotenv.2024.172222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/12/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
INTRODUCTION Particulate matter (PM) is identified as one of the exacerbating and triggering factors for hypertension. Diet intake and the consumption of vitamins may potentially moderate the impact of PM on hypertension. METHODS A 12-year longitudinal cohort study was conducted on a population in densely populated areas of China. Residual balancing with weighted methods was employed to control for time-varying and no time-varying confounding factors. Stratified Cox proportional hazards models were conducted to examine the moderating effects of diet and vitamins on the risk of hypertension with PM. RESULTS There was a significant positive association between long-term exposure to different diameter PM and the risk of developing hypertension. The hazard ratios (HRs) for hypertension were 1.0200 (95 % CIs: 1.0147, 1.0253) for PM1, 1.0120 (95 % CIs: 1.0085, 1.0155) for PM2.5, and 1.0074 (95 % CIs, 1.0056, 1.0092) for PM10. The diet and vitamins moderated these associations, the intake of healthy foods and vitamins exhibited a significant positive moderating effect on the relationship between PM exposure and hypertension risk. Among all participants, the high intake of fruit (PM1 (HRs: 1.0102, 95 % CIs: 1.0024, 1.0179), PM2.5 (HRs: 1.0060, 95 % CIs: 1.0011, 1.0109), and PM10 (HRs: 1.0044, 95 % CIs: 1.0018, 1.0070)) and vitamin E (PM1 (HRs: 1.0143, 95 % CIs: 1.0063, 1.0223), PM2.5 (HRs:1.0179, 95 % CIs: 1.0003, 1.0166), and PM10 (HRs: 1.0042, 95 % CIs: 1.0008, 1.0075)) with lower risk of hypertension than the overall level and low intake of related foods and vitamins, exhibited a strong positive moderating effect on the relationship between PM and hypertension. Similar trends were observed for the intake of fish, root food, whole grains, eggs, fungus food, vitamin B2, B3. However, Na, meat, sugary and alcoholic exhibited opposite trends. The moderating effect of vitamin E intake was stronger than vitamin B and C. CONCLUSIONS Diet and vitamins intake may moderate the association between PM exposure and the risk of hypertension in adults.
Collapse
Affiliation(s)
- Guiming Zhu
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China
| | - Yanchao Wen
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China
| | - Jie Liang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China
| | - Tong Wang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China.
| |
Collapse
|
6
|
Wang Y, Xing C, Cai B, Qiu W, Zhai J, Zeng Y, Zhang A, Shi S, Zhang Y, Yang X, Fu TM, Shen H, Wang C, Zhu L, Ye J. Impact of antioxidants on PM 2.5 oxidative potential, radical level, and cytotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169555. [PMID: 38157913 DOI: 10.1016/j.scitotenv.2023.169555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Antioxidants are typically seen as agents that mitigate environmental health risks due to their ability to scavenge free radicals. However, our research presents a paradox where these molecules, particularly those within lung fluid, act as prooxidants in the presence of airborne particulate matter (PM2.5), thus enhancing PM2.5 oxidative potential (OP). In our study, we examined a range of antioxidants found in the respiratory system (e.g., vitamin C, glutathione (GSH), and N-acetylcysteine (NAC)), in plasma (vitamin A, vitamin E, and β-carotene), and in food (tert-butylhydroquinone (TBHQ)). We aimed to explore antioxidants' prooxidant and antioxidant interactions with PM2.5 and the resulting OP and cytotoxicity. We employed OH generation assays and electron paramagnetic resonance assays to assess the pro-oxidative and anti-oxidative effects of antioxidants. Additionally, we assessed cytotoxicity interaction using a Chinese hamster ovary cell cytotoxicity assay. Our findings revealed that, in the presence of PM2.5, all antioxidants except vitamin E significantly increased the PM2.5 OP by generating more OH radicals (OH generation rate: 0.16-24.67 pmol·min-1·m-3). However, it's noteworthy that these generated OH radicals were at least partially neutralized by the antioxidants themselves. Among the pro-oxidative antioxidants, vitamin A, β-carotene, and TBHQ showed the least ability to quench these radicals, consistent with their observed impact in enhancing PM2.5 cytotoxicity (PM2.5 LC50 reduced to 91.2 %, 88.8 %, and 75.1 % of PM2.5's original level, respectively). Notably, vitamin A and TBHQ-enhanced PM2.5 OP were strongly associated with the presence of metals and organic compounds, particularly with copper (Cu) contributing significantly (35 %) to TBHQ's pro-oxidative effect. Our study underscores the potential health risks associated with the interaction between antioxidants and ambient pollutants.
