1
|
Vancsik A, Szabó L, Bauer L, Pirger Z, Karlik M, Kondor AC, Jakab G, Szalai Z. Impact of land use-induced soil heterogeneity on the adsorption of fluoroquinolone antibiotics, tested on organic matter pools. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134704. [PMID: 38810576 DOI: 10.1016/j.jhazmat.2024.134704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Abstract
The effects on the adsorption of fluoroquinolone antibiotics of long-term soil heterogeneity induced by land-use were investigated. Three different land use areas with their two organic matter (OM) pools were tested for the adsorption of three antibiotics widely detected in the environment (ciprofloxacin, norfloxacin, ofloxacin). The soils were separated into two size fractions, > 63 µm fraction and < 63 µm fractions for the fast and slow OM pools, respectively. Any effect of land use on adsorption was only observed in the slow pool in the increasing order: arable land, grassland, and forest. The composition of the soil organic matter (SOM) did influence adsorption in the slow pool, but not in the bulk soilsThis was, because: 1) the ratio of the slow pool was low, as in forest, 2) the ratio of the slow pool was high but its adsorption capacity was low due to its SOM composition, as in arable land and grassland. Soils containing a large slow SOM pool fraction with aliphatic dominance were found to be more likely to adsorb micropollutants. It is our contention that the release of contaminated water, sludge, manure or compost into the environment should only be undertaken after taking this into consideration.
Collapse
Affiliation(s)
- Anna Vancsik
- Geographical Institute, HUN-REN Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, Budapest H-1112, Hungary; Department of Environmental and Landscape Geography, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary; HUN-REN CSFK, MTA Centre of Excellence, Konkoly Thege Miklós út 15-17, Budapest H-1121, Hungary.
| | - Lili Szabó
- Geographical Institute, HUN-REN Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, Budapest H-1112, Hungary; Department of Environmental and Landscape Geography, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary; HUN-REN CSFK, MTA Centre of Excellence, Konkoly Thege Miklós út 15-17, Budapest H-1121, Hungary
| | - László Bauer
- Geographical Institute, HUN-REN Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, Budapest H-1112, Hungary; Department of Environmental and Landscape Geography, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary; HUN-REN CSFK, MTA Centre of Excellence, Konkoly Thege Miklós út 15-17, Budapest H-1121, Hungary
| | - Zsolt Pirger
- Ecophysiological and Environmental Toxicological Research Group, Balaton Limnological Research Institute, HUN-REN, Tihany, Hungary
| | - Máté Karlik
- Institute for Geological and Geochemical Research, HUN-REN Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, Budapest H-1112, Hungary; HUN-REN CSFK, MTA Centre of Excellence, Konkoly Thege Miklós út 15-17, Budapest H-1121, Hungary
| | - Attila Csaba Kondor
- Geographical Institute, HUN-REN Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, Budapest H-1112, Hungary; HUN-REN CSFK, MTA Centre of Excellence, Konkoly Thege Miklós út 15-17, Budapest H-1121, Hungary
| | - Gergely Jakab
- Geographical Institute, HUN-REN Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, Budapest H-1112, Hungary; Department of Environmental and Landscape Geography, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary; HUN-REN CSFK, MTA Centre of Excellence, Konkoly Thege Miklós út 15-17, Budapest H-1121, Hungary
| | - Zoltán Szalai
- Geographical Institute, HUN-REN Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, Budapest H-1112, Hungary; Department of Environmental and Landscape Geography, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary; HUN-REN CSFK, MTA Centre of Excellence, Konkoly Thege Miklós út 15-17, Budapest H-1121, Hungary
| |
Collapse
|
2
|
Lan G, Li S. Measurement and analysis of the distortion of factor prices in China. PLoS One 2024; 19:e0302825. [PMID: 39042668 PMCID: PMC11265662 DOI: 10.1371/journal.pone.0302825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 04/10/2024] [Indexed: 07/25/2024] Open
Abstract
This study uses the extended C-D production function method to measure the total distortion of factor prices and the distortion of capital, labor and land factor prices in China's provinces and cities. The results indicate that between 2000 and 2019, due to factors such as the dual economic structure between urban and rural areas, human intervention in the capital market, and lagging land marketization reform, both capital and land factor prices showed negative distortions, except for positive distortions in labor factor prices. The degree of this positive distortion began to gradually weaken, and even showed a negative distortion trend in some regions.
