1
|
Mu C, Li Q, Niu Y, Hu T, Li Y, Wang T, Yu X, Lv Y, Tang H, Jiang J, Xu H, Zheng Y, Han W. Chronic diesel exhaust exposure induced pulmonary vascular remodeling a potential trajectory for traffic related pulmonary hypertension. Respir Res 2024; 25:348. [PMID: 39342206 PMCID: PMC11439202 DOI: 10.1186/s12931-024-02976-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND As one of the most common traffic-related pollutants, diesel exhaust (DE) confers high risk for cardiovascular and respiratory diseases. However, its impact on pulmonary vessels is still unclear. METHODS To explore the effects of DE exposure on pulmonary vascular remodeling, our study analyzed the number and volume of small pulmonary vessels in the diesel engine testers (the DET group) from Luoyang Diesel Engine Factory and the controls (the non-DET group) from the local water company, using spirometry and carbon content in airway macrophage (CCAM) in sputum. And then we constructed a rat model of chronic DE exposure, in which 12 rats were divided into the DE group (6 rats with 16-week DE exposure) and the control group (6 rats with 16-week clean air exposure). During right heart catheterization, right ventricular systolic pressure (RVSP) was assessed by manometry. Macrophage migration inhibitory factor (MIF) in lung tissues and bronchoalveolar lavage fluid (BALF) were measured by qRT-PCR and ELISA, respectively. Histopathological analysis for cardiovascular remodeling was also performed. RESULTS In DET cohort, the number and volume of small pulmonary vessels in CT were positively correlated with CCAM in sputum (P<0.05). Rat model revealed that chronic DE-exposed rats had elevated RVSP, along with increased wall thickness of pulmonary small vessels and right the ventricle. What's more, the MIF levels in BALF and lung tissues were higher in DE-exposed rats than the controls. CONCLUSION Apart from airway remodeling, DE also induces pulmonary vascular remodeling, which will lead to cardiopulmonary dysfunction.
Collapse
Affiliation(s)
- Chaohui Mu
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, 266071, China
| | - Qinghai Li
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, 266071, China
- Qingdao Key Lab for Common Diseases, Qingdao Hospital, University of Rehabilitation and Health Sciences, Qingdao, 266071, China
- School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Yong Niu
- National Institute of Occupational Health and Posing Control, China CDC, Beijing, 100050, China
| | - Ting Hu
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, 266071, China
| | - Yanting Li
- School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Tao Wang
- Qingdao Key Lab for Common Diseases, Qingdao Hospital, University of Rehabilitation and Health Sciences, Qingdao, 266071, China
| | - Xinjuan Yu
- Qingdao Key Lab for Common Diseases, Qingdao Hospital, University of Rehabilitation and Health Sciences, Qingdao, 266071, China
| | - Yiqiao Lv
- Department of Pulmonary and Critical Care Medicine, Qingdao Hospital, Dalian Medical University, Dalian, 116000, China
| | - Huiling Tang
- Department of Pulmonary and Critical Care Medicine, Qingdao Hospital, Dalian Medical University, Dalian, 116000, China
| | - Jing Jiang
- Department of Ultrasound, Qingdao Hospital, University of Rehabilitation and Health Sciences, Qingdao, 266071, China
| | - Haibin Xu
- Department of Radiology, Qingdao Hospital, University of Rehabilitation and Health Sciences, Qingdao, 266071, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, 266071, China.
| | - Wei Han
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, 266071, China.
- Qingdao Key Lab for Common Diseases, Qingdao Hospital, University of Rehabilitation and Health Sciences, Qingdao, 266071, China.
- School of Public Health, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
2
|
Wu L, Lu X, Zhang S, Zhong Y, Gao H, Tao FB, Wu X. Co-exposure effects of urinary polycyclic aromatic hydrocarbons and metals on lung function: mediating role of systematic inflammation. BMC Pulm Med 2024; 24:386. [PMID: 39128985 PMCID: PMC11316979 DOI: 10.1186/s12890-024-03173-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAHs) and metals were associated with decreased lung function, but co-exposure effects and underlying mechanism remained unknown. METHODS Among 1,123 adults from National Health and Nutrition Examination Survey 2011-2012, 10 urinary PAHs, 11 urinary metals, and peripheral white blood cell (WBC) count were determined, and 5 lung function indices were measured. Least absolute shrinkage and selection operator, Bayesian kernel machine regression, and quantile-based g-computation were used to estimate co-exposure effects on lung function. Mediation analysis was used to explore mediating role of WBC. RESULTS These models demonstrated that PAHs and metals were significantly associated with lung function impairment. Bayesian kernel machine regression models showed that comparing to all chemicals fixed at median level, forced expiratory volume in 1 s (FEV1)/forced vital capacity, peak expiratory flow, and forced expiratory flow between 25 and 75% decreased by 1.31% (95% CI: 0.72%, 1.91%), 231.62 (43.45, 419.78) mL/s, and 131.64 (37.54, 225.74) mL/s respectively, when all chemicals were at 75th percentile. In the quantile-based g-computation, each quartile increase in mixture was associated with 104.35 (95% CI: 40.67, 168.02) mL, 1.16% (2.11%, 22.40%), 294.90 (78.37, 511.43) mL/s, 168.44 (41.66, 295.22) mL/s decrease in the FEV1, FEV1/forced vital capacity, peak expiratory flow, and forced expiratory flow between 25% and 75%, respectively. 2-Hydroxyphenanthrene, 3-Hydroxyfluorene, and cadmium were leading contributors to the above associations. WBC mediated 8.22%-23.90% of association between PAHs and lung function. CONCLUSIONS Co-exposure of PAHs and metals impairs lung function, and WBC could partially mediate this relationship. Our findings elucidate co-exposure effects of environmental mixtures on respiratory health and underlying mechanisms, suggesting that focusing on highly prioritized toxicants would effectively attenuate adverse effects.
