1
|
Gao J, Wang F, Zhu B, Li P, Wang Z, Wang J. Universal response method for accurate quantitative analysis of the impurities in quinolone antibiotics using liquid chromatography coupled with diode array detector and charged aerosol detector. J Chromatogr A 2023; 1710:464412. [PMID: 37757529 DOI: 10.1016/j.chroma.2023.464412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/03/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
HPLC method is the standard method for the separation and quantification of impurities from quinolone antibiotics. However, due to the large differences in the UV absorption of the impurities in quinolone antibiotics, quantitative analysis without the availability of corresponding reference substances currently poses a challenge. A sensitive and direct method using high performance liquid chromatography coupled with diode array detector and charged aerosol detector (HPLC-DAD-CAD) was developed for the analysis of impurities in quinolone antibiotics. The chromatographic conditions were optimized for good separation and output signal of CAD detector by response surface method (RSM). The systematic variation of CAD parameter settings, such as nebulization temperature, filter constant and power function value (PFV), were used to study the effect of on the detector response of signal-to-noise ratios (S/N) and linearity for ofloxacin, ciprofloxacin and their impurities. In the method validation, good linearity of each component was obtained with coefficient of determination (r) greater than 0.999 in the range of 0.5-300 μg mL-1. The average recoveries of each component were 99.02-102.39 % by DAD, were 98.22-101.91 % by CAD, RSDs were less than 2.5 % for intra-day and inter-day precision by DAD-CAD, with good precision and accuracy. The correction factor experimental results showed that the developed method provided a uniform response to the impurities with differences chromophores and could unbiasedly and directly detect the impurities in quinolone antibiotics. The method is first reported application of HPLC-DAD-CAD method for the analysis of impurities in quinolone antibiotics and it can be used for quality control of quinolone antibiotics.
Collapse
Affiliation(s)
- Jiarui Gao
- Zhejiang University of Technology, Hangzhou 310014, China
| | - Fan Wang
- Zhejiang Institute for Food and Drug Control, Key Laboratory for Core Technology of Generic Drug Evaluation National Medical Product Administration & Key Laboratory of Drug Contacting Materials Quality Control of Zhejiang Province, Hangzhou 310052, China
| | - Bingqi Zhu
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ping Li
- Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhijian Wang
- Zhejiang Institute for Food and Drug Control, Key Laboratory for Core Technology of Generic Drug Evaluation National Medical Product Administration & Key Laboratory of Drug Contacting Materials Quality Control of Zhejiang Province, Hangzhou 310052, China
| | - Jian Wang
- Zhejiang University of Technology, Hangzhou 310014, China; Zhejiang Institute for Food and Drug Control, Key Laboratory for Core Technology of Generic Drug Evaluation National Medical Product Administration & Key Laboratory of Drug Contacting Materials Quality Control of Zhejiang Province, Hangzhou 310052, China.
| |
Collapse
|
2
|
Marincich L, Protti M, Mandrioli R, Mercolini L, Woźniak Ł. Threat or treat: Exposure assessment and risk characterisation of chemical contaminants in soft drinks and chocolate bars in various Polish population age groups. EFSA J 2023; 21:e211011. [PMID: 38047136 PMCID: PMC10687758 DOI: 10.2903/j.efsa.2023.e211011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023] Open
Abstract
In the frame of the European Food Risk Assessment (EU-FORA) fellowship programme, two studies on chemical contaminants in food matrices were carried out in Warsaw, Poland, at the Department of Food Safety and Chemical Analysis, Institute of Agricultural and Food Biotechnology. The first study addressed health concerns about the dietary exposure to bisphenol A (BPA) contamination due to consumption of soft drink by Polish population. BPA is an organic additive used in the production of epoxy resins and polycarbonate plastics and because of this it is used in the internal coating of cans and in plastic bottle production. Depending on several factors, BPA can migrate from these materials to the soft drink and so, it can be ingested by consumers causing hormonal and reproductive disorders. To estimate the Polish population exposure to BPA, several soft drinks belonging to different brands were purchased from a supermarket in the city of Warsaw and analysed. The result of the analysis highlight that mean BPA exposure in the Polish population exceeds the tolerable daily intake proposed by the EFSA scientific opinion, raising health concerns. On the other hand, the second study, focused on cadmium exposure due to chocolate consumption by Polish population, did not raise any health concern. Cadmium is a heavy metal that naturally occurs in its inorganic form in the environment and its presence in chocolate derives only from the cocoa beans and not from contamination during processing. Its accumulation in the human body can create several adverse effects, including renal dysfunction and failure. To estimate the Polish population exposure to cadmium, several chocolate bars were purchased from a supermarket in the city of Warsaw and analysed. The results of the analysis show that cadmium exposure in the Polish population does not exceed the tolerable weekly intake proposed by the EFSA scientific opinion.