Collapse
Affiliation(s)
- Yixiang Wang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Chunbo Xing
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Baohua Cai
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Wenhui Qiu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jinghao Zhai
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Yaling Zeng
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Antai Zhang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Shao Shi
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Yujie Zhang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Xin Yang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China.
| | - Tzung-May Fu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Huizhong Shen
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Chen Wang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Lei Zhu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Jianhuai Ye
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| |
Collapse
|
7
|
Yin B, Ren J, Cui Q, Liu X, Wang Z, Pei H, Zuo J, Zhang Y, Wen R, Sun X, Zhang W, Ma Y. Astaxanthin alleviates fine particulate matter (PM 2.5)-induced lung injury in rats by suppressing ferroptosis and apoptosis. Food Funct 2023; 14:10841-10854. [PMID: 37982854 DOI: 10.1039/d3fo03641c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Objectives: Fine particulate matter (PM2.5), a small molecule particulate pollutant, can reach the lungs via respiration and cause lung damage. Currently, effective strategies and measures are lacking to prevent and treat the pulmonary toxicity of PM2.5. Astaxanthin (ASX), a natural xanthophyll carotenoid, has attracted attention due to its unique biological activity. Our research aims to probe into the prevention and treatment of ASX on PM2.5-induced lung injury and clarify its potential mechanism. Methods: Sprague-Dawley (SD) rats were given olive oil and different concentrations of ASX orally daily for 21 days. PM2.5 suspension was instilled into the trachea of rats every two days for one week to successfully develop the PM2.5 exposure model in the PM2.5-exposed and ASX-treated groups of rats. The bronchoalveolar lavage fluid (BALF) was collected, and the content of lung injury-related markers was detected. Histomorphological changes and expression of markers associated with oxidative stress, inflammation, iron death, and apoptosis were detected in lung tissue. Results: PM2.5 exposure can cause changes in lung histochemistry and increase the expression levels of TP, AKP, ALB, and LDH in the BALF. Simultaneously, inflammatory responses and oxidative stress were promoted in rat lung tissue after exposure to particulate matter. Additionally, ASX preconditioning can alleviate histomorphological changes, oxidative stress, and inflammation caused by PM2.5 and reduce PM2.5-related ferroptosis and apoptosis. Conclusion: ASX preconditioning can alleviate lung injury after PM2.5 exposure by inhibiting ferroptosis and apoptosis.
Collapse
Affiliation(s)
- Bowen Yin
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| | - Jingyi Ren
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| | - Qiqi Cui
- Undergraduate of College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xuanyi Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| | - Ziyi Wang
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Huanting Pei
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| | - Jinshi Zuo
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| | - Yadong Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| | - Rui Wen
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| | - Xiaoya Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| | - Weican Zhang
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yuxia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| |
Collapse
|
8
|
Sun S, Zhang C, Zhang Q, Li C, Huang D, Ding R, Cao J, Hao J. Role of ROS-mediated PERK/ATF4 signaling activation in extracorporeal tube formation injury of human umbilical vein endothelial cells induced by cooking oil fume PM 2.5 exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115332. [PMID: 37611476 DOI: 10.1016/j.ecoenv.2023.115332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/25/2023]
Abstract
Cooking oil fume-derived PM2.5 (COF-PM2.5) is a major source of indoor air contamination in China, which has been demonstrated to be a hazard factor of cardiovascular and cerebrovascular diseases. This study aimed to investigate the role of ROS-mediated PERK/ATF4 signaling activation in COF-PM2.5-inhibited extracorporeal tube formation in human umbilical vein endothelial cells (HUVECs). HUVECs were treated with 100 μg/mL COF-PM2.5 at different times, with or without 100 nM PERK activity inhibitor GSK2606414 (GSK) or 200 μM antioxidant N-acetylcysteine (NAC) pretreatment. Our results showed that COF-PM2.5 exposure can inhibit extracorporeal tube formation and down-regulate VEGFR2 expression in HUVECs. Furthermore, our data indicated that COF-PM2.5 exposure can activate the PERK/ATF4 signaling in HUVECs. Mechanistically, pretreatment with GSK interdicted PERK/ATF4 signaling, thereby reversing COF-PM2.5-downregulated VEGFR2 protein expression in HUVECs. Furthermore, NAC reversed VEGFR2 expression downregulated induced by COF-PM2.5 by inhibiting the upregulation of intracellular ROS levels and PERK/ATF4 signaling in HUVECs. As above, COF-PM2.5 exposure could induce ROS release from HUVECs, which in turn activate the endoplasmic reticulum PERK/ATF4 signaling and inhibit tube formation of HUVECs.
