1
|
Holme JA, Myhre O, Øvrevik J. Adverse neurodevelopment in children associated with prenatal exposure to fine particulate matter (PM 2.5) - Possible roles of polycyclic aromatic hydrocarbons (PAHs) and mechanisms involved. Reprod Toxicol 2024; 130:108718. [PMID: 39276806 DOI: 10.1016/j.reprotox.2024.108718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Prenatal exposure to ambient fine particles (PM2.5) and polycyclic aromatic hydrocarbons (PAHs) has been associated with adverse birth outcomes including neurodevelopmental effects with cognitive and/or behavioral implications in early childhood. As a background we first briefly summarize human studies on PM2.5 and PAHs associated with adverse birth outcomes and modified neurodevelopment. Next, we add more specific information from animal studies and in vitro studies and elucidate possible biological mechanisms. More specifically we focus on the potential role of PAHs attached to PM2.5 and explore whether effects of these compounds may arise from disturbance of placental function or more directly by interfering with neurodevelopmental processes in the fetal brain. Possible molecular initiating events (MIEs) include interactions with cellular receptors such as the aryl hydrocarbon receptor (AhR), beta-adrenergic receptors (βAR) and transient receptor potential (TRP)-channels resulting in altered gene expression. MIE linked to the binding of PAHs to cytochrome P450 (CYP) enzymes and formation of reactive electrophilic metabolites are likely less important. The experimental animal and in vitro studies support the epidemiological findings and suggest steps involved in mechanistic pathways explaining the associations. An overall evaluation of the doses/concentrations used in experimental studies combined with the mechanistic understanding further supports the hypothesis that prenatal PAHs exposure may cause adverse outcomes (AOs) linked to human neurodevelopment. Several MIEs will likely occur simultaneously in various cells/tissues involving several key events (KEs) which relative importance will depend on dose, time, tissue, genetics, other environmental factors, and neurodevelopmental endpoint in study.
Collapse
Affiliation(s)
- Jørn A Holme
- Department of Air quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box PO Box 222 Skøyen, Oslo 0213, Norway.
| | - Oddvar Myhre
- Department of Chemical Toxicology, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, Oslo 0213, Norway
| | - Johan Øvrevik
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, PO Box 1066 Blindern, Oslo 0316, Norway; Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, Oslo 0213, Norway
| |
Collapse
|
2
|
Li J, Dong X, Gao L, Zhang WW, Zhong FJ, Liu SY, Huang YC, Wang Y, Wei W, Xu DX. Mitochondrial malfunction-initiated Leydig cell premature senescence partially participates in 1-nitropyrene-evoked downregulation of steroidogenic synthases in testes. Free Radic Biol Med 2024; 225:456-468. [PMID: 39426755 DOI: 10.1016/j.freeradbiomed.2024.10.291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Serum testosterone (T) in males has been declining during the past decades. The previous reports found that 1-nitropyrene (1-NP) exposure suppressed testicular T synthesis. The purpose of the current study was to further explore whether premature senescence participates in 1-NP-triggered reduction of testicular T synthesis. Adult male mice were orally exposed to 1-NP (0, 100, and 500 μg/kg) daily for 14 days. Serum and testicular T contents were diminished in 1-NP-administered mice. Mitochondria-located steroidogenic synthases, including StAR, CYP11A1, and 3βHSD1, were downregulated in 1-NP-administered mouse testes and MLTC-1 cells. Mechanistically, 1-NP exposure increased acetylation modification of mitochondrial steroidogenic synthases by inhibiting the enzymatic activity of SIRT3, an NAD+-dependent deacetylase. Supplementing NAD + precursor and Sirt3 overexpression relieved 1-NP-triggered reduction of steroidogenic synthase levels in mouse testes and MLTC-1 cells. By contrast, Sirt3 silencing aggravated 1-NP-evoked acetylation and reduction of steroidogenic synthase levels in MLTC-1 cells. Further experiments demonstrated that 1-NP exposure caused mitochondrial malfunction and premature senescence in mouse testes and MLTC-1 cells. Supplementation with mitochondria-directed antioxidant mitoquinone (MitoQ) prevented 1-NP-evoked Leydig cell premature senescence and downregulation of testicular steroidogenic synthases. These results suggest that mitochondrial malfunction-initiated Leydig cell premature senescence may partially participate in 1-NP-evoked reduction of steroidogenic synthase levels in testes.
Collapse
Affiliation(s)
- Jian Li
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China; Department of Toxicology, Anhui Medical University, Hefei, China
| | - Xin Dong
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China; Department of Toxicology, Anhui Medical University, Hefei, China
| | - Lan Gao
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China; Department of Toxicology, Anhui Medical University, Hefei, China
| | - Wei-Wei Zhang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China; Department of Toxicology, Anhui Medical University, Hefei, China
| | - Fang-Jie Zhong
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China; Department of Toxicology, Anhui Medical University, Hefei, China
| | - Su-Ya Liu
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China; Department of Toxicology, Anhui Medical University, Hefei, China
| | - Yi-Chao Huang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China; Department of Toxicology, Anhui Medical University, Hefei, China
| | - Yan Wang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China; Department of Toxicology, Anhui Medical University, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-inflammatory & Immune Medicine, Education Ministry of China, Anhui Medical University, Hefei, China.
| | - De-Xiang Xu
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China; Department of Toxicology, Anhui Medical University, Hefei, China.
| |
Collapse
|
3
|
Chen XX, Wang B, Cai W, Zhang YH, Shen L, Zhu YY, Wang T, Meng XH, Wang H, Xu DX. Exposure to 1-nitropyrene after weaning induces anxiety-like behavior partially by inhibiting steroid hormone synthesis in prefrontal cortex. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134911. [PMID: 38889457 DOI: 10.1016/j.jhazmat.2024.134911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/30/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
1-Nitropyrene (1-NP) is a neurodevelopmental toxicant. This study was to evaluate the impact of exposure to 1-NP after weaning on anxiety-like behavior. Five-week-old mice were administered with 1-NP (0.1 or 1 mg/kg) daily for 4 weeks. Anxiety-like behaviour was measured using elevated-plus maze (EPM) and open field test (OFT). In EPM test, time spending in open arm and times entering open arm were reduced in 1-NP-treated mice. In OFT test, time spent in the center region and times entering the center region were diminished in 1-NP-treated mice. Prefrontal dendritic length and number of dendrite branches were decreased in 1-NP-treated mice. Prefrontal PSD95, an excitatory postsynaptic membrane protein, and gephyrin, an inhibitory postsynaptic membrane protein, were downregulated in 1-NP-treated mice. Further analysis showed that peripheral steroid hormones, including serum testosterone (T) and estradiol (E2), testicular T, and ovarian E2, were decreased in 1-NP-treated mice. Interestingly, T and E2 were diminished in 1-NP-treated prefrontal cortex. Prefrontal T and E2 synthases were diminished in 1-NP-treated mice. Mechanistically, GCN2-eIF2α, a critical pathway that regulates ribosomal protein translation, was activated in 1-NP-treated prefrontal cortex. These results indicate that exposure to 1-NP after weaning induces anxiety-like behaviour partially by inhibiting steroid hormone synthesis in prefrontal cortex.