Collapse
Affiliation(s)
- Lorenzo Marincich
- Department for Life Quality Studies (QuVi)Alma Mater Studiorum – University of BolognaRiminiItaly
| | - Michele Protti
- Department of Pharmacy and Biotechnology (FaBiT)Alma Mater Studiorum – University of BolognaItaly
| | - Roberto Mandrioli
- Department for Life Quality Studies (QuVi)Alma Mater Studiorum – University of BolognaRiminiItaly
| | - Laura Mercolini
- Department of Pharmacy and Biotechnology (FaBiT)Alma Mater Studiorum – University of BolognaItaly
| | - Łukasz Woźniak
- Department of Food Safety and Chemical AnalysisInstitute of Agricultural and Food Biotechnology – State Research Institute (IAFB)WarsawPoland
| |
Collapse
|
3
|
Talari K, Ganji SK, Tiruveedula RR. Gas chromatography-mass spectrometric determination of bisphenol residues by dispersive solid phase extraction followed by activated carbon spheres cleanup from fish feed samples. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2023:14690667231174446. [PMID: 37186780 DOI: 10.1177/14690667231174446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Bisphenols are known endocrine disruptors commonly utilized in food packaging and storage materials, which frequently come into touch with multiple food products packed in them. The bisphenols in fish feed and other feed materials for aquatic organisms are harmful. The consumption of such marine foods is hazardous. Hence, the feed of aquatic products needs to be verified for the presence of bisphenols. The present study was focused on developing and validating a rapid, selective, and sensitive method to quantify 11 bisphenols from the fish feed with dispersive solid-phase extraction, which was cleaned by an optimized amount of activated carbon spheres and silylated by N,O-bis(trimethylsilyl)trifluoro acetamide and analyzed by gas chromatography-mass spectrometry. The new method was rigorously tested and verified after carefully tuning various parameters affecting analyte recovery. Limit of detection (LOD) were set at 0.5-5 ng/g and limit of quantification (LOQ) at 1-10 ng/g, respectively, resulting in 95-114% recoveries. Interday and intraday precisions in terms of relative standard deviation were found to be less than 11%. The proposed approach was effectively applied in floating and sinking fish feeds. The obtained results showed that higher concentration of bisphenol A, followed by bisphenol TMC, and bisphenol M at a concentration of 256.10, 159.01, and 168.82 ng/g in floating feed and 88.04, 200.79, and 98.03 ng/g in sinking feed samples, respectively.
Collapse
Affiliation(s)
- Kalpana Talari
- Department of Chemistry, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India
- Department of Chemistry, Government College for Women (A), Guntur, Andhra Pradesh, India
| | - Sai Krishna Ganji
- Centre for Mass Spectrometry, Analytical and Structural Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | | |
Collapse
|
4
|
Dueñas Mas MJ, de Dios-Pérez C, Ballesteros-Gómez A, Rubio S. Supramolecular solvent extraction and ambient mass spectrometry for the determination of organic contaminants in food packaging material. CHEMOSPHERE 2023; 324:138359. [PMID: 36907494 DOI: 10.1016/j.chemosphere.2023.138359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
A rapid method based on a fast sample treatment with supramolecular solvents (SUPRASs) and ambient mass spectrometry (AMS) analysis was developed for the screening and quantification of organic contaminants in food packaging materials (FCMs). The suitability of SUPRASs made up of medium chain alcohols in ethanol:water mixtures was investigated, given their low toxicity, proven capacity for multi-residue analysis (since they provide a wide variety of interactions and multiple binding sites) and restricted access properties for simultaneous sample extraction and clean-up. Two families of emerging organic pollutants, bisphenols and organophosphate flame retardants, were targeted as representative compounds. The methodology was applied to 40 FCMs. Target compounds were quantitated using ASAP (atmospheric solids analysis probe)-low resolution MS and a broad-spectrum screening of contaminants was performed through spectral library search using direct injection probe (DIP) and high resolution MS (HRMS). The results showed the ubiquity of bisphenols and of some flame retardants, as well as the presence of other additives and unknown compounds in about half of the analyzed samples, which highlight the complex composition of FCMs and the possible associated health risks.