Collapse
Affiliation(s)
- Lihong Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xue Lu
- Department of Toxicology, Anhui Medical University, Anhui, China
| | - Siying Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yumei Zhong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hui Gao
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Fang-Biao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiulong Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
3
|
Cattani-Cavalieri I, Trombetta-Lima M, Yan H, Manzano-Covarrubias AL, Baarsma HA, Oun A, van der Veen MM, Oosterhout E, Dolga AM, Ostrom RS, Valenca SS, Schmidt M. Diesel exhaust particles alter mitochondrial bioenergetics and cAMP producing capacity in human bronchial epithelial cells. FRONTIERS IN TOXICOLOGY 2024; 6:1412864. [PMID: 39118833 PMCID: PMC11306203 DOI: 10.3389/ftox.2024.1412864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction: Air pollution from diesel combustion is linked in part to the generation of diesel exhaust particles (DEP). DEP exposure induces various processes, including inflammation and oxidative stress, which ultimately contribute to a decline in lung function. Cyclic AMP (cAMP) signaling is critical for lung homeostasis. The impact of DEP on cAMP signaling is largely unknown. Methods: We exposed human bronchial epithelial (BEAS-2B) cells to DEP for 24-72 h and evaluated mitochondrial bioenergetics, markers of oxidative stress and inflammation and the components of cAMP signaling. Mitochondrial bioenergetics was measured at 72 h to capture the potential and accumulative effects of prolonged DEP exposure on mitochondrial function. Results: DEP profoundly altered mitochondrial morphology and network integrity, reduced both basal and ATP-linked respiration as well as the glycolytic capacity of mitochondria. DEP exposure increased gene expression of oxidative stress and inflammation markers such as interleukin-8 and interleukin-6. DEP significantly affected mRNA levels of exchange protein directly activated by cAMP-1 and -2 (Epac1, Epac2), appeared to increase Epac1 protein, but left phospho-PKA levels unhanged. DEP exposure increased A-kinase anchoring protein 1, β2-adrenoceptor and prostanoid E receptor subtype 4 mRNA levels. Interestingly, DEP decreased mRNA levels of adenylyl cyclase 9 and reduced cAMP levels stimulated by forskolin (AC activator), fenoterol (β2-AR agonist) or PGE2 (EPR agonist). Discussion: Our findings suggest that DEP induces mitochondrial dysfunction, a process accompanied by oxidative stress and inflammation, and broadly dampens cAMP signaling. These epithelial responses may contribute to lung dysfunction induced by air pollution exposure.
Collapse
Affiliation(s)
- Isabella Cattani-Cavalieri
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, United States
| | - Marina Trombetta-Lima
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, Netherlands
| | - Hong Yan
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
| | - Ana L. Manzano-Covarrubias
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Hoeke A. Baarsma
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Asmaa Oun
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
| | | | - Emily Oosterhout
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
| | - Amalia M. Dolga
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Rennolds S. Ostrom
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, United States
| | - Samuel Santos Valenca
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
4
|
Neumann S, Casjens S, Hoffmeyer F, Rühle K, Gamrad-Streubel L, Haase LM, Rudolph KK, Giesen J, Neumann V, Taeger D, Pallapies D, Birk T, Brüning T, Bünger J. Club cell protein (CC16) in serum as an effect marker for small airway epithelial damage caused by diesel exhaust and blasting fumes in potash mining. Int Arch Occup Environ Health 2024; 97:121-132. [PMID: 38110551 PMCID: PMC10876725 DOI: 10.1007/s00420-023-02035-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/22/2023] [Indexed: 12/20/2023]
Abstract
OBJECTIVE The effect marker club cell protein (CC16) is secreted by the epithelium of the small respiratory tract into its lumen and passes into the blood. Increased amounts of CC16 in serum are observed during acute epithelial lung injury due to air pollutants. CC16 in serum was determined as part of this cross-sectional study in underground potash miners on acute and chronic health effects from exposures to diesel exhaust and blasting fumes. METHODS Nitrogen oxides, carbon monoxide, and diesel particulate matter were measured in 672 workers at a German potash mining site on a person-by-person basis over an early shift or midday shift, together with CC16 serum concentrations before and after the respective shift. CC16 concentrations and CC16 shift-differences were evaluated with respect to personal exposure measurements and other quantitative variables by Spearman rank correlation coefficients. CC16 shift-differences were modeled using multiple linear regression. Above-ground workers as reference group were compared to the exposed underground workers. RESULTS Serum concentrations of CC16 were influenced by personal characteristics such as age, smoking status, and renal function. Moreover, they showed a circadian rhythm. While no statistically significant effects of work-related exposure on CC16 concentrations were seen in never smokers, such effects were evident in current smokers. CONCLUSION The small airways of current smokers appeared to be vulnerable to the combination of measured work-related exposures and individual exposure to smoking. Therefore, as health protection of smokers exposed to diesel exhaust and blasting fumes, smoking cessation is strongly recommended.
Collapse
Affiliation(s)
- Savo Neumann
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany.