Collapse
Affiliation(s)
- Xiao-Xi Chen
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230022, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Bo Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230022, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Wei Cai
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230022, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Yi-Hao Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230022, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Li Shen
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230022, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Yan-Yan Zhu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230022, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Tao Wang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Xiu-Hong Meng
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230022, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230022, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China; The Second Affiliated Hospital of Anhui Medical University, Hefei 230032 China.
| |
Collapse
|
4
|
Zhao T, Huang C, Zhang Y, Zhu Y, Chen X, Wang T, Shao J, Meng X, Huang Y, Wang H, Wang H, Wang B, Xu D. Prenatal 1-Nitropyrene Exposure Causes Autism-Like Behavior Partially by Altering DNA Hydroxymethylation in Developing Brain. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306294. [PMID: 38757379 PMCID: PMC11267330 DOI: 10.1002/advs.202306294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/13/2024] [Indexed: 05/18/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder, characterized by social communication disability and stereotypic behavior. This study aims to investigate the impact of prenatal exposure to 1-nitropyrene (1-NP), a key component of motor vehicle exhaust, on autism-like behaviors in a mouse model. Three-chamber test finds that prenatal 1-NP exposure causes autism-like behaviors during the weaning period. Patch clamp shows that inhibitory synaptic transmission is reduced in medial prefrontal cortex of 1-NP-exposed weaning pups. Immunofluorescence finds that prenatal 1-NP exposure reduces the number of prefrontal glutamate decarboxylase 67 (GAD67) positive interneurons in fetuses and weaning pups. Moreover, prenatal 1-NP exposure retards tangential migration of GAD67-positive interneurons and downregulates interneuron migration-related genes, such as Nrg1, Erbb4, and Sema3F, in fetal forebrain. Mechanistically, prenatal 1-NP exposure reduces hydroxymethylation of interneuron migration-related genes through inhibiting ten-eleven translocation (TET) activity in fetal forebrain. Supplement with alpha-ketoglutarate (α-KG), a cofactor of TET enzyme, reverses 1-NP-induced hypohydroxymethylation at specific sites of interneuron migration-related genes. Moreover, α-KG supplement alleviates 1-NP-induced migration retardation of interneurons in fetal forebrain. Finally, maternal α-KG supplement improves 1-NP-induced autism-like behaviors in weaning offspring. In conclusion, prenatal 1-NP exposure causes autism-like behavior partially by altering DNA hydroxymethylation of interneuron migration-related genes in developing brain.
Collapse
Affiliation(s)
- Ting Zhao
- Department of ToxicologySchool of Public HealthAnhui Medical UniversityHefei230022China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| | - Cheng‐Qing Huang
- School of Food and BioengineeringHefei University of TechnologyHefei230009China
| | - Yi‐Hao Zhang
- Department of ToxicologySchool of Public HealthAnhui Medical UniversityHefei230022China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| | - Yan‐Yan Zhu
- Department of ToxicologySchool of Public HealthAnhui Medical UniversityHefei230022China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| | - Xiao‐Xi Chen
- Department of ToxicologySchool of Public HealthAnhui Medical UniversityHefei230022China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| | - Tao Wang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| | - Jing Shao
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| | - Xiu‐Hong Meng
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| | - Yichao Huang
- Department of ToxicologySchool of Public HealthAnhui Medical UniversityHefei230022China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| | - Hua Wang
- Department of ToxicologySchool of Public HealthAnhui Medical UniversityHefei230022China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| | - Hui‐Li Wang
- School of Food and BioengineeringHefei University of TechnologyHefei230009China
| | - Bo Wang
- Department of ToxicologySchool of Public HealthAnhui Medical UniversityHefei230022China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| | - De‐Xiang Xu
- Department of ToxicologySchool of Public HealthAnhui Medical UniversityHefei230022China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| |
Collapse
|
5
|
Wang B, Zhao T, Chen XX, Zhu YY, Lu X, Qian QH, Chen HR, Meng XH, Wang H, Wei W, Xu DX. Gestational 1-nitropyrene exposure causes anxiety-like behavior partially by altering hippocampal epigenetic reprogramming of synaptic plasticity in male adult offspring. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131427. [PMID: 37080034 DOI: 10.1016/j.jhazmat.2023.131427] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
1-Nitropyrene (1-NP), a typical nitro-polycyclic aromatic hydrocarbon, is a developmental toxicant. This study was to evaluate gestational 1-NP-induced anxiety-like behavior in male adult offspring. Pregnant mice were orally administered to 1-NP daily throughout pregnancy. Anxiety-like behaviors, as determined by Elevated Plus-Maze (EPM) and Open-Field Test (OFT), were showed in male adult offspring whose mothers were exposed to 1-NP. Gestational 1-NP exposure reduced dendritic arborization, dendritic length and dendritic spine density in ventral hippocampus of male adult offspring. Additional experiments showed that gephyrin, an inhibitory synaptic marker, was reduced in fetal forebrain and hippocampus in male adult offspring. Nrg1 and Erbb4, two gephyrin-related genes, were reduced in 1-NP-exposed fetuses. Accordingly, 5hmC contents in two CpG sites (32008909 and 32009239) of Nrg1 gene and three CpG sites (69107743, 69107866 and 69107899) of Erbb4 gene were decreased in 1-NP-exposed fetuses. Mechanistically, ten-eleven translocation (TET) activity and alpha-ketoglutarate (α-KG) content were decreased in 1-NP-exposed fetal forebrain. Supplementation with α-KG alleviated 1-NP-induced downregulation of gephyrin-related genes, prevented hippocampal synaptic damage, and improved anxiety-like behavior in male adult offspring. These results indicate that early-life 1-NP exposure causes anxiety-like behavior in male adulthood partially by altering hippocampal epigenetic reprogramming of synaptic plasticity.