Collapse
Affiliation(s)
- María Jesús Dueñas Mas
- Department of Analytical Chemistry, Institute of Chemistry for Energy and the Environment, Marie Curie Building (Annex), Campus of Rabanales, University of Córdoba, 14071, Córdoba, Spain
| | - Cristina de Dios-Pérez
- Department of Analytical Chemistry, Institute of Chemistry for Energy and the Environment, Marie Curie Building (Annex), Campus of Rabanales, University of Córdoba, 14071, Córdoba, Spain
| | - Anad Ballesteros-Gómez
- Department of Analytical Chemistry, Institute of Chemistry for Energy and the Environment, Marie Curie Building (Annex), Campus of Rabanales, University of Córdoba, 14071, Córdoba, Spain.
| | - Soledad Rubio
- Department of Analytical Chemistry, Institute of Chemistry for Energy and the Environment, Marie Curie Building (Annex), Campus of Rabanales, University of Córdoba, 14071, Córdoba, Spain
| |
Collapse
|
5
|
Wang X, Nag R, Brunton NP, Siddique MAB, Harrison SM, Monahan FJ, Cummins E. A probabilistic approach to model bisphenol A (BPA) migration from packaging to meat products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158815. [PMID: 36115396 DOI: 10.1016/j.scitotenv.2022.158815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol A (BPA), a synthetic chemical which has raised concerns due to its potential toxicological effects on humans, has been widely detected in canned and non-canned meat and meat products. This study estimated BPA migration from packaging to non-canned and canned meat products by developing two probabilistic models. BPA concentration data in packaging materials were collated, including polyethylene terephthalate, polyvinyl chloride, epoxy-based coatings, and polyester-based coatings. Migration ratios were calculated from migration tests of BPA molecules moving from packaging to food simulants. The predictive model revealed that the BPA migration concentration from packaging ranges from 0.017 to 0.13 (5th-95th percentile) μg kg-1 with a simulated mean of 0.056 μg kg-1 in non-canned meat products. This is in stark contrast to the simulated mean of 134.57 (5th-95th percentile: 59.17-223.25) μg kg-1 for canned meat products. Nevertheless, plastic packaging was estimated to contribute only 3 % of BPA levels in non-canned meat products. The sensitivity analysis showed that the contact area of meat products with films is the most sensitive parameter of the plastic packaging migration model. It is concluded that plastic packaging may not be the only or dominant source of BPA in non-canned meat products.
Collapse
Affiliation(s)
- Xin Wang
- University College Dublin, School of Biosystems and Food Engineering, Agriculture and Food Science, Belfield, Dublin 4, Ireland.
| | - Rajat Nag
- University College Dublin, School of Biosystems and Food Engineering, Agriculture and Food Science, Belfield, Dublin 4, Ireland.
| | - Nigel P Brunton
- University College Dublin, School of Agriculture and Food Science, Agriculture and Food Science, Belfield, Dublin 4, Ireland.
| | - Md Abu Bakar Siddique
- University College Dublin, School of Agriculture and Food Science, Agriculture and Food Science, Belfield, Dublin 4, Ireland.
| | - Sabine M Harrison
- University College Dublin, School of Agriculture and Food Science, Agriculture and Food Science, Belfield, Dublin 4, Ireland.
| | - Frank J Monahan
- University College Dublin, School of Agriculture and Food Science, Agriculture and Food Science, Belfield, Dublin 4, Ireland.
| | - Enda Cummins
- University College Dublin, School of Biosystems and Food Engineering, Agriculture and Food Science, Belfield, Dublin 4, Ireland.
| |
Collapse
|
6
|
Wang X, Nag R, Brunton NP, Siddique MAB, Harrison SM, Monahan FJ, Cummins E. Human health risk assessment of bisphenol A (BPA) through meat products. ENVIRONMENTAL RESEARCH 2022; 213:113734. [PMID: 35750124 DOI: 10.1016/j.envres.2022.113734] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/17/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Meat and meat products are often consumed in our daily diet, providing essential nutrients. Contamination by chemical hazards, including bisphenol A (BPA) in meat products, is a concern and is continuously monitored. BPA is well-known for its endocrine-disrupting properties, which may cause potential toxicological effects on reproductive, nervous, and immune systems. Dietary consumption is the main route of BPA exposure, and meat products are a major contributor. BPA exposure from meat consumption is the focus of this review. This review found that BPA has been widely detected in canned and non-canned meat products. BPA in canned meat is assumed to be predominantly from migration from can coatings. Relatively low levels are observed in non-canned products, and the source of contamination in these products has yet to be definitively identified. A recent European Food Safety Authority (EFSA) draft opinion has proposed to lower the tolerable daily intake of BPA from 4 μg kg body weight (bw)-1 day-1 to 0.04 ng kg body weight (bw)-1 day-1, therefore potential health risks need to be addressed. This review has investigated potential contamination at the farm, industrial processes, and retail levels. Data gaps in the literature are also identified to improve future food safety in the meat industry. Also, a unified risk assessment strategy has been proposed. Further understanding of BPA migration in meat products is needed as a part of the exposure assessment to reduce potential risk, and more data on the dose-response relationship will help comprehend potential adverse health effects of BPA on humans. This research will inform the public, meat producers and processing industry, and policymakers on potential exposure to BPA and risk reduction measures, thus, ensuring food safety.