Collapse
Affiliation(s)
- Shu Sun
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Chao Zhang
- Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Qi Zhang
- Hefei Institutes of Physical Science Chinese Academy of Sciences, No 350 Shushanhu Road, Hefei 230001, Anhui, China
| | - Changlian Li
- Department of Environmental Health, Hefei Center for Disease Control and Prevention, No 86 Lu'an Road, Hefei 230061, Anhui, China
| | - Dan Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Rui Ding
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Jiyu Cao
- Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Jiahu Hao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
9
|
Huang K, Yu D, Fang H, Ju L, Piao W, Guo Q, Xu X, Wei X, Yang Y, Zhao L. Association of fine particulate matter and its constituents with hypertension: the modifying effect of dietary patterns. Environ Health 2023; 22:55. [PMID: 37553681 PMCID: PMC10411005 DOI: 10.1186/s12940-023-01000-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/19/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND Studies have shown that nutritional supplements could reduce the adverse effects induced by air pollution. However, whether dietary patterns can modify the association of long-term exposure to fine particulate matter (PM2.5) and its constituents with hypertension defined by the 2017 ACC/AHA guideline has not been evaluated. METHODS We included 47,501 Chinese adults from a nationwide cross-sectional study. PM2.5 and five constituents were estimated by satellite-based random forest models. Dietary approaches to stop hypertension (DASH) and alternative Mediterranean diet (AMED) scores were calculated for each participant. Interactions between dietary patterns and air pollution were examined by adding a multiplicative interaction term to logistic models. RESULTS Long-term exposure to PM2.5 and its constituents was associated with an increased risk of hypertension and stage 1-2 hypertension. The DASH and AMED scores significantly modified these associations, as individuals with higher scores had a significantly lower risk of air pollution-related hypertension and stage 1-2 hypertension (P-interaction < 0.05), except for interaction between PM2.5, sulfate, nitrate, ammonium, and AMED score on stage 1 hypertension. For each IQR increase in PM2.5, participants with the lowest DASH and AMED quintiles had hypertension risk with ORs (95%CI) of 1.20 (1.10, 1.30) and 1.19 (1.09, 1.29), whereas those with the highest DASH and AMED quintiles had lower risks with 0.98 (0.91, 1.05) and 1.04 (0.97, 1.11). The stratified analysis found modification effect was more prominent in the < 65 years age group. Consuming more fresh vegetables, fruits, whole grains, and dairy would reduce the risk of hypertension caused by PM2.5 and its constituents. CONCLUSIONS Dietary patterns rich in antioxidants can reduce long-term exposure to PM2.5 and its constituents-induced hypertension defined by the 2017 ACC/AHA guideline, especially in young and middle-aged individuals. Compared to the Mediterranean diet, the DASH diet offers superior dietary guidance to prevent stage 1 hypertension caused by air pollution.
Collapse
Affiliation(s)
- Kun Huang
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
| | - Dongmei Yu
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
- NHC Key Laboratory of Trace Element Nutrition, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Hongyun Fang
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
- NHC Key Laboratory of Trace Element Nutrition, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Lahong Ju
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
| | - Wei Piao
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
- NHC Key Laboratory of Trace Element Nutrition, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Qiya Guo
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
| | - Xiaoli Xu
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
| | - Xiaoqi Wei
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
| | - Yuxiang Yang
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
| | - Liyun Zhao
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China.
- NHC Key Laboratory of Trace Element Nutrition, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China.
| |
Collapse
|
10
|
Li C, Yu JL, Xu JJ, He YC, Qin KZ, Chen L, Huang HF, Wu YT. Interactive effects of ambient air pollution and sunshine duration on the risk of intrahepatic cholestasis of pregnancy. ENVIRONMENTAL RESEARCH 2022; 215:114345. [PMID: 36116502 DOI: 10.1016/j.envres.2022.114345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION While the associations among ambient pollutants and various pregnancy complications are well documented, the effect of ambient pollutants on intrahepatic cholestasis of pregnancy (ICP) has not been examined. This study aimed to explore the effects of ambient pollutants and sunshine duration on ICP. METHODS The study enrolled 169,971 pregnant women who delivered between 2015 and 2020 in two hospitals. The associations between ICP and exposure to ambient pollutants and sunshine duration, averaged throughout different periods (including the 3 months before conception, 1st trimester and 2nd trimester), were estimated using a generalized linear model. The interaction effects of ambient pollutants and sunshine duration on ICP were estimated. RESULTS The fitted curves for ICP incidence were similar to the temporal trends of PM2.5, PM10, SO2, CO and NO2 but not that of O3. The risk of ICP was significantly elevated following a 10-μg/m3 increase in PM2.5 (aOR [adjusted odds ratio] = 1.057, 95% CI [confidence interval]: 1.017-1.099) and PM10 (aOR = 1.043, 95% CI: 1.013-1.074) and a 1-h decrease in sunshine duration (aOR = 1.039, 95% CI: 1.011-1.068) during the 3 months before conception. In the second trimester, a 1-μg/m3 increase in the concentration of SO2 was associated with an increased risk of ICP (aOR = 1.011, 95% CI: 1.001-1.021). Increased concentrations of PM2.5 and PM10 had interactive effects with reduced sunshine duration during the 3 months before conception on increasing the risk of ICP. CONCLUSIONS Exposure to PM2.5 and PM10 during the 3 months before conception and exposure to SO2 in the second trimester were associated with an increased ICP risk. Reduced sunshine duration had an interactive effect with increased concentrations of PM2.5 and PM10 during the 3 months before conception on the occurrence of ICP.
Collapse
Affiliation(s)
- Cheng Li
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Jia-Le Yu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing-Jing Xu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Yi-Chen He
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Kai-Zhou Qin
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Lei Chen
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - He-Feng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Yan-Ting Wu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Nie H, Liu H, Shi Y, Lai W, Liu X, Xi Z, Lin B. Combined multi-omics analysis reveals oil mist particulate matter-induced lung injury in rats: Pathological damage, proteomics, metabolic disturbances, and lung dysbiosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113759. [PMID: 35714485 DOI: 10.1016/j.ecoenv.2022.113759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/18/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Oil mist particulate matter (OMPM) causes acute and chronic diseases and exacerbations. Owing to the characteristics of poor ventilation, high oil mist concentration, and a relatively closed working environment, the existence of OMPM in the cabin is inevitable, and its impact on the health of occupations on ships cannot be ignored. However, compared with several studies that summarized the health effects of OMPM from traditional sources, few studies have focused on the occupational exposure risk of OMPM from oil pollution sources in ships. In this study, we collected OMPM from oil pollution in cabins and assessed the exposure to OMPM from oil pollution and the corresponding health risks through acute exposure experiments in rats. OMPM exposure induces protein regulation in the extracellular matrix and immune responses, leading to severe inflammatory responses. The abundance and composition of the lung microbial community changed significantly. It interferes with the lung metabolite levels. However, more research is needed to fully understand the extent of health risks associated with OMPM exposure. Further research on vulnerable groups exposed to OMPM from ships is needed to inform public health interventions.