| | - Swaantje Casjens
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Frank Hoffmeyer
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Katrin Rühle
- Environment and Health, Ramboll Deutschland GmbH, City Tower-Limbecker Platz 1, 45127, Essen, Germany
| | - Lisa Gamrad-Streubel
- Environment and Health, Ramboll Deutschland GmbH, City Tower-Limbecker Platz 1, 45127, Essen, Germany
| | - Lisa-Marie Haase
- Environment and Health, Ramboll Deutschland GmbH, City Tower-Limbecker Platz 1, 45127, Essen, Germany
| | - Katharina K Rudolph
- Environment and Health, Ramboll Deutschland GmbH, City Tower-Limbecker Platz 1, 45127, Essen, Germany
| | - Jörg Giesen
- Institute for the Research on Hazardous Substances (IGF), 44789, Bochum, Germany
| | - Volker Neumann
- Institute for the Research on Hazardous Substances (IGF), 44789, Bochum, Germany
| | - Dirk Taeger
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Dirk Pallapies
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Thomas Birk
- Environment and Health, Ramboll Deutschland GmbH, City Tower-Limbecker Platz 1, 45127, Essen, Germany
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Jürgen Bünger
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| |
Collapse
|
5
|
Zhu X, Pan Y, Xu X, Xu J. Kaempferitrin alleviates LPS-induced septic acute lung injury in mice through downregulating NF-κB pathway. Allergol Immunopathol (Madr) 2023; 51:1-7. [PMID: 37937489 DOI: 10.15586/aei.v51i6.838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 02/27/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Acute lung injury (ALI) causes severe and uncontrolled pulmonary inflammation and has high morbidity in dying patients. OBJECTIVE This study aimed to evaluate the potential function of Kaempferitrin (Kae) and uncover its mechanisms in ALI. MATERIAL AND METHODS We evaluated the role of Kae in ALI through the lipopolysaccharide (LPS)-induced histopathological changes, lung wet/dry (W/D) ratio, total bronchoalveolar lavage fluid (BALF) cells count, pulmonary inflammation, and the levels of interleukin (IL)-6, tumor necrosis factor-α (TNF-α), and IL-1β. The effect of Kae on NF-κB signaling pathway was discovered through the protein expression levels of transcription factors p65, p-p65, IκBα, and p-IκBα by Western blot analysis. RESULTS The results showed that Kae could improve lung injury by reducing apoptosis, histopathological changes, and lung W/D ratio; more importantly, Kae enhanced the survival of ALI mice. Moreover, Kae relieved inflammation, as it reduced total BALF cells count, and deceased the levels of TNF-α, IL-6, and IL-1β in serum. In addition, Western blot analysis data suggested that Kae could decrease the protein expression levels of transcription factors p65, p-p65, IκB-α, and p-IκB-α, which were promoted by LPS. CONCLUSION The results of this study suggested that Kae could relieve LPS-induced ALI in mice and reduce inflammation and apoptosis through NF-κB pathway.
Collapse
Affiliation(s)
- Xiaoli Zhu
- Critical Care Medicine, Zhejiang Youth Hospital, Hangzhou, Zhejiang Province, China;
| | - Yongyue Pan
- Critical Care Medicine, Zhejiang Youth Hospital, Hangzhou, Zhejiang Province, China
| | - Xin Xu
- Critical Care Medicine, Zhejiang Chinese Medicine University, Hangzhou, Zhejiang Province, China
| | - Jing Xu
- Critical Care Medicine, Zhejiang Youth Hospital, Hangzhou, Zhejiang Province, China
| |
Collapse
|
6
|
Wang L, Feng J, Deng Y, Yang Q, Wei Q, Ye D, Rong X, Guo J. CCAAT/Enhancer-Binding Proteins in Fibrosis: Complex Roles Beyond Conventional Understanding. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9891689. [PMID: 36299447 PMCID: PMC9575473 DOI: 10.34133/2022/9891689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/18/2022] [Indexed: 07/29/2023]
Abstract
CCAAT/enhancer-binding proteins (C/EBPs) are a family of at least six identified transcription factors that contain a highly conserved basic leucine zipper domain and interact selectively with duplex DNA to regulate target gene expression. C/EBPs play important roles in various physiological processes, and their abnormal function can lead to various diseases. Recently, accumulating evidence has demonstrated that aberrant C/EBP expression or activity is closely associated with the onset and progression of fibrosis in several organs and tissues. During fibrosis, various C/EBPs can exert distinct functions in the same organ, while the same C/EBP can exert distinct functions in different organs. Modulating C/EBP expression or activity could regulate various molecular processes to alleviate fibrosis in multiple organs; therefore, novel C/EBPs-based therapeutic methods for treating fibrosis have attracted considerable attention. In this review, we will explore the features of C/EBPs and their critical functions in fibrosis in order to highlight new avenues for the development of novel therapies targeting C/EBPs.
Collapse
Affiliation(s)
- Lexun Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiaojiao Feng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanyue Deng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qianqian Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Quxing Wei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dewei Ye
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
7
|
Zheng L, Zhang Z, Song K, Xu X, Tong Y, Wei J, Jiang L. Potential biomarkers for inflammatory response in acute lung injury. Open Med (Wars) 2022; 17:1066-1076. [PMID: 35795000 PMCID: PMC9186513 DOI: 10.1515/med-2022-0491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 03/24/2022] [Accepted: 04/27/2022] [Indexed: 11/15/2022] Open
Abstract
Acute lung injury (ALI) is a severe respiratory disorder occurring in critical care medicine, with high rates of mortality and morbidity. This study aims to screen the potential biomarkers for ALI. Microarray data of lung tissues from lung-specific geranylgeranyl pyrophosphate synthase large subunit 1 knockout and wild-type mice treated with lipopolysaccharide were downloaded. Differentially expressed genes (DEGs) between ALI and wild-type mice were screened. Functional analysis and the protein-protein interaction (PPI) modules were analyzed. Finally, a miRNA-transcription factor (TF)-target regulation network was constructed. Totally, 421 DEGs between ALI and wild-type mice were identified. The upregulated DEGs were mainly enriched in the peroxisome proliferator-activated receptor signaling pathway, and fatty acid metabolic process, while downregulated DEGs were related to cytokine-cytokine receptor interaction and regulation of cytokine production. Cxcl5, Cxcl9, Ccr5, and Cxcr4 were key nodes in the PPI network. In addition, three miRNAs (miR505, miR23A, and miR23B) and three TFs (PU1, CEBPA, and CEBPB) were key molecules in the miRNA-TF-target network. Nine genes including ADRA2A, P2RY12, ADORA1, CXCR1, and CXCR4 were predicted as potential druggable genes. As a conclusion, ADRA2A, P2RY12, ADORA1, CXCL5, CXCL9, CXCR1, and CXCR4 might be novel markers and potential druggable genes in ALI by regulating inflammatory response.