Collapse
Affiliation(s)
- Xin Wang
- School of Biosystems and Food Engineering, Agriculture and Food Science Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Rajat Nag
- School of Biosystems and Food Engineering, Agriculture and Food Science Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Nigel P Brunton
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Md Abu Bakar Siddique
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Sabine M Harrison
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Frank J Monahan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Enda Cummins
- School of Biosystems and Food Engineering, Agriculture and Food Science Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
7
|
Li HM, Li YY, Zhang YC, Li JB, Xu HM, Xiong YM, Qin ZF. Bisphenol B disrupts testis differentiation partly via the estrogen receptor-mediated pathway and subsequently causes testicular dysgenesis in Xenopus laevis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113453. [PMID: 35390692 DOI: 10.1016/j.ecoenv.2022.113453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/09/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
There is growing concern about adverse effects of bisphenol A alternatives including bisphenol B (BPB) due to their estrogenic activity. However, limited data are available concerning the influences of BPB on male reproductive development in vertebrates, especially in amphibians, which are believed to be susceptible to estrogenic chemicals. The present study investigated the effects of 10, 100 and 1000 nM BPB (2.42, 24.2 and 242 μg/L) on testis development in Xenopus laevis, a model amphibian species for studying gonadal feminization. We found that exposure to BPB from stages 45/46 to 52 resulted in down-regulation of testis-biased gene expression and up-regulation of ovary-biased gene and vitellogenin (vtgb1) expression in gonad-mesonephros complexes (GMCs) of tadpoles at stage 52, coupled with suppressed cell proliferation in testes and reduced gonadal metameres, resembling the effects of 17ß-estradiol. Moreover, an estrogen receptor (ER) antagonist ICI 182780 antagonized BPB-caused up-regulation of ovary-biased gene and vtgb1 expression to some degree, indicating that the effects of BPB on X. laevis testis differentiation could be partly mediated by ER. All observations demonstrate that early exposure to BPB inhibited testis differentiation and exerted certain feminizing effects during gonadal differentiation. When exposure was extended to post-metamorphosis, testes exhibited histological and morphological abnormalities including segmented, discontinuous and fragmented shapes, besides altered sex-dimorphic gene expression. Notably, most of BPB-caused alterations were not concentration-dependent, but the lowest concentration indeed exerted significant effects. Overall, our study for the first time reveals that low concentrations of BPB can disrupt testis differentiation partly due to its estrogenic activity and subsequently cause testicular dysgenesis after metamorphosis, highlighting its reproductive risk to amphibians and other vertebrates including humans. Our finding also implies that estrogenic chemicals-caused testis differentiation inhibition at tadpole stages could predict later testicular dysgenesis after metamorphosis, meaning a possibility of early detection of abnormal testis development caused by estrogenic chemicals.