Collapse
Affiliation(s)
- Huipeng Nie
- Tianjin Institute of Environment and Operational Medicine, Tianjin 300050, China
| | - Huanliang Liu
- Tianjin Institute of Environment and Operational Medicine, Tianjin 300050, China
| | - Yue Shi
- Tianjin Institute of Environment and Operational Medicine, Tianjin 300050, China
| | - Wenqing Lai
- Tianjin Institute of Environment and Operational Medicine, Tianjin 300050, China
| | - Xuan Liu
- Tianjin Institute of Environment and Operational Medicine, Tianjin 300050, China
| | - Zhuge Xi
- Tianjin Institute of Environment and Operational Medicine, Tianjin 300050, China.
| | - Bencheng Lin
- Tianjin Institute of Environment and Operational Medicine, Tianjin 300050, China.
| |
Collapse
|
12
|
Yuan J, Mo L, Mo Y, Zhang Y, Zhang Y, Zhang Q. A protective role of autophagy in fine airborne particulate matter-induced apoptosis in LN-229 cells. Toxicology 2022; 477:153271. [PMID: 35872226 PMCID: PMC10825875 DOI: 10.1016/j.tox.2022.153271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 01/16/2023]
Abstract
Air pollution is a public health threat and global epidemiological studies have shown that ambient air pollutants are closely related to various poor health conditions, including neurodegenerative diseases. Here, we evaluated the toxic effects and the underlying mechanisms of fine airborne particulate matter (PM2.5) on human glioblastoma LN-229 cells. Our results showed that exposure of LN-229 cells to PM2.5 (≥ 200 μg/mL) significantly reduced cell viability. PM2.5 exposure increased autophagy, apoptosis, and ROS production in the cells. Pre-treatment with a ROS scavenger, catalase, or depletion of mtDNA (ρ0 cells) abolished PM2.5-induced autophagy and apoptosis. PM2.5 exposure also activated MAPK signals in cells, which were blocked by catalase pre-treatment or mtDNA depletion. Furthermore, inhibition of JNK, but not ERK1/2 or p38, attenuated PM2.5-induced autophagy and apoptosis in cells. Finally, suppression of autophagy with Bafilomycin A1 or Beclin 1 siRNA exacerbated PM2.5-induced apoptosis, indicating a protective role of autophagy against PM2.5-induced apoptosis. Our results demonstrated that exposure of LN-229 cells to PM2.5 caused autophagy and apoptosis through PM2.5-induced ROS generation, mainly by mitochondria, and JNK activation. Autophagy may have a transient protective response in PM2.5-induced apoptosis. These findings have important implications for understanding the potential neurotoxicity of PM2.5.
Collapse
Affiliation(s)
- Jiali Yuan
- Department of Epidemiology & Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Luke Mo
- duPont Manual High School, Louisville, KY, USA
| | - Yiqun Mo
- Department of Epidemiology & Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Yuanbao Zhang
- Department of Epidemiology & Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Yue Zhang
- Department of Epidemiology & Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Qunwei Zhang
- Department of Epidemiology & Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
13
|
Huang J, Zhang P, An Q, He L, Wang L. New insights into the treatment mechanisms of Vitamin D on PM2.5-induced toxicity and inflammation in mouse renal tubular epithelial cells. Int Immunopharmacol 2022; 108:108747. [DOI: 10.1016/j.intimp.2022.108747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 12/21/2022]
|
14
|
Yu Y, Sun Q, Li T, Ren X, Lin L, Sun M, Duan J, Sun Z. Adverse outcome pathway of fine particulate matter leading to increased cardiovascular morbidity and mortality: An integrated perspective from toxicology and epidemiology. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128368. [PMID: 35149491 DOI: 10.1016/j.jhazmat.2022.128368] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/12/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Fine particulate matter (PM2.5) exposure is a major threat to public health, and is listed as one of the leading factors associated with global premature mortality. Among the adverse health effects on multiple organs or tissues, the influence of PM2.5 exposure on cardiovascular system has drawn more and more attention. Although numerous studies have investigated the mechanisms responsible for the cardiovascular toxicity of PM2.5, the various mechanisms have not been integrated due to the variety of the study models, different levels of toxicity assessment endpoints, etc. Adverse Outcome Pathway (AOP) framework is a useful tool to achieve this goal so as to facilitate comprehensive understanding of toxicity assessment of PM2.5 on cardiovascular system. This review aims to illustrate the causal mechanistic relationships of PM2.5-triggered cardiovascular toxicity from different levels (from molecular/cellular/organ to individual/population) by using AOP framework. Based on the AOP Wiki and published literature, we propose an AOP framework focusing on the cardiovascular toxicity induced by PM2.5 exposure. The molecular initiating event (MIE) is identified as reactive oxygen species generation, followed by the key events (KEs) of oxidative damage and mitochondria dysfunction, which induces vascular endothelial dysfunction via vascular endothelial cell autophagy dysfunction, vascular fibrosis via vascular smooth muscle cell activation, cardiac dysregulation via myocardial apoptosis, and cardiac fibrosis via fibroblast proliferation and myofibroblast differentiation, respectively; all of the above cardiovascular injuries ultimately elevate cardiovascular morbidity and mortality in the general population. As far as we know, this is the first work on PM2.5-related cardiovascular AOP construction. In the future, more work needs to be done to explore new markers in the safety assessment of cardiovascular toxicity induced by PM2.5.