Collapse
Affiliation(s)
- Lanzhi Zheng
- Emergency Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, 310006 Zhejiang Province, China
| | - Zhuoyi Zhang
- Emergency Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Youdian Road 54#, Shangcheng District, Hangzhou City, 310006 Zhejiang Province, China
| | - Kang Song
- Emergency Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, 310006 Zhejiang Province, China
| | - Xiaoyang Xu
- Emergency Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, 310006 Zhejiang Province, China
| | - Yixin Tong
- Emergency Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, 310006 Zhejiang Province, China
| | - Jinling Wei
- Emergency Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, 310006 Zhejiang Province, China
| | - Lu Jiang
- Emergency Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, 310006 Zhejiang Province, China
| |
Collapse
|
8
|
Zhang L, Sun J, Zhang D. Associations and dose-response relationships between different kinds of urine polycyclic aromatic hydrocarbons metabolites and adult lung functions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:8639-8649. [PMID: 34490569 DOI: 10.1007/s11356-021-16294-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Associations and dose-response relationships between different kinds of urine polycyclic aromatic hydrocarbons (PAHs) metabolites and lung functions in general American adults were unknown. Data from the National Health and Nutrition Examination Survey database of the 2009-2012 cycles were used. The independent variables were urine PAHs adjusted for urine creatinine, including 1-hydroxynaphthalene (1-NAP), 2-hydroxynaphthalene (2-NAP), 3-hydroxyfluorene (3-FLU), 2-hydroxyfluorene (2-FLU), 3-hydroxyphenanthrene (3-PHE), 1-hydroxyphenanthrene (1-PHE), 2-hydroxyphenanthrene (2-PHE), 1-hydroxypyrene (1-PYR), and 9-hydroxyfluorene (9-FLU). The dependent variables were lung function indices including the forced vital capacity (FVC), the 1st second of a forceful exhalation (FEV1), the ratio of FEV1/FVC, the forced expiratory flow rate 25-75% (FEF25%-75%), and the fractional exhaled nitric oxide (FENO). Multivariate linear regression analyses and the restricted cubic splines were used. Except for 1-PHE and 9-FLU, FEF25%-75% decreased in quartile (Q) 4 of all the remaining seven PAHs; FEV1 decreased in Q4 of 2-NAP, 3-PHE, 2-PHE, and 9-FLU, with β (SE) of -121.89 (45.46), -105.21 (33.57), -143.67 (40.60), and -127.71 (37.14), respectively. FVC decreased only in Q3 of 9-FLU, with β (SE) of -142.24 (56.54); FEV1/FVC decreased in Q4 of all PAHs except for 2-FLU. Besides, FENO decreased in Q4 of all PAHs in smokers, while in non-smokers, the results were opposite. The dose-response relationships were non-linear. In conclusion, we found that urine PAHs may relate to the changes in lung functions. Besides, smoking status had a significant influence on FENO; FENO decreased in smokers while increased in non-smokers, suggesting that PAHs exposure may relate to airway inflammation.
Collapse
Affiliation(s)
- Liming Zhang
- Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, No.308 Ningxia Road, Qingdao, 266021, China
| | - Jing Sun
- Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, No.308 Ningxia Road, Qingdao, 266021, China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, No.308 Ningxia Road, Qingdao, 266021, China.
| |
Collapse
|
9
|
Ziembicki S, Kirkham TL, Demers PA, Peters CE, Gorman Ng M, Davies HW, Tenkate T, Kalenge S, Blagrove-Hall N, Jardine KJ, Arrandale VH. Diesel Engine Exhaust Exposure in the Ontario Civil Infrastructure Construction Industry. Ann Work Expo Health 2021; 66:150-162. [PMID: 34585719 DOI: 10.1093/annweh/wxab068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/26/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Diesel engine exhaust (DEE) is a known lung carcinogen and a common occupational exposure in Canada. The use of diesel-powered equipment in the construction industry is particularly widespread, but little is known about DEE exposures in this work setting. The objective of this study was to determine exposure levels and identify and characterize key determinants of DEE exposure at construction sites in Ontario. METHODS Elemental carbon (EC, a surrogate of DEE exposure) measurements were collected at seven civil infrastructure construction worksites and one trades training facility in Ontario using NIOSH method 5040. Full-shift personal air samples were collected using a constant-flow pump and SKC aluminium cyclone with quartz fibre filters in a 37-mm cassette. Exposures were compared with published health-based limits, including the Dutch Expert Committee on Occupational Safety (DECOS) limit (1.03 µg m-3 respirable EC) and the Finnish Institute of Occupational Health (FIOH) recommendation (5 µg m-3 respirable EC). Mixed-effects linear regression was used to identify determinants of EC exposure. RESULTS In total, 149 EC samples were collected, ranging from <0.25 to 52.58 µg m-3 with a geometric mean (GM) of 3.71 µg m-3 [geometric standard deviation (GSD) = 3.32]. Overall, 41.6% of samples exceeded the FIOH limit, mostly within underground worksites (93.5%), and 90.6% exceeded the DECOS limit. Underground workers (GM = 13.20 µg m-3, GSD = 1.83) had exposures approximately four times higher than below grade workers (GM = 3.56 µg m-3, GSD = 1.94) and nine times higher than above ground workers (GM = 1.49 µg m-3, GSD = 1.75). Training facility exposures were similar to above ground workers (GM = 1.86 µg m-3, GSD = 4.12); however, exposures were highly variable. Work setting and enclosed cabins were identified as the key determinants of exposure in the final model (adjusted R2 = 0.72, P < 0.001). The highest DEE exposures were observed in underground workplaces and when using unenclosed cabins. CONCLUSIONS This study provides data on current DEE exposure in Canadian construction workers. Most exposures were above recommended health-based limits, albeit in other jurisdictions, signifying a need to further reduce DEE levels in construction. These results can inform a hazard reduction strategy including targeted intervention/control measures to reduce DEE exposure and the burden of occupational lung cancer.