Collapse
Affiliation(s)
| | - Sumin Li
- School of Finance and Economics, Hunan University of Finance and Economics, Changsha, China
| |
Collapse
|
3
|
Effects of Sewage Sludge Application on Plant Growth and Soil Characteristics at a Pinus sylvestris var. mongolica Plantation in Horqin Sandy Land. FORESTS 2022. [DOI: 10.3390/f13070984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The application of domestic sewage sludge (SS) may affect plant growth and soil quality through altering nutrient availability. However, the effect of SS application on the plant–soil system in sandy soils is poorly understood. In this study, we established SS application treatment plots (SL, 25 t ha−1) and control treatment plots without sewage sludge application (CK, 0 t ha−1). SS was applied to the soil surface of a Mongolian pine (Pinus sylvestris var. mongolica) plantation in Horqin Sandy Land, Inner Mongolia, China, to assess its potential effects on plants and soil. We analyzed tree growth performances (tree height, basal diameter, and diameter at breast height), understory traits (species diversity, coverage, and aboveground biomass), soil physical and chemical parameters (nutrient content, dissolved organic carbon, soil water content, bulk density, pH), and proxies of ecosystem services (soil organic carbon and total nitrogen stocks). The results showed that SS addition not only significantly increased soil nutrient contents, but also markedly enhanced aboveground productivity and plant coverage. Specifically, SS addition decreased soil bulk density and increased concentrations of soil organic carbon, total nitrogen, and total phosphorus and mineral nitrogen, and it also increased soil carbon and nitrogen stocks. Furthermore, the addition of SS significantly increased soil dissolved organic carbon contents and enhanced the fluorescence intensities of dissolved organic carbon components (humic acid-like and UV fulvic acid-like) in the topsoil (0–5 cm). This study provides evidence that SS is an acceptable, and possibly preferred organic fertilizer for improving the soil quality and tree–grass growth of Mongolian pine plantations.
Collapse
|
4
|
Review of Sewage Sludge as a Soil Amendment in Relation to Current International Guidelines: A Heavy Metal Perspective. SUSTAINABILITY 2021. [DOI: 10.3390/su13042317] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Overexploitation of resources makes the reutilization of waste a focal topic of modern society, and the question of the kind of wastes that can be used is continuously raised. Sewage sludge (SS) is derived from the wastewater treatment plants, considered important underused biomass, and can be used as a biofertilizer when properly stabilized due to the high content of inorganic matter, nitrate, and phosphorus. However, a wide range of pollutants can be present in these biosolids, limiting or prohibiting their use as biofertilizer, depending on the type and origin of industrial waste and household products. Long-term applications of these biosolids could substantially increase the concentration of contaminants, causing detrimental effects on the environment and induce hyperaccumulation or phytotoxicity in the produced crops. In this work, some critical parameters for soils and SS agronomic use, such as organic matter, nitrogen, phosphorous, and potassium (NPK), and heavy metals concentration have been reviewed. Several cases of food crop production and the accumulation of heavy metals after SS application are also discussed. SS production, usage, and legislation in EU are assessed to determine the possibility of sustainable management of this bioresource. Additionally, the World Health Organization (WHO) and Food and Agriculture Organization (FAO) guidelines are addressed. The opportunity to produce bioenergy crops, employing sewage sludge to enhance degraded land, is also considered, due to energy security. Although there are numerous advantages of sewage sludge, proper screening for heavy metals in all the variants (biosolids, soil, food products) is a must. SS application requires appropriate strict guidelines with appropriate regulatory oversight to control contamination of agricultural soils.
Collapse
|
5
|
You R, Margenat A, Lanzas CS, Cañameras N, Carazo N, Navarro-Martín L, Matamoros V, Bayona JM, Díez S. Dose effect of Zn and Cu in sludge-amended soils on vegetable uptake of trace elements, antibiotics, and antibiotic resistance genes: Human health implications. ENVIRONMENTAL RESEARCH 2020; 191:109879. [PMID: 32841899 DOI: 10.1016/j.envres.2020.109879] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
The application of sewage sludge to agricultural fields reduces the need for mineral fertilizers by increasing soil organic matter, but may also increase soil pollution. Previous studies indicate that zinc and copper, as the most abundant elements in sewage sludge, affect plant uptake of other contaminants. This paper aims to investigate and compare the effect of increasing amounts of Zn and Cu in sludge-amended soils on the accumulation of trace elements (TEs), antibiotics (ABs), and antibiotic resistance genes (ARGs) in lettuce and radish. The vegetables were grown under controlled conditions, and the influence on plant physiology and human health were also evaluated. The results show that the addition of Zn and Cu significantly increased the concentration of TEs in the edible tissue of both vegetables. According to the hazard quotient (HQ) of the TEs, the human health risk increased 2 to 3 times and was 3-4 times greater in lettuce than in radish. In contrast to the TEs, the occurrence of ABs and most of the ARGs was higher in radish roots than lettuce leaves. ABs were not detected in lettuce leaves, and the amount of all ARGs except blaTEM was 10 times lower than in radish roots. On the other hand, the addition of Zn and Cu had no significant effect on the occurrence of ABs and ARGs in the edible part of the vegetables, and no damage was found to plant productivity or physiology. The results show that the consumption of lettuce and radish grown in sewage-sludge-amended soils under tested doses of Cu and Zn does not pose an adverse human health effect, as the total HQ value was always less than 1, and the presence of ABs and ARGs was not found to have any potential impact. Nevertheless, further studies are needed to estimate the long-term effect on human health of crops grown under frequent application of biosolids in arable soil.