Collapse
Affiliation(s)
- Yang Yu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Qinglin Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Tianyu Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Xiaoke Ren
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Lisen Lin
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
15
|
Accumulated oxidative stress risk in HUVECs by chronic exposure to non-observable acute effect levels of PM 2.5. Toxicol In Vitro 2022; 82:105376. [PMID: 35550414 DOI: 10.1016/j.tiv.2022.105376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/26/2022] [Accepted: 05/05/2022] [Indexed: 11/23/2022]
Abstract
Few studies have reported the accumulation of non-observable acute effect (NOAE) of PM2.5, especially exposure to the NOAE doses (NOAEDs) of PM2.5 in chronic way. To address this issue, HUVECs were cultured from the 1st to 30th generations (G1 to G30) and treated by the NOAED PM2.5 once every three passages. The generational changes of oxidative damage markers, inflammatory factors, and cell adhesion molecules (CAMs) were monitored in HUVECs at G6, G12, G18, G24, and G30, and proteomes at G18 and G30, respectively. The oxidative damages monotonically accumulated with exposure time elongation and PM2.5 dose increases. Similar to the oxidative trends, VCAM1 and ICAM1 significantly and dose-dependently increased at G30. However, many inflammatory factors altered with complex patterns to respond the NOAEDs' PM2.5. Proteomic results demonstrated most proteins expressed stably, and the generational proteome alterations were more apparent than the NOAEDs' PM2.5 induced ones. The PM2.5-related proteins varied much, but only few can cross the doses and generations. These observations suggested that the proteins changed holistically rather than individually. In summary, SOD1, SUMO2, and H3F3A may initiate HUVESs responses to PM2.5, and then broadcast and accumulate the NOAE via DNA repair, immune response, and glycolysis.
Collapse
|
16
|
Meng M, Jia R, Wei M, Meng X, Zhang X, Du R, Sun W, Wang L, Song L. Oxidative stress activates Ryr2-Ca 2+ and apoptosis to promote PM 2.5-induced heart injury of hyperlipidemia mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113228. [PMID: 35091300 DOI: 10.1016/j.ecoenv.2022.113228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/10/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
The increased cases of hyperlipemia in China and the crucial role of PM2.5 in inducing and promoting cardiovascular diseases have attracting more and more researchers' attention. However, the effects and mechanisms of PM2.5 on cardiovascular system of hyperlipidemia people are still unclear. In this study, hyperlipidemia mice model was established by high-fat diet. Then we exposed these mice to PM2.5 or saline to explore the underling mechanism of cardiac injury in hyperlipidemia mice. The hyperlipemia mice are more susceptible to heart damage caused by PM2.5 exposure. The participation of oxidative stress, cell apoptosis and Ca2+ related mechanism could be observed in this model. After NAC (N-acetyl-L-cysteine) treatment, the oxidative stress level induced by PM2.5 exposure significantly decreased in hyperlipemia mice. NAC effectively alleviated cardiac injury, improved the imbalance of calcium and attenuated apoptosis induced by PM2.5 exposure in hyperlipemia mice. The strong oxidative stress in hyperlipemia mice could lead to calcium homeostasis imbalance and activation of apoptosis-related pathways. This mechanism of PM2.5-induced myocardial injury was also verified in vitro. In our present study, we demonstrated the contribution of the PM2.5-ROS-Ryr2-Ca2+ axis in PM2.5-induced heart injury of hyperlipidemia mice, offering a potential therapeutical target for related pathology.
Collapse
Affiliation(s)
- Meiling Meng
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning Province 116044, China; Tai 'an city central hospital, Tai 'an City, Shandong Province 271000, China
| | - Ruxue Jia
- Department of Cardiology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province 116023, China
| | - Min Wei
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning Province 116044, China
| | - Xianzong Meng
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning Province 116044, China; Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Xiao Zhang
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning Province 116044, China
| | - Rui Du
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning Province 116044, China
| | - Wenping Sun
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning Province 116044, China
| | - Lili Wang
- Department of Cardiology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province 116023, China.
| | - Laiyu Song
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning Province 116044, China.