Collapse
Affiliation(s)
- Bo Wang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China; Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Ting Zhao
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China; Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Xiao-Xi Chen
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China; Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Yan-Yan Zhu
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China; Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Xue Lu
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China; Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Qing-Hua Qian
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China; Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Hui-Ru Chen
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Xiu-Hong Meng
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Hua Wang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China; Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Wei Wei
- Key Laboratory of Anti-inflammatory & Immune Medicine, Education Ministry of China, Anhui Medical University, Hefei 230032, China.
| | - De-Xiang Xu
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China; Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
6
|
Ju L, Li C, Hua L, Xu H, Hu Y, Zhou X, Sun S, Zhang Q, Cheng H, Yang M, Cao J, Ding R. Uterine decidual stromal cell-derived exosomes mediate the indirect effects of 1-nitropyrene on trophoblast biological behaviors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114288. [PMID: 36371887 DOI: 10.1016/j.ecoenv.2022.114288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
1-nitropyrene (1-NP) is representative nitropolycyclic aromatic hydrocarbon pollutant widely present in exhaust particles of internal combustion engine, which is known for its carcinogenicity and mutagenicity. Previous studies have demonstrated that 1-NP has reproductive toxicity, but the specific mechanism is unknown. In this study, Human decidual stromal cells (HDSCs) were treated by 1-NP, exosomes were extracted from the conditioned medium of HDSCs, which were then used to treat human chorionic trophoblast cells (HTR8/SVneo) for 24 h. The findings showed that human decidual stromal cell-derived exosomes (HDSC-EXOs) can promote the proliferation, migration, invasion and epithelial-mesenchymal transition (EMT; Vimentin and N-cadherin) of HTR8/SVneo by about 64%, 17%, 23%, 81% and 13%. The process of regulating the biological behaviors of embryonic trophoblast cells by maternal decidual stromal cells during pregnancy was simulated. Further investigations showed that HDSC-EXOs treatment activated the Wnt/β-catenin signaling pathway in HTR8/SVneo. Co-treatment by dickkopf-1 (DKK-1) significantly suppressed the activation of Wnt/β-catenin signaling pathway in HTR8/SVneo, and inhibited the proliferation, migration, invasion and EMT (N-cadherin and E-cadherin) of HTR8/SVneo by about 60%, 22%, 42%, 25%, 55% and 21%. These findings indicated that 1-NP exposure could induce the secretion of HDSC-EXOs from HDSCs, which in turn activate the Wnt/β-catenin signaling pathway and enhance the proliferation, migration, invasion and EMT of HTR8/SVneo.
Collapse
Affiliation(s)
- Liangliang Ju
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Changlian Li
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; Heifei Center for Disease Control and Prevention, Hefei, Anhui, China.
| | - Lei Hua
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Hanbing Xu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Yingyu Hu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Xinyu Zhou
- The First Clinical College of Anhui Medical University, Hefei, Anhui 230032, China.
| | - Shu Sun
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Qi Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Han Cheng
- The First Clinical College of Anhui Medical University, Hefei, Anhui 230032, China.
| | - Mingwei Yang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Heifei, Anhui, China.
| | - Jiyu Cao
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; Department of Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Rui Ding
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| |
Collapse
|
7
|
Fang B, Bravo MA, Wang H, Sheng L, Wu W, Zhou Y, Xi X, Østbye T, Liu Q. Polycyclic aromatic hydrocarbons are associated with later puberty in girls: A longitudinal study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157497. [PMID: 35868395 DOI: 10.1016/j.scitotenv.2022.157497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
The objective of this study is to explore associations between PAH exposures and puberty timing in girls. Beginning in May 2014, 734 girls age 7.2-11.8 years in Chongqing, China, were enrolled in a prospective cohort study. They were followed up every 6 months from enrollment through June 2021, at which point participants were ages 13.6-18.3 years. Metabolite concentrations of four PAHs (1-hydroxypyrene [1-OHPyr], 2-hydroxynaphthalene [2-OHNap], 2-hydroxyfluorine [2-OHFlu], and 9-hydroxyphenanthrene [9-OHPhe]) were measured in urine samples at baseline. At each follow up visit, the Tanner's Sexual Maturity Rating scale was administered. Cox proportional hazards models were used to estimate associations between four urinary PAH metabolite concentrations and four markers of puberty: menarche, breast development, pubic hair development, and axillary hair development. Geometric mean concentrations of 1-OHPyr, 2-OHNap, 2-OHFlu and 9-OHPhe in urine were 0.47 μg/L, 3.31 μg/L, 1.49 μg/L, 3.75 μg/L, respectively. There were statistically significant associations between several urinary PAH metabolite concentrations and puberty outcomes. PAH metabolite concentrations were grouped as Low (<25th percentile, referent group), Moderate (25th-75th percentile) or High (>75th). Girls with moderate levels of 1-OHPyr were at higher risk of delayed pubic hair development (hazard ratio [HR]: 0.82, 95 % confidence interval [CI]: 0.68-0.99). Delayed breast development (HR: 0.77, 95 % CI: 0.60-0.99) and pubic hair development (HR: 0.76, 95 % CI: 0.60-0.95) were associated with high 2-OHNap. High c 2-OHFlu was associated with delayed pubic hair development (HR: 0.77, 95 % CI: 0.61-0.96). Delayed breast (HR: 0.79, 95 % CI: 0.64-0.97), pubic hair (HR: 0.79, 95 % CI: 0.65-0.96) and axillary hair development (HR: 0.80, 95 % CI: 0.65-0.99) was associated with moderate 9-OHPhe. In conclusion, PAH exposure may delay puberty onset in girls.