Collapse
Affiliation(s)
- Stephanie Ziembicki
- Occupational Cancer Research Centre, Ontario Health, Toronto, ON, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Tracy L Kirkham
- Occupational Cancer Research Centre, Ontario Health, Toronto, ON, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Paul A Demers
- Occupational Cancer Research Centre, Ontario Health, Toronto, ON, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.,School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Cheryl E Peters
- Department of Cancer Epidemiology and Prevention Research, Alberta Health Services, Holy Cross Centre, AB, Canada.,Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, Canada.,Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,CAREX Canada, Faculty of Health Sciences, Simon Fraser University, Vancouver, BC, Canada
| | - Melanie Gorman Ng
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada.,BC Construction Safety Alliance, New Westminster, BC, Canada
| | - Hugh W Davies
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Thomas Tenkate
- School of Occupational and Public Health, Ryerson University, Toronto, ON, Canada
| | - Sheila Kalenge
- Occupational Cancer Research Centre, Ontario Health, Toronto, ON, Canada
| | | | | | - Victoria H Arrandale
- Occupational Cancer Research Centre, Ontario Health, Toronto, ON, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Hu T, Sun F, Yu X, Li Q, Zhao L, Hao W, Han W. CC16-TNF-α negative feedback loop formed between Clara cells and normal airway epithelial cells protects against diesel exhaust particles exposure-induced inflammation. Aging (Albany NY) 2021; 13:19442-19459. [PMID: 34339391 PMCID: PMC8386526 DOI: 10.18632/aging.203356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/08/2021] [Indexed: 11/25/2022]
Abstract
CC16 is almost exclusively expressed in non-ciliated epithelial Clara cells, and widely used as a Clara cell marker. Diesel exhaust particles (DEPs), the fine particulate matters produced by diesel engines, cause or exacerbate airway-related diseases. Our previous study documented that DEP inhibits the CC16 expression in the immortalized mouse Clara cell line through methylation of C/EBPα promoter. However, the molecular mechanism by which DEP regulates CC16 secretion is unclear. Here, we isolated CC16 containing Clara cells (CC16+) from human distal lung, and found that DEP inhibited CC16 secretion from CC16+ cells via methylation of C/EBPα and inhibition of Munc18b transcription. CC16+ cell conditioned media containing different concentrations of CC16 was prepared and used for culture of airway epithelial cells BEAS-2B with no expression of CC16. A positive correlation was observed between CC16 level and DEP-induced autophagy activity, and a negative correlation between CC16 level and DEP-induced pro-inflammatory cytokine TNF-α, IL-6, and IL-8 level, suggesting that CC16 might mitigate DEP-induced inflammation via promoting autophagy in BEAS-2B cells. This result was further confirmed by adding recombinant CC16 to BEAS-2B cells exposed to DEP. Moreover, CC16 level was significantly increased when CC16+ cells were cultured in BEAS-2B cell conditioned medium containing TNF-α or the normal medium supplemented with recombinant TNF-α, suggesting that TNF-α induced CC16 production and secretion from CC16+ cells. Collectively, these data point that CC16 and TNF-α form a negative feedback loop, and this negative feedback loop between Clara cells and normal airway epithelial cells protects against DEP exposure-induced inflammation.
Collapse
Affiliation(s)
- Ting Hu
- Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266011, China
| | - Fenglan Sun
- Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266011, China
| | - Xinjuan Yu
- Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266011, China
| | - Qinghai Li
- Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266011, China
| | - Long Zhao
- Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266011, China
| | - Wanming Hao
- Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266011, China
| | - Wei Han
- Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266011, China
| |
Collapse
|
11
|
Li J, Lu K, Sun F, Tan S, Zhang X, Sheng W, Hao W, Liu M, Lv W, Han W. Panaxydol attenuates ferroptosis against LPS-induced acute lung injury in mice by Keap1-Nrf2/HO-1 pathway. J Transl Med 2021; 19:96. [PMID: 33653364 PMCID: PMC7927246 DOI: 10.1186/s12967-021-02745-1] [Citation(s) in RCA: 251] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/08/2021] [Indexed: 12/27/2022] Open
Abstract
Background Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) induces uncontrolled and self-amplified pulmonary inflammation, and has high morbidity and mortality rates in critically ill patients. In recent years, many bioactive ingredients extracted from herbs have been reported to effectively ameliorate ALI/ARDS via different mechanisms. Ferroptosis, categorized as regulated necrosis, is more immunogenic than apoptosis and contributes to the progression of ALI. In this study, we examined the impact of panaxydol (PX), isolated from the roots of Panax ginseng, on lipopolysaccharide (LPS)-induced ALI in mice. Methods In vivo, the role of PX on LPS-induced ALI in mice was tested by determination of LPS-induced pulmonary inflammation, pulmonary edema and ferroptosis. In vitro, BEAS-2B cells were used to investigate the molecular mechanisms by which PX functions via determination of inflammation, ferroptosis and their relationship. Results Administration of PX protected mice against LPS-induced ALI, including significantly ameliorated lung pathological changes, and decreased the extent of lung edema, inflammation, and ferroptosis. In vitro, PX inhibited LPS-induced ferroptosis and inflammation in bronchial epithelial cell line BEAS-2B cells. The relationship between ferroptosis and inflammation was investigated. The results showed that ferroptosis mediated inflammation in LPS-treated BEAS-2B cells, and PX might ameliorate LPS-induced inflammation via inhibiting ferroptosis. Meanwhile, PX could upregulate Keap1-Nrf2/HO-1 pathway, and selective inhibition of Keap1-Nrf2/HO-1 pathway significantly abolished the anti-ferroptotic and anti-inflammatory functions of PX in LPS-treated cells. Conclusion PX attenuates ferroptosis against LPS-induced ALI via Keap1-Nrf2/HO-1 pathway, and is a promising novel therapeutic candidate for ALI.