| |
Collapse
|
17
|
Wu M, Xie J, Zhou Z, Wang L, Hu Y, Sun Y, Wang Y, Tian Y. Fine particulate matter, vitamin D, physical activity, and major depressive disorder in elderly adults: Results from UK Biobank. J Affect Disord 2022; 299:233-238. [PMID: 34879260 DOI: 10.1016/j.jad.2021.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The present study aims to investigate the association between PM2.5 exposure and major depressive disorder, and to examine whether vitamin D and physical activity could attenuate the impact of PM2.5 on major depressive disorder. METHODS 39168 elderly adults (age≥60 years) who had valid estimates on exposure of PM2.5 in 2010 and data on major depressive disorder were extracted from the UK Biobank. Major depressive disorder was assessed by lifetime experience of mild, moderate, and severe major depression with validated instruments. Logistic regression models were used to estimate the association between PM2.5 exposure and major depressive disorder. RESULTS A total of 9079 participants had major depressive disorder, with a prevalence of 23.2%. The odds ratio (OR) of major depressive disorder was 1.096 (1.023, 1.175) for participants in the highest quartile compared with the lowest quartile of PM2.5. The correlation of PM2.5 with major depressive disorder generally increased with the decreasing levels of vitamin D. For instance, in participants with the highest quartile of PM2.5, the corresponding ORs were 1.141 (0.951, 1.369), 1.232 (1.027, 1.478), 1.286 (1.072, 1.543), and 1.390 (1.159, 1.667) for those who had adequate, desirable, insufficient, and deficient levels of vitamin D, respectively. Additionally, significant modification effects of physical activity on the relationship between PM2.5 and major depressive disorder were also observed. CONCLUSIONS Our study suggests that high levels of vitamin D and physical activity may attenuate the relationship between PM2.5 and major depressive disorder among elderly adults.
Collapse
Affiliation(s)
- Mingyang Wu
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan 430030, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan 430030, China
| | - Junqing Xie
- Center for Statistics in Medicine, NDORMS, The Botnar Research Centre, University of Oxford, Old Rd, Oxford OX3 7LD, UK
| | - Ziyi Zhou
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan 430030, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan 430030, China
| | - Lulin Wang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan 430030, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan 430030, China
| | - Yonghua Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No.38 Xueyuan Road, Beijing 100191, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan 430022, China
| | - Youjie Wang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan 430030, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan 430030, China
| | - Yaohua Tian
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan 430030, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan 430030, China.
| |
Collapse
|
18
|
Zhang LM, Lv SS, Fu SR, Wang JQ, Liang LY, Li RQ, Zhang F, Ma YX. Procyanidins inhibit fine particulate matter-induced vascular smooth muscle cells apoptosis via the activation of the Nrf2 signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112586. [PMID: 34364126 DOI: 10.1016/j.ecoenv.2021.112586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/16/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
The functional role of procyanidins (PC) in PM2.5-induced cardiovascular diseases (CVD) is largely unexplored. This study aimed to explore the protective effect of PC against PM2.5-induced vascular smooth muscle cells (VSMCs) apoptosis and underlying mechanisms. Sprague Dawley rats were pretreated with three doses of PC (50, 100, and 200 mg/kg) and exposed to 10 mg/kg PM2.5 by intratracheal instillation three times a week. VSMCs were exposed to 5, 10, and 20 μM PC before the addition of 100 μg/mL PM2.5. In vivo, the PM2.5 exposure induced apoptosis in the thoracic aorta of rats. The PM2.5 exposure significantly elevated the reactive oxygen species (ROS) and malondialdehyde (MDA) levels and decreased the superoxide dismutase activity. Also, PC supplementation increased the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), and its downstream antioxidant genes, i.e., NAD(P)H dehydrogenase (quinine) 1 and heme oxygenase 1, attenuated oxidative stress and vascular apoptosis. In vitro, PM2.5 induced cytotoxicity in VSMCs in a dose-dependent manner. Besides, PC abolished the PM2.5-induced cytotoxicity by activating the Nrf2 signal pathway, alleviating oxidative stress, and decreasing apoptosis. In conclusion, this work is the first study to demonstrate that PC can suppress the PM2.5-induced VSMCs apoptosis via the activation of the Nrf2 signal pathway.
Collapse
Affiliation(s)
- Li-Min Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Shuai-Shuai Lv
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Shi-Rui Fu
- Department of Acute and Infectious Diseases Prevention and Treatment, Xiangyang Center for Disease Control and Prevention, Xiangyang 441000, China
| | - Jia-Qi Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Lu-Yao Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Rui-Qiang Li
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Fan Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Yu-Xia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China.