Collapse
Affiliation(s)
- Bo Fang
- School of Public Health, Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China
| | - Mercedes A Bravo
- Duke Global Health Institute, Duke University, Durham, NC, United States
| | - Hong Wang
- School of Public Health, Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China
| | - Lulu Sheng
- School of Public Health, Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China
| | - Wenyi Wu
- School of Public Health, Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China
| | - Yuanke Zhou
- School of Public Health, Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China
| | - Xuan Xi
- School of Public Health, Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China
| | - Truls Østbye
- Department of Family Medicine & Community Health and Duke Global Health Institute, Duke University, Durham, NC, United States
| | - Qin Liu
- School of Public Health, Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
8
|
Liu WB, Zhu HL, Xiong YW, Lv J, Huang YC, Wang H. Environmental cadmium exposure during gestation impairs fetal brain and cognitive function of adult offspring via reducing placenta-derived E2 level. CHEMOSPHERE 2022; 307:135668. [PMID: 35835241 DOI: 10.1016/j.chemosphere.2022.135668] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 06/21/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Early-life exposure to environmental cadmium (Cd) is known to cause developmental disorders, yet the effect and mechanism of gestational exposure to Cd on the offspring's cognitive function remains unclear. Placenta as a well-established target organ for Cd-impaired fetal development, its role in estrogen regulation and offspring cognitive function is unknown. Our in vivo experiments found that gestational Cd exposure impaired cognitive function in adult male offspring, accompanied with lowered 17β-estradiol (E2) level in the male fetal brain upon Cd exposure. Correspondingly, the expression of synapse-associated proteins including brain-derived neurotrophic factor (BDNF), post-synaptic density protein 95 (PSD95) and synapsin-1 were downregulated, which were reversed when supplemented with E2 hormone during gestation. Further observation showed placental estrogen synthesis inhibition and general control non-derepressible 2 (GCN2) signaling activation upon Cd exposure, whereas placental estrogen synthesis could be restored through inhibiting GCN2 activity. Based on ovariectomy (OVX) of pregnant mice, we confirmed that Cd exposure reduced E2 level in fetal brain via inhibiting placenta-derived estrogen synthesis. The aforementioned Cd-induced fetal brain injury and cognitive impairment in adult offspring were significantly alleviated when pregnant dams were supplemented with anti-stress agent N-Acetyl-l-cysteine. In summary, Cd disrupted placenta-derived estrogen synthesis via activating GCN2 signaling, and thereby caused cognitive impairment in adult offspring mice. Our findings suggest that placenta-derived estrogen may be an effect marker of environmental toxicants-evoked cognitive dysfunction in adult offspring and suggest that environmental toxicants may affect the fetal brain development via placenta-fetal-brain axis.
Collapse
Affiliation(s)
- Wei-Bo Liu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, China
| | - Hua-Long Zhu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, China
| | - Yong-Wei Xiong
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, China
| | - Jia Lv
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yi-Chao Huang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, China.
| |
Collapse
|
9
|
Yu X, Meng F, Huang J, Li W, Zhang J, Yin S, Zhang L, Wang S. 1-Nitropyrene exposure induces mitochondria dysfunction and impairs oocyte maturation in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113921. [PMID: 35908531 DOI: 10.1016/j.ecoenv.2022.113921] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Oocyte quality is essential for a successful pregnancy. 1-Nitropyrene (1-NP) is a widely distributed pollutant in the environment and is well-known for its mutagenicity and carcinogenicity. However, whether 1-NP has toxic effects on mammalian oocyte quality remains unknown. In the present study, we focused on the effect of 1-NP on oocyte maturation using mouse oocytes as an in vitro model. Our study showed that 1-NP exposure disrupted the meiotic spindle assembly and caused chromosome misalignment, further impaired first polar body extrusion, and significantly decreased the fertilization capability in mouse oocytes. Further investigation showed that the mitochondrial membrane potential (MMP) and ATP levels were decreased, and the expression of genes encoding components of the mitochondrial respiratory chain was inhibited in 1-NP exposed oocytes. Meanwhile, 1-NP exposure increased the levels of reactive oxygen species (ROS), inhibited the expression of genes encoding antioxidant enzymes, and increased the frequency of early apoptotic oocytes. Overall, our data suggest that 1-NP exposure disrupts mitochondrial function and intracellular redox balance, ultimately impairing oocyte maturation. These findings reveal the adverse effect of 1-NP exposure on oocyte quality.
Collapse
Affiliation(s)
- Xiaoxia Yu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, Shandong 250001, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Fei Meng
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, Shandong 250001, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Ju Huang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, Shandong 250001, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Weidong Li
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250012, China
| | - Jiaming Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, Shandong 250001, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Shen Yin
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Liangran Zhang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250012, China; Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, Shandong, China
| | - Shunxin Wang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, Shandong 250001, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China.
| |
Collapse
|
10
|
Zhang WW, Li XL, Liu YL, Liu JY, Zhu XX, Li J, Zhao LL, Zhang C, Wang H, Xu DX, Gao L. 1-Nitropyrene disrupts testosterone biogenesis via AKAP1 degradation promoted mitochondrial fission in mouse Leydig cell. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119484. [PMID: 35613681 DOI: 10.1016/j.envpol.2022.119484] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Previous study found 1-NP disrupted steroidogenesis in mouse testis, but the underlying mechanism remained elusive. The current work aims to explore the roles of ROS-promoted AKAP1 degradation and excessive mitochondrial fission in 1-NP-induced steroidogenesis disruption in MLTC-1 cells. Transmission electron microscope analysis found 1-NP promoted excessive mitochondrial fission. Further data showed 1-NP disrupted mitochondrial function. pDRP1 (Ser637), a negative regulator of mitochondrial fission, was reduced in 1-NP-treated MLTC-1 cells. Mechanistically, 1-NP caused degradation of AKAP1, an upstream regulator of pDRP1 (Ser637). MG132, a proteasome inhibitor, attenuated 1-NP-induced AKAP1 degradation and downstream pDRP1 (Ser637) reduction, thereby ameliorating 1-NP-downregulated steroidogenesis. Further analysis found that cellular ROS was elevated and NOX4, HO-1 and SOD2 were upregulated in 1-NP-exposed MLTC-1 cells. NAC, a well-known commercial antioxidant, alleviated 1-NP-induced excessive ROS and oxidative stress. 1-NP-induced AKAP1 degradation and subsequent downregulation of pDRP1 (Ser637) were prevented by NAC pretreatment. Moreover, NAC attenuated 1-NP-resulted T synthesis disturbance in MLTC-1 cells. The present study indicates that ROS mediated AKAP1 degradation and subsequent pDRP1 (Ser637) dependent mitochondrial fission is indispensable in 1-NP caused T synthesis disruption. This study provides a new insight into 1-NP-induced endocrine disruption, and offers theoretical basis in public health prevention.