Collapse
Affiliation(s)
- Rui You
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDÆA-CSIC, E-08034, Barcelona, Spain
| | - Anna Margenat
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDÆA-CSIC, E-08034, Barcelona, Spain
| | - Claudia Sanz Lanzas
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDÆA-CSIC, E-08034, Barcelona, Spain
| | - Núria Cañameras
- Department of Agri-Food Engineering and Biotechnology DEAB-UPC, Esteve Terrades 8, Building 4, E-08860, Castelldefels, Spain
| | - Núria Carazo
- Department of Agri-Food Engineering and Biotechnology DEAB-UPC, Esteve Terrades 8, Building 4, E-08860, Castelldefels, Spain
| | - Laia Navarro-Martín
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDÆA-CSIC, E-08034, Barcelona, Spain
| | - Víctor Matamoros
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDÆA-CSIC, E-08034, Barcelona, Spain
| | - Josep M Bayona
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDÆA-CSIC, E-08034, Barcelona, Spain
| | - Sergi Díez
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDÆA-CSIC, E-08034, Barcelona, Spain.
| |
Collapse
|
6
|
Ali W, Mao K, Zhang H, Junaid M, Xu N, Rasool A, Feng X, Yang Z. Comprehensive review of the basic chemical behaviours, sources, processes, and endpoints of trace element contamination in paddy soil-rice systems in rice-growing countries. JOURNAL OF HAZARDOUS MATERIALS 2020; 397:122720. [PMID: 32387828 DOI: 10.1016/j.jhazmat.2020.122720] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/27/2020] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
Rice is the leading staple food for more than half of the world's population, and approximately 160 million hectares of agricultural area worldwide are under rice cultivation. Therefore, it is essential to fulfil the global demand for rice while maintaining food safety. Rice acts as a sink for potentially toxic metals such as arsenic (As), selenium (Se), cadmium (Cd), lead (Pb), zinc (Zn), manganese (Mn), nickel (Ni), and chromium (Cr) in paddy soil-rice systems due to the natural and anthropogenic sources of these metals that have developed in the last few decades. This review summarizes the sources and basic chemical behaviours of these trace elements in the soil system and their contamination status, uptake, translocation, and accumulation mechanisms in paddy soil-rice systems in major rice-growing countries. Several human health threats are significantly associated with these toxic and potentially toxic metals not only due to their presence in the environment (i.e., the soil, water, and air) but also due to the uptake and translocation of these metals via different transporters. Elevated concentrations of these metals are toxic to plants, animals, and even humans that consume them regularly, and the uniform deposition of metals causes a severe risk of bioaccumulation. Furthermore, the contamination of rice in the global rice trade makes this a critical problem of worldwide concern. Therefore, the global consumption of contaminated rice causes severe human health effects that require rapid action. Finally, this review also summarizes the available management/remediation measures and future research directions for addressing this critical issue.
Collapse
Affiliation(s)
- Waqar Ali
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Muhammad Junaid
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Nan Xu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Atta Rasool
- Department of Environmental Sciences, COMSATS University, Islamabad Vehari Campus, Vehari 61100, Pakistan
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Zhugen Yang
- Cranfield Water Science Institute, Cranfield University, Cranfield MK43 0AL, United Kingdom
| |
Collapse
|
7
|
Eid EM, Alamri SA, Shaltout KH, Galal TM, Ahmed MT, Brima EI, Sewelam N. A sustainable food security approach: Controlled land application of sewage sludge recirculates nutrients to agricultural soils and enhances crop productivity. Food Energy Secur 2020. [DOI: 10.1002/fes3.197] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Ebrahem M. Eid
- Biology Department College of Science King Khalid University Abha Saudi Arabia
| | - Saad A.M. Alamri
- Biology Department College of Science King Khalid University Abha Saudi Arabia
- Prince Sultan Bin Abdul‐Aziz Center for Environment and Tourism Research and Studies King Khalid University Abha Saudi Arabia
| | | | - Tarek M. Galal
- Botany and Microbiology Department Faculty of Science Helwan University Cairo Egypt
| | - Mohamed T. Ahmed
- Biology Department College of Science King Khalid University Abha Saudi Arabia
| | - Eid I. Brima
- Chemistry Department College of Science King Khalid University Abha Saudi Arabia
| | - Nasser Sewelam
- Botany Department Faculty of Science Tanta University Tanta Egypt
| |
Collapse
|