| |
Collapse
|
19
|
Li J, Xiao X, Wang P, Meng X, Zhou Y, Shi H, Yin C, Zhang Y. PM 2.5 exposure and maternal glucose metabolism in early pregnancy: Associations and potential mediation of 25-hydroxyvitamin D. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112645. [PMID: 34416639 DOI: 10.1016/j.ecoenv.2021.112645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Gestational diabetes mellitus (GDM) has become a new global epidemic with a rapidly increasing prevalence. Previous studies have suggested that air pollution is associated with GDM risk, but the results are inconsistent, and mechanistic studies are limited. Based on a hospital-based cohort, a total of 6374 participants were included in this study. Individual daily PM2.5 exposure at a 1-km resolution was predicted using a full-spatiotemporal-coverage model. The results of multiple linear regression showed that glycated hemoglobin (HbA1c) was significantly associated with PM2.5 both in the 1-month preconception and in the first trimester of pregnancy. Additionally, HbA1c decreased 0.437% (95% CI: -0.629, -0.244) as the serum 25-hydroxyvitamin D (25(OH)D) increased by one interquartile range (IQR) (9.2 ng/ml). An IQR increase in PM2.5 exposure was also negatively associated with serum 25(OH)D (estimated change% and 95% CI: -7.249 (-9.054, -5.408) in the 1-month preconception and - 13.069 (-15.111, -10.979) in the first trimester of pregnancy). Mediation analysis showed that serum 25(OH)D status mediated the association between HbA1c and PM2.5 exposure both in the preconception and in the first trimester (mediated percent: 2.00% and 4.05% (Sobel p<0.001), respectively). The result suggested a vicious cycle among PM2.5 exposure, lower serum VD status and a higher HbA1c. More studies are warranted since the protective effect of 25(OH)D against glucose disorders associated with air pollution in this study was limited.
Collapse
Affiliation(s)
- Jialin Li
- Global Health Institute, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Xirong Xiao
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200032, China
| | - Pengpeng Wang
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Xia Meng
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yuhan Zhou
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Huijing Shi
- Global Health Institute, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Chuanmin Yin
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200032, China.
| | - Yunhui Zhang
- Global Health Institute, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
20
|
Edalati S, Khajeniazi S. An Overview of Chemical and Biological Materials lead to Damage and Repair of Heart Tissue. Cardiovasc Eng Technol 2021; 12:505-514. [PMID: 34046843 DOI: 10.1007/s13239-021-00544-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cardiovascular diseases (CVDs) are major causes of mortality in developing countries. One of the challenges during CVDs studies is the creation of a damaged model of the heart. Many injured models of cardiac diseases are created by using chemical and biological materials. Many approaches were applied to simulate heart injury for investigating CVDs. In previous years, animal models could be used as a useful pattern in many investigations about the pathogenesis of the heart. Nowadays it has been proven that there are many differences between human and animal models in terms of responses or reactions to treatments. For such reasons, researchers prefer to use cellular models alongside the animal models for studying heart diseases. PURPOSE In this review, we collected information about some chemical and biological materials used to create damaged-heart models both in vitro and in vivo. After explaining the materials that induce cardiac damage, we explicate some methods for repairing the damage of heart. Finally, the role of extracellular vesicles as an important biological candidate for repairing heart damage is briefly discussed. CONCLUSION This mini-review tried to explain some methods which can induce cardiac damage and repair of heart cells by use chemical and biological materials. We considered that various molecular pathways play a role in restoration and that most of these pathways are connected in a complex network and, to this end, different chemicals and drugs have been studied to date. Nonetheless, more studies are needed to ensure the performance and safety of the drugs and chemicals produced.
Collapse
Affiliation(s)
- Saeideh Edalati
- Department of Medical Biotechnology, School of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran
| | - Safoura Khajeniazi
- Stem Cell Research Center, Department of Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
21
|
Trushna T, Tripathi AK, Rana S, Tiwari RR. Nutraceuticals with anti-inflammatory and anti-oxidant properties as intervention for reducing the health effects of fine particulate matter: Potential and Prospects. Comb Chem High Throughput Screen 2021; 25:1639-1660. [PMID: 33845731 DOI: 10.2174/1386207324666210412121226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 11/22/2022]
Abstract
Air pollution, especially particulate matter pollution adversely affects human health. A growing pool of evidence has emerged which underscores the potential of individual-level nutritional interventions in attenuating the adverse health impact of exposure to PM2.5. Although controlling emission and reducing the overall levels of air pollution remains the ultimate objective globally, the sustainable achievement of such a target and thus consequent protection of human health will require a substantial amount of time and concerted efforts worldwide. In the meantime, smaller-scale individual-level interventions that can counter the inflammatory or oxidative stress effects triggered by exposure to particulate matter may be utilized to ameliorate the health effects of PM2.5 pollution. One such intervention is incorporation of nutraceuticals in the diet. Here, we present a review of the evidence generated from various in vitro, in vivo and human studies regarding the effects of different anti-inflammatory and antioxidant nutraceuticals in ameliorating the health effects of particulate matter air pollution. The studies discussed in this review suggest that these nutraceuticals when consumed as a part of the diet, or as additional supplementation, can potentially negate the cellular level adverse effects of exposure to particulate pollution. The potential benefits of adopting a non-pharmacological diet-based approach to air pollution-induced disease management have also been discussed. We argue that before a nutraceuticals-based approach can be used for widespread public adoption, further research, especially human clinical trials, is essential to confirm the beneficial action of relevant nutraceuticals and to explore the safe limits of human supplementation and the risk of side effects. Future research should focus on systematically translating bench-based knowledge regarding nutraceuticals gained from in-vitro and in-vivo studies into clinically usable nutritional guidelines.