Collapse
Affiliation(s)
- Wei-Wei Zhang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes & Department of Toxicology, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui Province, China
| | - Xiu-Liang Li
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes & Department of Toxicology, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui Province, China
| | - Yu-Lin Liu
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes & Department of Toxicology, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui Province, China
| | - Jia-Yu Liu
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes & Department of Toxicology, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui Province, China
| | - Xin-Xin Zhu
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes & Department of Toxicology, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui Province, China
| | - Jian Li
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes & Department of Toxicology, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui Province, China
| | - Ling-Li Zhao
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes & Department of Toxicology, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui Province, China
| | - Cheng Zhang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes & Department of Toxicology, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui Province, China
| | - Hua Wang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes & Department of Toxicology, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui Province, China
| | - De-Xiang Xu
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes & Department of Toxicology, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui Province, China
| | - Lan Gao
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes & Department of Toxicology, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui Province, China.
| |
Collapse
|
11
|
Lv JW, Song YP, Zhang ZC, Fan YJ, Xu FX, Gao L, Zhang XY, Zhang C, Wang H, Xu DX. Gestational arsenic exposure induces anxiety-like behaviors in adult offspring by reducing DNA hydroxymethylation in the developing brain. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112901. [PMID: 34673408 DOI: 10.1016/j.ecoenv.2021.112901] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/28/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Several studies found that reduction of 5-hydroxymethylcytosine (5hmC), a marker of DNA hydroxymethylation highly enriched in developing brain, is associated with anxiety-like behaviors. This study aimed to investigate whether gestational arsenic (As) exposure induces anxiety-like behaviors in adult offspring by reducing DNA hydroxymethylation in the developing brain. The dams drank ultrapure water containing NaAsO2 (15 mg/L) throughout pregnancy. Anxiety-like behaviors were evaluated and developing brain 5hmC was detected. Results showed that anxiety-like behaviors were observed in As-exposed adult offspring. In addition, 5hmC content was reduced in As-exposed fetal brain. Despite no difference on Tet1, Tet2 and Tet3 expression, TET activity was suppressed in As-exposed fetal brain. Mechanistically, alpha-ketoglutarate (α-KG), a cofactor for TET dioxygenases, was reduced and Idh2, a key enzymatic gene for mitochondrial α-KG synthesis, was downregulated in As-exposed fetal brain. Of interest, ascorbic acid, a cofactor for TET dioxygenases, reversed As-induced suppression of TET activity. Moreover, ascorbic acid attenuated As-induced reduction of 5hmC in fetal brain. In addition, ascorbic acid alleviated As-induced anxiety-like behaviors in adult offspring. Taken together, these results suggest that gestational As exposure induces anxiety-like behaviors in adult offspring, possibly at part, by inhibiting DNA hydroxymethylation in developing brain.
Collapse
Affiliation(s)
- Jin-Wei Lv
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Ya-Ping Song
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Zhi-Cheng Zhang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Yi-Jun Fan
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Fei-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Lan Gao
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Xiao-Yi Zhang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Cheng Zhang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Hua Wang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
12
|
Liang Y, Shuai Q, Wang Y, Jin S, Feng Z, Chen B, Liang T, Liu Z, Zhao H, Chen Z, Wang C, Xie J. 1-Nitropyrene exposure impairs embryo implantation through disrupting endometrial receptivity genes expression and producing excessive ROS. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112939. [PMID: 34717220 DOI: 10.1016/j.ecoenv.2021.112939] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Haze problem is an important factor threatening human health. PM2.5 is the main culprit haze. 1-Nitropyrene (1-NP) is the main nitrated polycyclic aromatic hydrocarbon, the toxic component of PM2.5 particles. The effects of 1-NP on various organs and reproductive health have been extensively and deeply studied, but the effects of 1-NP on embryo implantation and endometrial receptivity remain to be determined. The purpose of this study was to investigate the adverse effects of 1-NP on mouse embryo implantation and human endometrial receptivity. In early pregnancy, CD1 mice were given 2 mg/kg 1-NP by oral gavage, which resulted in a decreased embryo implantation number on day 5, inhibited leukemic inhibitory factor (LIF)/STAT3 pathway, decreased expression of estrogen receptor and progesterone receptor, and disrupted regulation of uterine cell proliferation. In addition, in a human in vitro implantation model, 1-NP was found to significantly inhibit the adhesion rate between trophoblast spheroids and endometrial epithelial cells, possibly by inhibiting the expression of receptivity molecules in Ishikawa cells. Promoting reactive oxygen species (ROS) production may be an additional mechanism by which it inhibits trophoblast spheroid adhesion. In this study, we used an in vivo mouse pregnancy model and an in vitro human embryo implantation model to demonstrate that 1-NP can impair endometrial receptivity and compromise embryo implantation.