Collapse
Affiliation(s)
- Hong-Mei Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Yuan-Yuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying-Chi Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Occupational and Environmental Hygiene, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jin-Bo Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai-Ming Xu
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Yi-Ming Xiong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhan-Fen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Siddique S, Zhang G, Coleman K, Kubwabo C. Investigation of the migration of bisphenols from baby bottles and sippy cups. Curr Res Food Sci 2021; 4:619-626. [PMID: 34541551 PMCID: PMC8437776 DOI: 10.1016/j.crfs.2021.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/05/2021] [Accepted: 08/17/2021] [Indexed: 11/27/2022] Open
Abstract
Bisphenol A (BPA) is used as a monomer in a number of consumer products, including baby bottles and sippy cups. Some jurisdictions around the world (including Canada) have regulated the production, advertising or selling polycarbonate baby bottles with BPA. Following the ban, makers have opted for alternative materials to BPA [named BPA analogues, BPAAs], which may not be as safe as promoted. The objective of this project was to conduct a migration study in baby bottles and sippy cups, and analyze 16 BPAAs, as a follow-up on the BPA migration study conducted by Health Canada in 2009. Baby bottles (20 brands) and sippy cups (13 brands) were tested for migration of BPAAs. The most commonly detected analytes in baby bottles were BPS, BPA, BPF, BPAF, BPM and BPTMC with detection frequency (DF) of more than 50%. In sippy cups, only BPA, BPS and BPF were frequently detected. The mean concentration of BPA in baby bottle leachate was 31.5 ng/L in water simulant whereas a 1.4-fold increase was seen in 50% EtOH simulant. Similarly, a 1.4-fold increase was seen in the mean concentration of BPS in 50% EtOH simulant, when compared to the mean concentration of 2.33 ng/L in water simulant. Increasing median concentration was observed for BPA as the ethanol content of the simulant increased (water<10% EtOH<50% EtOH). The concentration of BPS and BPA was higher in sippy cups than that in their matched brand of baby bottles with the 50% EtOH simulant. Although most of the target analytes were detected in baby bottles, their concentrations were low and no migration was observed for any of the analytes with increasing incubation time. Therefore, it is likely that known BPA analogues are not present in the polymers used in the manufacture of most of the baby bottle brands sold in Canada. Sensitive and selective UPLC-MS/MS method was developed for simultaneous determination of 16 bisphenols. Migration study was conducted on baby bottles and sippy cups purchased on Canadian market. BPA and BPS were detected in all baby bottles and sippy cups. The study suggests that repeated use of the baby bottles will not increase the leaching of BPA analogues.
Collapse
Affiliation(s)
- Shabana Siddique
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Gong Zhang
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Kaela Coleman
- Product Safety Laboratory, Risk Assessment Bureau, Health Canada, Ottawa, ON, Canada
| | - Cariton Kubwabo
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| |
Collapse
|
9
|
Wang R, Dong S, Wang P, Li T, Huang Y, Zhao L, Su X. Development and validation of an ultra performance liquid chromatography-tandem mass spectrometry method for twelve bisphenol compounds in animal feed. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1178:122613. [PMID: 34153545 DOI: 10.1016/j.jchromb.2021.122613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/11/2021] [Accepted: 02/20/2021] [Indexed: 10/21/2022]
Abstract
Bisphenol compounds (BPs) are a group of environmental contaminants with endocrine-disrupting effects both for humans and animals. The present work developed a sensitive analytical method for the detection of multiple BPs in the animal feed based on ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) with post-column ammonium hydroxide (NH4OH) infusion. A modified QuEChERS method was incorporated into the extraction and purification processes. The limit of detection (LODs) and quantification (LOQs) for the target BPs were in the ranges of 0.02-0.75 μg kg-1 and 0.04-0.95 μg kg-1, respectively. Average recoveries were ranged between 82.6% and 112%. The proposed method was successfully applied to determine the concentrations of BPs in 20 actual feed samples, and the preliminary profiles of BPs in products from local feed factories were obtained. Each sample was simultaneously contaminated with at least 2 to 4 BPs, and bisphenol A (BPA) was the dominant analog of BPs found in animal feed.
Collapse
Affiliation(s)
- Ruiguo Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Shujun Dong
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Peilong Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Tong Li
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Yuan Huang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Lijuan Zhao
- Beijing University of Agriculture, Beijing 102206, China
| | - Xiaoou Su
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China.