Collapse
Affiliation(s)
- Tanwi Trushna
- Department of Environmental Health and Epidemiology, ICMR- National Institute for Research in Environmental Health, Bhopal- 462030. India
| | - Amit K Tripathi
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal- 462030. India
| | - Sindhuprava Rana
- Department of Bioinformatics, ICMR-National Institute for Research in Environmental Health, Bhopal- 462030. India
| | - Rajnarayan R Tiwari
- ICMR- National Institute for Research in Environmental Health (NIREH), Bhopal-462030, Madhya Pradesh. India
| |
Collapse
|
22
|
Jiang Q, Zhang C, Chen S, Shi L, Li DC, Lv N, Cui L, Chen Y, Zheng Y. Particulate Matter 2.5 Induced Developmental Cardiotoxicity in Chicken Embryo and Hatchling. Front Pharmacol 2020; 11:841. [PMID: 32581800 PMCID: PMC7289969 DOI: 10.3389/fphar.2020.00841] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
Particulate matter poses health risk to developing organisms. To investigate particulate matters with a diameter smaller than 2.5 um (PM2.5)-induced developmental cardiotoxicity, fertile chicken eggs were exposed to PM2.5 via air cell injection at doses of 0.05, 0.2, 0.5, 2, and 5 mg/egg kg. Morphological changes in the embryonic day four (ED4) and hatchling hearts were assessed with histological techniques. Heart rates of hatchling chickens were measured with electrocardiography. The protein expression levels of nuclear factor kappa-light-chain-enhancer of activated B cells p65 (NF-kb p65), inducible nitric oxide synthase (iNOS), and matrix metallopeptidase 9 (MMP9) were assessed with immunohistochemistry or western blotting in hatchling hearts. PM2.5 exposure elevated areas of heart in ED4 embryo, increased heart rate, and thickened right ventricular wall thickness in hatchling chickens. Immunohistochemistry revealed enhanced NF-kb p65 expression in hatchling hearts. Western blotting results indicated that both iNOS and MMP9 expression were enhanced by lower doses of PM2.5 exposure (0.2 and 0.5 mg/kg) but not 2 mg/kg. In summary, developmental exposure to PM2.5 induced developmental cardiotoxicity in chicken embryo and hatchling chickens, which is associated with NF-kb p65, iNOS, and MMP9.
Collapse
Affiliation(s)
- Qixiao Jiang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Chao Zhang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Shen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Limei Shi
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Dao Chuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Na Lv
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Lianhua Cui
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Yanxia Chen
- Department of Occupational Diseases, Occupational Disease Center, Qingdao Central Hospital, Qingdao, China
| | - Yuxin Zheng
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| |
Collapse
|
23
|
Xu Z, Wu H, Zhang H, Bai J, Zhang Z. Interleukins 6/8 and cyclooxygenase-2 release and expressions are regulated by oxidative stress-JAK2/STAT3 signaling pathway in human bronchial epithelial cells exposed to particulate matter ≤2.5 μm. J Appl Toxicol 2020; 40:1210-1218. [PMID: 32212198 DOI: 10.1002/jat.3977] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/19/2020] [Accepted: 03/04/2020] [Indexed: 01/06/2023]
Abstract
Atmospheric particulate matter with a diameter ≤2.5 μm (PM2.5) can induce inflammation of the respiratory system, which is the pathological basis of asthma or other respiratory diseases; however, the underlying regulation mechanism has not been clearly addressed. The aim of this study was to explore the potential role of the oxidative stress-JAK/STAT signaling pathway in the inflammation of human bronchial epithelial cells induced by PM2.5. The human bronchial epithelial cell line 16HBE cells were stimulated with PM2.5 at 50 and 100 μg/mL doses for 12 or 24 hours. Intracellular reactive oxygen species (ROS) was detected using flow cytometry. Gene and protein expressions of JAK2, STAT3 and cyclooxygenase 2 (COX-2) were determined using reverse transcription-polymerase chain reaction and western blotting, respectively. The ratio of intracellular glutathione/glutathione disulfide (GSH/GSSG) and the levels of interleukin (IL)-6 and IL-8 in cellular supernatant were analyzed using enzyme-linked immunosorbent assay. The results indicated that PM2.5 treatment significantly increased gene expressions of JAK2/STAT3 and protein levels of p-JAK2/p-STAT3, accompanied by increased intracellular ROS levels, decreased GSH/GSSG ratio at 50 and 100 μg/mL of PM2.5, and significantly enhanced levels of IL-6, IL-8 and COX-2 at a dose of 100 μg/mL. Pretreatment with N-acetyl-l-cysteine (NAC) attenuated the oxidative stress induced by PM2.5; similarly, pretreatment with AG490 (an inhibitor of JAK) decreased the cytokine levels stimulated by PM2.5. Therefore, we concluded that PM2.5 exposure could activate oxidative stress-JAK2/STAT3 signaling pathway, elevate the levels of IL-6, IL-8 and COX-2 in 16HBE cells, which can be inhibited by the NAC or AG490.
Collapse
Affiliation(s)
- Zhenzhen Xu
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Hongyan Wu
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Hongmei Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Jianying Bai
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Zhihong Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi Province, China
| |
Collapse
|
24
|
Yi S, Lu Z, Lin Y, Wang J, Qiao Z, Shen R, Zhang J, Hou L. A novel mitochondria-targeted phosphorescence probe for hypochlorite ions detection in living cells. Talanta 2020; 209:120516. [DOI: 10.1016/j.talanta.2019.120516] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/17/2019] [Accepted: 10/26/2019] [Indexed: 11/26/2022]
|