Collapse
Affiliation(s)
- Yuxiang Liang
- Experimental Animal Center of Shanxi Medical University, Shanxi Key Laboratory of Human Disease and Animal Models, Taiyuan 030001, Shanxi, China; Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory for Cellular Physiology of Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Qizhi Shuai
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory for Cellular Physiology of Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Ying Wang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory for Cellular Physiology of Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Shanshan Jin
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory for Cellular Physiology of Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Zihan Feng
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory for Cellular Physiology of Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Binghong Chen
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory for Cellular Physiology of Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Ting Liang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory for Cellular Physiology of Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Zhizhen Liu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory for Cellular Physiology of Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Hong Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory for Cellular Physiology of Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Zhaoyang Chen
- Experimental Animal Center of Shanxi Medical University, Shanxi Key Laboratory of Human Disease and Animal Models, Taiyuan 030001, Shanxi, China
| | - Chunfang Wang
- Experimental Animal Center of Shanxi Medical University, Shanxi Key Laboratory of Human Disease and Animal Models, Taiyuan 030001, Shanxi, China
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory for Cellular Physiology of Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| |
Collapse
|
13
|
Zhang C, Wu XC, Li S, Dou LJ, Zhou L, Wang FH, Ma K, Huang D, Pan Y, Gu JJ, Cao JY, Wang H, Hao JH. Perinatal low-dose bisphenol AF exposure impairs synaptic plasticity and cognitive function of adult offspring in a sex-dependent manner. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147918. [PMID: 34134381 DOI: 10.1016/j.scitotenv.2021.147918] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/15/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol AF (BPAF), a kind of the ideal substitutes of Bisphenol A (BPA), has frequently been detected in environmental media and biological samples. Numerous studies have focused on the reproductive toxicity, cardiotoxicity and endocrine disrupting toxicity of BPAF. However, little evidence is available on neurodevelopmental toxicity of BPAF. Here, our study is to evaluate the effect of perinatal BPAF exposure (0, 0.34, 3.4 and 34 mg/kg body weight/day, correspond to Ctrl, low-, medium- and high-dose groups) on the cognitive function of adult mouse offspring. This study firstly found that perinatal BPAF exposure caused cognitive impairments of mouse offspring, in which male offspring was more sensitive than female offspring in low- and medium-dose BPAF groups. Furthermore, the dendritic arborization and complexity of hippocampal CA1 and DG neurons in male offspring were impaired in all BPAF groups, and these effects were only found in high-dose BPAF group for female offspring. The damage of BPAF to dendritic spines, and the structural basis of learning and memory, was found in male offspring but not in females. Correspondingly, perinatal BPAF exposure significantly downregulated the expressions of hippocampal PSD-95 and Synapsin-1 proteins, and male offspring was more vulnerable than female offspring. Meanwhile, we explored the alteration of hippocampal estrogen receptors (ERs) to explain the sex specific impairment of cognitive function in low- and medium-dose BPAF groups. The results showed that perinatal BPAF exposure significantly decreased the expression of ERα in male offspring in a dose-dependent manner, but not in female offspring. In addition, we found that perinatal BPAF exposure can disordered the balance of oxidation and antioxidation in hippocampus of male offspring. In summary, perinatal low-dose bisphenol AF exposure impairs synaptic plasticity and cognitive function of adult offspring in a sex-dependent manner. The present results provide a pierce of potential mechanism of BPAF-caused neurodevelopmental toxicity.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Xiao-Chang Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Sha Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Lian-Jie Dou
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Li Zhou
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Feng-Hui Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Kai Ma
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Dan Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Ying Pan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Ji-Jun Gu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Ji-Yu Cao
- Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Jia-Hu Hao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
14
|
Fu L, Zhao H, Xiang Y, Xiang HX, Hu B, Tan ZX, Lu X, Gao L, Wang B, Wang H, Zhang C, Xu DX. Reactive oxygen species-evoked endoplasmic reticulum stress mediates 1-nitropyrene-induced epithelial-mesenchymal transition and pulmonary fibrosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117134. [PMID: 33866216 DOI: 10.1016/j.envpol.2021.117134] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
1-Nitropyrene (1-NP) is one component of atmospheric fine particles. Previous report revealed that acute 1-NP exposure induced respiratory inflammation. This study aimed to investigate whether chronic 1-NP exposure induces pulmonary fibrosis. Male C57BL6/J mice were intratracheally instilled to 1-NP (20 μg/mouse/week) for 6 weeks. Diffuse interstitial inflammation, a-smooth muscle actin (a-SMA)-positive cells, a marker of epithelial-mesenchymal transition (EMT), and an extensive collagen deposition, measured by Masson staining, were observed in 1-NP-exposed mouse lungs. Pulmonary function showed that lung dynamic compliance (Cydn-min) was reduced in 1-NP-exposed mice. Conversely, inspiratory resistance (Ri) and expiratory resistance (Re) were elevated in 1-NP-exposed mice. Mechanistically, cell migration and invasion were accelerated in 1-NP-exposed pulmonary epithelial cells. In addition, E-cadherin, an epithelial marker, was downregulated, and vimentin, a-SMA and N-cadherin, three mesenchymal markers, were upregulated in 1-NP-exposed pulmonary epithelial cells. Although TGF-β wasn't altered, phosphorylated Smad2/3 were enhanced in 1-NP-exposed pulmonary epithelial cells. Moreover, reactive oxygen species (ROS) were increased and endoplasmic reticulum (ER) stress was activated in 1-NP-exposed pulmonary epithelial cells. N-Acetylcysteine (NAC), an antioxidant, attenuated 1-NP-evoked excess ROS, ER stress and EMT in pulmonary epithelial cells. Similarly, pretreatment with NAC alleviated 1-NP-caused pulmonary EMT and lung fibrosis in mice. These results demonstrate that ROS-evoked ER stress contributes, at least partially, to 1-NP-induced EMT and pulmonary fibrosis.
Collapse
Affiliation(s)
- Lin Fu
- Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Hui Zhao
- Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Ying Xiang
- Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Hui-Xian Xiang
- Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Biao Hu
- Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Zhu-Xia Tan
- Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Xue Lu
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Lan Gao
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Bo Wang
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Hua Wang
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Cheng Zhang
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
15
|
|
16
|
Toriba A, Hayakawa K. What is necessary for next-generation atmospheric environmental standards? Recent research trends for PM 2.5 -bound polycyclic aromatic hydrocarbons and their derivatives. Biomed Chromatogr 2020; 35:e5038. [PMID: 33242350 DOI: 10.1002/bmc.5038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 11/09/2022]
Abstract
The air pollution associated with PM2.5 kills 7 million people every year in the world, especially threatening the health of children in developing countries. However, the current air quality standards depend mainly on particle size. PM2.5 contains many carcinogenic/mutagenic polycyclic aromatic hydrocarbons (PAHs) and their derivatives such as nitropolycyclic aromatic hydrocarbons and oxygenated PAHs. Among them, environmental standards and guidelines have been set for benzo[a]pyrene by few countries and international organizations. Recent research reports showed that these pollutants are linked to diseases other than lungs, and new methods have been developed for determining trace levels of not only PAHs but also their derivatives. It is time to think about the next-generation environmental standards. This article aims to (a) describe recent studies on the health effects of PAHs and their derivatives other than cancer, (b) describe new analytical methods for PAH derivatives, and (c) discuss the targets for the next-generation standards.