Collapse
Affiliation(s)
- Jiucui Li
- Qingdao Municipal Hospital, School of Medicine, Qingdao University, No. 1, Jiaozhou Road, Qingdao, 266011, Shandong, China
| | - Kongmiao Lu
- Qingdao Municipal Hospital, School of Medicine, Qingdao University, No. 1, Jiaozhou Road, Qingdao, 266011, Shandong, China
| | - Fenglan Sun
- Qingdao Municipal Hospital, School of Medicine, Qingdao University, No. 1, Jiaozhou Road, Qingdao, 266011, Shandong, China
| | - Shanjuan Tan
- Qingdao Municipal Hospital, School of Medicine, Qingdao University, No. 1, Jiaozhou Road, Qingdao, 266011, Shandong, China
| | - Xiao Zhang
- Qingdao Municipal Hospital, School of Medicine, Qingdao University, No. 1, Jiaozhou Road, Qingdao, 266011, Shandong, China
| | - Wei Sheng
- Qingdao Municipal Hospital, School of Medicine, Qingdao University, No. 1, Jiaozhou Road, Qingdao, 266011, Shandong, China
| | - Wanming Hao
- Qingdao Municipal Hospital, School of Medicine, Qingdao University, No. 1, Jiaozhou Road, Qingdao, 266011, Shandong, China
| | - Min Liu
- Qingdao Municipal Hospital, School of Medicine, Qingdao University, No. 1, Jiaozhou Road, Qingdao, 266011, Shandong, China.
| | - Weihong Lv
- Qingdao Municipal Hospital, School of Medicine, Qingdao University, No. 1, Jiaozhou Road, Qingdao, 266011, Shandong, China.
| | - Wei Han
- Qingdao Municipal Hospital, School of Medicine, Qingdao University, No. 1, Jiaozhou Road, Qingdao, 266011, Shandong, China.
| |
Collapse
|
12
|
Cattani-Cavalieri I, da Maia Valença H, Moraes JA, Brito-Gitirana L, Romana-Souza B, Schmidt M, Valença SS. Dimethyl Fumarate Attenuates Lung Inflammation and Oxidative Stress Induced by Chronic Exposure to Diesel Exhaust Particles in Mice. Int J Mol Sci 2020; 21:ijms21249658. [PMID: 33352854 PMCID: PMC7767202 DOI: 10.3390/ijms21249658] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/13/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022] Open
Abstract
Air pollution is mainly caused by burning of fossil fuels, such as diesel, and is associated with increased morbidity and mortality due to adverse health effects induced by inflammation and oxidative stress. Dimethyl fumarate (DMF) is a fumaric acid ester and acts as an antioxidant and anti-inflammatory agent. We investigated the potential therapeutic effects of DMF on pulmonary damage caused by chronic exposure to diesel exhaust particles (DEPs). Mice were challenged with DEPs (30 μg per mice) by intranasal instillation for 60 consecutive days. After the first 30 days, the animals were treated daily with 30 mg/kg of DMF by gavage for the remainder of the experimental period. We demonstrated a reduction in total inflammatory cell number in the bronchoalveolar lavage (BAL) of mice subjected to DEP + DMF as compared to those exposed to DEPs alone. Importantly, DMF treatment was able to reduce lung injury caused by DEP exposure. Intracellular total reactive oxygen species (ROS), peroxynitrite (OONO), and nitric oxide (NO) levels were significantly lower in the DEP + DMF than in the DEP group. In addition, DMF treatment reduced the protein expression of kelch-like ECH-associated protein 1 (Keap-1) in lung lysates from DEP-exposed mice, whereas total nuclear factor κB (NF-κB) p65 expression was decreased below baseline in the DEP + DMF group compared to both the control and DEP groups. Lastly, DMF markedly reduced DEP-induced expression of nitrotyrosine, glutathione peroxidase-1/2 (Gpx-1/2), and catalase in mouse lungs. In summary, DMF treatment effectively reduced lung injury, inflammation, and oxidative and nitrosative stress induced by chronic DEP exposure. Consequently, it may lead to new therapies to diminish lung injury caused by air pollutants.
Collapse
Affiliation(s)
- Isabella Cattani-Cavalieri
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21044-020, Brazil; (I.C.-C.); (H.d.M.V.); (J.A.M.); (L.B.-G.); (S.S.V.)
- Department of Molecular Pharmacology, University of Groningen, 9700 Groningen, The Netherlands
- University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, 9700 Groningen, The Netherlands
| | - Helber da Maia Valença
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21044-020, Brazil; (I.C.-C.); (H.d.M.V.); (J.A.M.); (L.B.-G.); (S.S.V.)
| | - João Alfredo Moraes
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21044-020, Brazil; (I.C.-C.); (H.d.M.V.); (J.A.M.); (L.B.-G.); (S.S.V.)
| | - Lycia Brito-Gitirana
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21044-020, Brazil; (I.C.-C.); (H.d.M.V.); (J.A.M.); (L.B.-G.); (S.S.V.)
| | - Bruna Romana-Souza
- Department of Histology and Embryology, Rio de Janeiro State University, Rio de Janeiro 20943-000, Brazil;
| | - Martina Schmidt
- University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, 9700 Groningen, The Netherlands
- Correspondence: ; Tel.: +31-50-363-3322
| | - Samuel Santos Valença
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21044-020, Brazil; (I.C.-C.); (H.d.M.V.); (J.A.M.); (L.B.-G.); (S.S.V.)