Collapse
Affiliation(s)
- Akira Toriba
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Kazuichi Hayakawa
- Institute of Nature and Environmental Technology, Kanazawa University, Nomi, Japan
| |
Collapse
|
17
|
Jia Q, Zhang Y, Liu S, Li Z, Zhou F, Shao L, Feng C, Fan G. Analysis of search strategies for evaluating low-dose heavy metal mixture induced cognitive deficits in rats: An early sensitive toxicological approach. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110900. [PMID: 32593095 DOI: 10.1016/j.ecoenv.2020.110900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
Heavy metals such as lead (Pb), cadmium (Cd), and mercury (Hg) are representative neurotoxicological contaminants that can evoke cognitive dysfunctions. Low levels of these contaminants can be detected simultaneously in the human blood. In our previous study, behavioral performances were markedly impaired by exposure to these heavy metal mixtures (MM) at low levels. However, the aspects of cognitive functions involved are not well understood. Here, we further analyzed search strategies using a new algorithm named Morris water maze-unbiased strategy classification (MUST-C). Rat pups were co-exposed to low doses of Pb, Cd, and Hg during the embryonic and lactation stage. MM exposure at low doses, similar to those found in the general population, impaired search strategies even though their latency and path length were not affected in the Morris water maze task. MM-exposed rats preferred to use more directionless repetition strategies and less target orientation strategies than did vehicle-exposed animals in a dose-dependent manner. In addition, thionine staining and electron microscopy further revealed that MM exposure induced dose-dependent search strategy related place cell injures in the hippocampal CA1 and CA3 regions. These results demonstrate that the use of suboptimal search strategies underlies the early cognitive deficits in rats exposed to low doses of MM. The current study determined that search strategy analysis might be a novel sensitive assessment method for evaluating in the neurobehavioral toxicity.
Collapse
Affiliation(s)
- Qiyue Jia
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, PR China
| | - Yuanyuan Zhang
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, PR China
| | - Sisi Liu
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, PR China
| | - Zongguang Li
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, PR China
| | - Fankun Zhou
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, PR China
| | - Lijian Shao
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, PR China
| | - Chang Feng
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, PR China
| | - Guangqin Fan
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, PR China.
| |
Collapse
|
18
|
Li J, Gao L, Zhu BB, Lin ZJ, Chen J, Lu X, Wang H, Zhang C, Chen YH, Xu DX. Long-term 1-nitropyrene exposure induces endoplasmic reticulum stress and inhibits steroidogenesis in mice testes. CHEMOSPHERE 2020; 251:126336. [PMID: 32145574 DOI: 10.1016/j.chemosphere.2020.126336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/09/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
1-Nitropyrene (1-NP) is a representative nitro-polycyclic aromatic hydrocarbon from diesel exhaust. Recently, we found that maternal 1-NP exposure caused fetal growth retardation and disturbed cognitive development in adolescent female offspring. To investigate long-term 1-NP exposure on spermatogenesis and steroidogenesis, male mice were exposed to 1-NP (1.0 mg/kg/day) by gavage for 70 days. There was no significant difference on relative testicular weight, number of testicular apoptotic cells and epididymal sperm count between 1-NP-exposed mice and controls. Although long-term 1-NP exposure did not influence number of Leydig cells, steroidogenic genes and enzymes, including STAR, P450scc, P45017α and 17β-HD, were downregulated in 1-NP-expoed mouse testes. Correspondingly, serum and testicular testosterone (T) levels were reduced in 1-NP-exposed mice. Additional experiment showed that testicular GRP78 mRNA and protein were upregulated by 1-NP. Testicular phospho-IRE1α and sliced xbp-1 mRNA, a downstream molecule of IRE1α, were elevated in 1-NP-exposed mice. Testicular phospho-PERK and phospho-eIF2α, a downstream molecule of PERK pathway, were increased in 1-NP-exposed mice. Testicular NOX4, a subunit of NAPDH oxidase, and HO-1, MDA, two oxidative stress markers, were increased in 1-NP-exposed mice. Testicular GSH and GSH/GSSG were decreased in 1-NP-exposed mice. These results suggest that long-term 1-NP exposure induces reactive oxygen species-evoked ER stress and disrupts steroidogenesis in mouse testes.
Collapse
Affiliation(s)
- Jian Li
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Lan Gao
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Bin-Bin Zhu
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Zhi-Jing Lin
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Jing Chen
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Xue Lu
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Hua Wang
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Cheng Zhang
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Yuan-Hua Chen
- Department of Histology and Embryology, Anhui Medical University, Hefei, 230032, China
| | - De-Xiang Xu
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
19
|
Sun C, Qu L, Wu L, Wu X, Sun R, Li Y. Advances in analysis of nitrated polycyclic aromatic hydrocarbons in various matrices. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115878] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
20
|
Wang B, Xu S, Lu X, Ma L, Gao L, Zhang SY, Li R, Fu L, Wang H, Sun GP, Xu DX. Reactive oxygen species-mediated cellular genotoxic stress is involved in 1-nitropyrene-induced trophoblast cycle arrest and fetal growth restriction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:113984. [PMID: 32041019 DOI: 10.1016/j.envpol.2020.113984] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/03/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
1-nitropyrene (1-NP) is a key component of diesel exhaust-sourced fine particulate matter (PM2.5). Our recent study demonstrated that gestational 1-NP exposure caused placental proliferation inhibition and fetal intrauterine growth restriction (IUGR). This study aimed to investigate the role of genotoxic stress on 1-NP-induced placental proliferation inhibition and fetal IUGR. Human trophoblasts were exposed to 1-NP (10 μM). Growth index was reduced and PCNA was downregulated in 1-NP-exposed placental trophoblasts. More than 90% of 1-NP-exposed trophoblasts were arrested in either G0/G1 or G2/M phases. CDK1 and cyclin B, two G2/M cycle-related proteins, and CDK2, a G0/G1 cycle-related protein, were reduced in 1-NP-exposed trophoblasts. Phosphorylated Rb, a downstream molecule of CDK2, was inhibited in 1-NP-exposed trophoblasts. Moreover, DNA double-strand break was observed and γ-H2AX, another indicator of DNA double-strand break, was upregulated in 1-NP-exposed trophoblasts. Phosphorylated ATM, a key molecule of genotoxic stress, and its downstream molecule Chk2 were elevated. By contrast, Cdc25A, a downstream target of Chk2, was reduced in 1-NP-exposed trophoblasts. Phenyl-N-t-butylnitrone (PBN), a free radical scavenger, inhibited 1-NP-induced genotoxic stress and trophoblast cycle arrest. Animal experiment showed that N-acetylcysteine (NAC), an antioxidant, rescued 1-NP-induced placental proliferation inhibition and fetal IUGR in mice. These results provide evidence that reactive oxygen species (ROS)-mediated cellular genotoxic stress partially contributes to 1-NP-induced placental proliferation inhibition and fetal IUGR.
Collapse
Affiliation(s)
- Bo Wang
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Shen Xu
- First Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Xue Lu
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Li Ma
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Lan Gao
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Shan-Yu Zhang
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Ran Li
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Lin Fu
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Hua Wang
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Guo-Ping Sun
- First Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - De-Xiang Xu
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
21
|
Zhang H, Lu T, Feng Y, Sun X, Yang X, Zhou K, Sun R, Wang Y, Wang X, Chen M. A metabolomic study on the gender-dependent effects of maternal exposure to fenvalerate on neurodevelopment in offspring mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:136130. [PMID: 31869608 DOI: 10.1016/j.scitotenv.2019.136130] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The general population is widely exposed to fenvalerate. However, the effects of maternal exposure to fenvalerate on neurodevelopment in offspring and the underlying metabolic mechanism are largely unknown. METHODS Pregnant mice were exposed to fenvalerate for 11 consecutive days. The forced swimming test (FST) was performed in 35 day-old offspring to investigate the effects of fenvalerate on neurobehavioral responses. Blood serum free T4 and free T3 concentrations were measured using commercial ELISA. Blood and thyroid samples were used for metabolomic analyses with UPLC Q-Exactive. The expression levels of neurotransmitter metaolite receptors were determined in the frontal cortex of offspring using real-time PCR. RESULTS The immobility time, free T4 and free T3, and expression levels of Htr1a and Htr2a were statistically changed in offspring male mice. Metabolomic analysis revealed that the pentose phosphate pathway, starch and sucrose metabolism, glutamic acid metabolism were the key changed pathways in the blood, and thiamine metabolism was the key changed pathway in the thyroid. CONCLUSION Prenatal exposure to fenvalerate affected neurodevelopment in male offspring mice both via the changed abundances of metabolites involved in glycolysis related metabolism and medium-chain fatty acid metabolism, and the changes in 5-HT receptor expression.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Child Health Care, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China.
| | - Ting Lu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yaling Feng
- Department of Obstetrics and Gynecology, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Xian Sun
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xu Yang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Kun Zhou
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yubang Wang
- Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
22
|
Lu X, Tan ZX, Wang B, Li J, Hu B, Gao L, Zhao H, Wang H, Chen YH, Xu DX. Maternal 1-nitropyrene exposure during pregnancy increases susceptibility of allergic asthma in adolescent offspring. CHEMOSPHERE 2020; 243:125356. [PMID: 31743867 DOI: 10.1016/j.chemosphere.2019.125356] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
1-nitropyrene (1-NP) is widespread in the environment, as a typical nitrated polycyclic aromatic hydrocarbon. The purpose of this research was to explore the effects of gestational 1-NP exposure on susceptibility of allergic asthma in offspring. Maternal mice were exposed to 1-NP (100 μg kg-1) by gavage throughout the whole pregnancy. Pups were sensitized by injecting with ovalbumin (OVA) on postnatal day (PND)23, 29, and 36, respectively. At 7 days following the last injection, sensitized mice were exposed to aerosol OVA. As expected, there were quite a few inflammatory cells in the lungs of OVA-sensitized pups, accompanied by bronchial wall thickening and hyperemia. Elevated goblet cells and overproduced mucus were observed in the airways of OVA-sensitized pups. Interestingly, gestational 1-NP exposure aggravated infiltration of inflammatory cells, mainly eosinophils, in OVA-sensitized offspring. Although it had little effect on airway smooth muscle layer thickening and basement membrane fibrosis, gestational 1-NP exposure aggravated goblet cell hyperplasia, Muc5ac mRNA upregulation, and mucus secretion in the airways of OVA-sensitized and challenged offspring. Mechanistically, gestational 1-NP exposure aggravated elevation of pulmonary IL-5 in OVA-sensitized pups. These findings suggest that gestational 1-NP exposure increases susceptibility of allergic asthma in offspring.
Collapse
Affiliation(s)
- Xue Lu
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Zhu-Xia Tan
- Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Bo Wang
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Jian Li
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Biao Hu
- Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Lan Gao
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Hui Zhao
- Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Hua Wang
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Yuan-Hua Chen
- Department of Histology and Embryology, Anhui Medical University, Hefei, 230032, China.
| | - De-Xiang Xu
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
23
|
Hu B, Tong B, Xiang Y, Li SR, Tan ZX, Xiang HX, Fu L, Wang H, Zhao H, Xu DX. Acute 1-NP exposure induces inflammatory responses through activating various inflammatory signaling pathways in mouse lungs and human A549 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:109977. [PMID: 31759747 DOI: 10.1016/j.ecoenv.2019.109977] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
1-Nitropyrene (1-NP), a key component of fine particulate matter (PM2.5), is a representative of nitrated polycyclic aromatic hydrocarbons (NPAHs). The aim of this research is to investigate proinflammatory effects of acute 1-NP exposure in mouse lungs and human A549 cells. All mice except controls were intratracheally instilled with 1-NP (20 μg/mouse). A549 cell, a human lung cancer cell line, was cultured with or without 1-NP (5 μM). Acute 1-NP exposure elevated lung weight and caused infiltration of inflammatory cells, especially neutrophils in mouse lungs. Although it had little effect on serum TNF-α and KC, acute 1-NP exposure elevated the levels of TNF-α and KC in BALF. Correspondingly, acute 1-NP exposure upregulated pulmonary Il-1β, Il-6, Tnf-α and Kc. Mechanistically, acute 1-NP exposure activated nuclear factor kappa B (NF-κB) in mouse lungs and human A549 cells. Additionally, acute 1-NP exposure induced Akt phosphorylation in mouse lungs and human A549 cells. Moreover, acute 1-NP exposure induced phosphorylation of pulmonary JNK and ERK1/2, molecules of the mitogen-activated protein kinase (MAPK) pathway. This study provides evidence that acute 1-NP exposure induces inflammatory responses through activating various inflammatory signaling pathways in mouse lungs and human A549 cells.
Collapse
Affiliation(s)
- Biao Hu
- Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China; Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Bin Tong
- Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Ying Xiang
- Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China; Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Se-Ruo Li
- Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Zhu-Xia Tan
- Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Hui-Xian Xiang
- Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Lin Fu
- Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China; Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Hua Wang
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Hui Zhao
- Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China.
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|