| |
Collapse
|
13
|
Lee YY, Yang WK, Han JE, Kwak D, Kim TH, Saba E, Kim SD, Lee YC, Kim JS, Kim SH, Rhee MH. Hypericum ascyron L. extract reduces particulate matter-induced airway inflammation in mice. Phytother Res 2020; 35:1621-1633. [PMID: 33150724 DOI: 10.1002/ptr.6929] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 12/18/2022]
Abstract
The consequences of increased industrialization increased the risk of asthma and breathing difficulties due to increased particulate matter in the air. We aim to investigate the therapeutic properties of Hypericum ascyron L. extract (HAE) in airway inflammation and unravel its mechanism of action. We conducted nitric oxide and cell viability assay, real-time PCR and western blot analyses along with in vitro studies. in vivo studies include a model of coal fly ash and diesel exhaust particle (CFD)-induced airway inflammation in mice. HAE reduced coal fly ash (CFA)-induced nitric oxide secretion without exhibiting cytotoxicity in MH-S cells. HAE also reduced the mRNA expression of pro-inflammatory cytokines and reduced the expression of proteins in the NFκB and MAPK pathways. In a mice model of CFD-induced airway inflammation, HAE effectively reduced neutrophil infiltration in bronchoalveolar lavage fluid (BALF) and increased the amount of T cells in the BALF, lungs, and blood while reducing all other immune cell subtypes to reduce airway inflammatory response. CXCL-1, IL-17, MIP-2, and TNF-α expression in the BALF were also reduced. HAE effectively reduced MIP-2 and TNF-α mRNA expression in the lung tissue of mice. In a nutshell, HAE is effective in preventing airway inflammation induced by CFA in MH-S cells, as well as inflammation induced by CFD in mice.
Collapse
Affiliation(s)
- Yuan Yee Lee
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Won-Kyung Yang
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon, South Korea
| | - Jee Eun Han
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Dongmi Kwak
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Tae-Hwan Kim
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Evelyn Saba
- Department of Veterinary Biomedical Sciences, Faculty of Veterinary and Animal Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Sung-Dae Kim
- Research Department of Oncology, Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan, South Korea
| | - Young-Cheol Lee
- Department of Herbology, College of Korean Medicine, Sangji University, Wonju, South Korea
| | - Jong Sung Kim
- Department of Community Health and Epidemiology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Seung-Hyung Kim
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon, South Korea
| | - Man Hee Rhee
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
14
|
Gao M, Sun L, Xu K, Zhang L, Zhang Y, He T, Sun R, Huang H, Zhu J, Zhang Y, Zhou G, Ba Y. Association between low-to-moderate fluoride exposure and bone mineral density in Chinese adults: Non-negligible role of RUNX2 promoter methylation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:111031. [PMID: 32888610 DOI: 10.1016/j.ecoenv.2020.111031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
Bone mineral density (BMD) changes were reported to be associated with excessive fluoride exposure and abnormal expression of RUNX2. However, whether the alteration of methylation status, a most commonly used marker for the alteration of gene expression in epidemiological investigation, of RUNX2 is associated with low-to-moderate fluoride exposure and BMD changes has not been reported. Our study aims to explore the role of RUNX2 promoter methylation in BMD changes induced by low-to-moderate fluoride exposure. A total of 1124 adults (413 men and 711 women) were recruited from Kaifeng City in 2017. We measured BMD using ultrasound bone densitometer. Concentrations of urinary fluoride (UF) were measured using ion-selective electrode, and the participants were grouped into control group (CG) and excessive fluoride group (EFG) according to the concentration of UF. We extracted DNA from fasting peripheral blood samples and then detected the promoter methylation levels of RUNX2 using quantitative methylation-specific PCR. Relationships between UF concentration, RUNX2 promoter methylation and BMD changes were analyzed using generalized linear model and logistic regression. Results showed in EFG (UF concentration > 1.6 mg/L), BMD was negatively correlated with UF concentration (β: -0.14; 95%CI: -0.26, -0.01) and RUNX2 promoter methylation (β: -0.13; 95%CI: -0.22, -0.03) in women. The methylation rate of RUNX2 promoter increased by 2.16% for each 1 mg/L increment in UF concentration of women in EFG (95%CI: 0.37, 3.96). No any significant associations between UF concentration, RUNX2 promoter methylation, and BMD were observed in the individuals in CG. Mediation analysis showed that RUNX2 promoter methylation mediated 18.2% (95% CI: 4.2%, 53.2%) of the association between UF concentration and BMD of women in EFG. In conclusion, excessive fluoride exposure (>1.6 mg/L) is associated with changes of BMD in women, and this association is mediated by RUNX2 promoter methylation.
Collapse
Affiliation(s)
- Minghui Gao
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Long Sun
- Department of Endemic Disease, Kaifeng Center for Disease Control and Prevention, Kaifeng, Henan, 475004, PR China.
| | - Kaihong Xu
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Luoming Zhang
- Department of Endemic Disease, Kaifeng Center for Disease Control and Prevention, Kaifeng, Henan, 475004, PR China.
| | - Yanli Zhang
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Tongkun He
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Renjie Sun
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Hui Huang
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Jingyuan Zhu
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Yawei Zhang
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT, 06520, USA.
| | - Guoyu Zhou
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Yellow River Institute for Ecological Protection & Regional Coordinated Development, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Yue Ba
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Yellow River Institute for Ecological Protection & Regional Coordinated Development, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| |
Collapse
|
15
|
Yang M, He T, Jiang L, Wang H, Zhang J, Chai J, Li Z, Zhang Y, Zhou G, Ba Y. The role of maternal methylation in the association between prenatal meteorological conditions and neonatal H19/H19-DMR methylation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110643. [PMID: 32315786 DOI: 10.1016/j.ecoenv.2020.110643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/10/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
Meteorological conditions during pregnancy can affect birth outcome, which has been linked to the H19/H19-differentially methylated region (DMR). However, the detailed mechanisms underlying this association are unclear. This was investigated in the present study to provide epidemiological evidence for elucidating the pathogenesis of adverse birth outcomes. A total of 550 mother-newborn pairs were recruited in Zhengzhou, China from January 2010 to January 2012. Meteorological data including temperature (T), relative humidity (RH), and sunshine duration (SSD) were obtained from the China Meteorological Data Sharing Service System. Bisulfite sequencing PCR was performed to determine the methylation levels of H19/H19-DMR using genomic DNA extracted from maternal peripheral and umbilical cord blood. The results showed that H19-DMR methylation status in cord blood was positively associated with that in maternal blood. Neonatal H19-DMR methylation was negatively associated with T and RH during the first trimester and positively associated with these variables during the third trimester. There was a positive correlation between neonatal H19-DMR methylation and SSD during the second trimester and a negative correlation during the third trimester. Similar associations were observed between maternal H19-DMR methylation and prenatal meteorological conditions. We also observed significant interaction effects of maternal H19/H19-DMR methylation and most prenatal meteorological factors on neonatal methylation, and found that changes in the methylation status of maternal H19-DMR were responsible for the effects of prenatal meteorological conditions on neonatal methylation. In summary, neonatal H19-DMR methylation was significantly associated with prenatal meteorological conditions, which was modified and mediated by maternal H19-DMR methylation changes. These findings provide insights into the relationship between meteorological factors during pregnancy and adverse birth outcomes or disease susceptibility in offspring, and can serve as a reference for environmental policy-making.
Collapse
Affiliation(s)
- Meng Yang
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Tongkun He
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Lifang Jiang
- Center for Social Medicine Research, Henan Provincial Research Institute for Population and Family Planning, Zhengzhou, Henan, 450002, PR China; National Health Commission Key Laboratory of Birth Defects Prevention, Zhengzhou, Henan, 450002, PR China; Henan Provincial Key Laboratory of Intervention Technology for Birth Defects, Zhengzhou, Henan, 450002, PR China
| | - Hao Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Junxi Zhang
- Center for Social Medicine Research, Henan Provincial Research Institute for Population and Family Planning, Zhengzhou, Henan, 450002, PR China; National Health Commission Key Laboratory of Birth Defects Prevention, Zhengzhou, Henan, 450002, PR China; Henan Provincial Key Laboratory of Intervention Technology for Birth Defects, Zhengzhou, Henan, 450002, PR China
| | - Jian Chai
- Center for Social Medicine Research, Henan Provincial Research Institute for Population and Family Planning, Zhengzhou, Henan, 450002, PR China; National Health Commission Key Laboratory of Birth Defects Prevention, Zhengzhou, Henan, 450002, PR China; Henan Provincial Key Laboratory of Intervention Technology for Birth Defects, Zhengzhou, Henan, 450002, PR China
| | - Zhiyuan Li
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Yawei Zhang
- Department of Environment Health Science, Yale University School of Public Health, New Haven, CT, USA
| | - Guoyu Zhou
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Yue Ba
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| |
Collapse
|
16
|
Nanodomains in cardiopulmonary disorders and the impact of air pollution. Biochem Soc Trans 2020; 48:799-811. [PMID: 32597478 PMCID: PMC7329344 DOI: 10.1042/bst20190250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 12/29/2022]
Abstract
Air pollution is a major environmental threat and each year about 7 million people reported to die as a result of air pollution. Consequently, exposure to air pollution is linked to increased morbidity and mortality world-wide. Diesel automotive engines are a major source of urban air pollution in the western societies encompassing particulate matter and diesel exhaust particles (DEP). Air pollution is envisioned as primary cause for cardiovascular dysfunction, such as ischemic heart disease, cardiac dysrhythmias, heart failure, cerebrovascular disease and stroke. Air pollution also causes lung dysfunction, such as chronic obstructive pulmonary disease (COPD), asthma, idiopathic pulmonary fibrosis (IPF), and specifically exacerbations of these diseases. DEP induces inflammation and reactive oxygen species production ultimately leading to mitochondrial dysfunction. DEP impair structural cell function and initiate the epithelial-to-mesenchymal transition, a process leading to dysfunction in endothelial as well as epithelial barrier, hamper tissue repair and eventually leading to fibrosis. Targeting cyclic adenosine monophosphate (cAMP) has been implicated to alleviate cardiopulmonary dysfunction, even more intriguingly cAMP seems to emerge as a potent regulator of mitochondrial metabolism. We propose that targeting of the mitochondrial cAMP nanodomain bear the therapeutic potential to diminish air pollutant — particularly DEP — induced decline in cardiopulmonary function.
Collapse
|
17
|
Lu X, Tan ZX, Wang B, Li J, Hu B, Gao L, Zhao H, Wang H, Chen YH, Xu DX. Maternal 1-nitropyrene exposure during pregnancy increases susceptibility of allergic asthma in adolescent offspring. CHEMOSPHERE 2020; 243:125356. [PMID: 31743867 DOI: 10.1016/j.chemosphere.2019.125356] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
1-nitropyrene (1-NP) is widespread in the environment, as a typical nitrated polycyclic aromatic hydrocarbon. The purpose of this research was to explore the effects of gestational 1-NP exposure on susceptibility of allergic asthma in offspring. Maternal mice were exposed to 1-NP (100 μg kg-1) by gavage throughout the whole pregnancy. Pups were sensitized by injecting with ovalbumin (OVA) on postnatal day (PND)23, 29, and 36, respectively. At 7 days following the last injection, sensitized mice were exposed to aerosol OVA. As expected, there were quite a few inflammatory cells in the lungs of OVA-sensitized pups, accompanied by bronchial wall thickening and hyperemia. Elevated goblet cells and overproduced mucus were observed in the airways of OVA-sensitized pups. Interestingly, gestational 1-NP exposure aggravated infiltration of inflammatory cells, mainly eosinophils, in OVA-sensitized offspring. Although it had little effect on airway smooth muscle layer thickening and basement membrane fibrosis, gestational 1-NP exposure aggravated goblet cell hyperplasia, Muc5ac mRNA upregulation, and mucus secretion in the airways of OVA-sensitized and challenged offspring. Mechanistically, gestational 1-NP exposure aggravated elevation of pulmonary IL-5 in OVA-sensitized pups. These findings suggest that gestational 1-NP exposure increases susceptibility of allergic asthma in offspring.
Collapse
Affiliation(s)
- Xue Lu
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Zhu-Xia Tan
- Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Bo Wang
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Jian Li
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Biao Hu
- Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Lan Gao
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Hui Zhao
- Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Hua Wang
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Yuan-Hua Chen
- Department of Histology and Embryology, Anhui Medical University, Hefei, 230032, China.
| | - De-Xiang Xu
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|