| |
Collapse
|
10
|
Arce MM, Ruiz S, Sanllorente S, Ortiz MC, Sarabia LA, Sánchez MS. A new approach based on inversion of a partial least squares model searching for a preset analytical target profile. Application to the determination of five bisphenols by liquid chromatography with diode array detector. Anal Chim Acta 2021; 1149:338217. [PMID: 33551051 DOI: 10.1016/j.aca.2021.338217] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 01/08/2023]
Abstract
The paper shows a procedure for selecting the control method parameters (factors) to obtain a preset 'analytical target profile' when a liquid chromatographic technique is going to be carried out for the simultaneous determination of five bisphenols (bisphenol-A, bisphenol-S, bisphenol-F, bisphenol-Z and bisphenol-AF), some of them regulated by the European Union. The procedure has three steps. The first consists of building a D-optimal combined design (mixture-process design) for the control method parameters, which are the composition of the ternary mobile phase and its flow rate. The second step is to fit a PLS2 model to predict six analytical responses (namely, the resolution between each pair of consecutive peaks, and the initial and final chromatographic time) as a function of the control method parameters. The third final step is the inversion of the PLS2 model to obtain the conditions needed for attaining a preset analytical target profile. The computational inversion of the PLS2 prediction model looking for the Pareto front of these six responses provides a set of experimental conditions to conduct the chromatographic determination, specifically 22% of water, mixed with 58% methanol and 20% of acetonitrile, keeping the flow rate at 0.66 mL min-1. These conditions give a chromatogram with retention times of 2.180, 2.452, 2.764, 3.249 and 3.775 min for BPS, BPF, BPA, BPAF and BPZ, respectively, and excellent resolution among all the chromatographic peaks. Finally, the analytical method is validated under the selected experimental conditions, in terms of trueness and precision. In addition, the detection capability for the five bisphenols were: 596, 334, 424, 458 and 1156 μg L-1, with probabilities of false positive and of false negative equal to 0.05.
Collapse
Affiliation(s)
- M M Arce
- Dpt. Chemistry, Faculty of Sciences, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - S Ruiz
- Dpt. Mathematics and Computation, Faculty of Sciences, Universidad de Burgos, Plaza Misael Bañuelos S/n, 09001, Burgos, Spain
| | - S Sanllorente
- Dpt. Chemistry, Faculty of Sciences, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - M C Ortiz
- Dpt. Chemistry, Faculty of Sciences, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain.
| | - L A Sarabia
- Dpt. Mathematics and Computation, Faculty of Sciences, Universidad de Burgos, Plaza Misael Bañuelos S/n, 09001, Burgos, Spain
| | - M S Sánchez
- Dpt. Mathematics and Computation, Faculty of Sciences, Universidad de Burgos, Plaza Misael Bañuelos S/n, 09001, Burgos, Spain
| |
Collapse
|
11
|
Tsalbouris A, Kalogiouri NP, Kabir A, Furton KG, Samanidou VF. Bisphenol A migration to alcoholic and non-alcoholic beverages – An improved molecular imprinted solid phase extraction method prior to detection with HPLC-DAD. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105846] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Wang R, Huang Y, Dong S, Wang P, Su X. The occurrence of bisphenol compounds in animal feed plastic packaging and migration into feed. CHEMOSPHERE 2021; 265:129022. [PMID: 33288279 DOI: 10.1016/j.chemosphere.2020.129022] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Animal-derived food plays an important role in human exposure to bisphenol compounds (BPs), potentially as a result of the presence of BPs in animal feed. Even so, there have been few studies regarding the source of BPs in animal feed. The objective of the present study was to assess both the occurrence of BPs in animal feed packaging and the migration of BPs from feed packaging into animal feed. Thirteen BPs were monitored in 30 used animal feed plastic packaging samples previously employed for different animal feedstuffs and made of polypropylene (PP) or polyethylene (PE). Six and two BPs were found in PP-based woven bags and PE-based films, respectively. Bisphenol A (BPA) was the predominant analogue with a wide range of concentrations in both the PP- and PE-based packaging. A migration experiment was performed and provided the first-ever confirmation that BPA is able to migrate from plastic packaging into solid feed. Both contact time and the initial BP concentration affected the extent of migration. These results expand our knowledge regarding the origin of BPs in the food chain and suggest that further study of the bioaccumulation of BPs in animals is warranted.
Collapse
Affiliation(s)
- Ruiguo Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 10081, China.
| | - Yuan Huang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 10081, China.
| | - Shujun Dong
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 10081, China.
| | - Peilong Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 10081, China.
| | - Xiaoou Su
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 10081, China.
| |
Collapse
|
13
|
Kaya SI, Cetinkaya A, Ozkan SA. Latest Advances in Determination of Bisphenols with Nanomaterials, Molecularly Imprinted Polymers and Aptamer Based Electrochemical Sensors. Crit Rev Anal Chem 2021; 52:1223-1243. [PMID: 33475425 DOI: 10.1080/10408347.2020.1864719] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Contamination of environmental sources such as soils, sediments and rivers and human exposure caused by several endocrine disrupting compounds (EDCs) are considered as the most challenging issues of today's world. EDCs cover a wide variety of compounds ranging from phthalates to parabens and bisphenols (BPs) are the leading group among them. BPs are widely used during the production of different plastic materials such as food and beverage containers, toys, medical equipment and baby bottles that we use in every aspect of our lives. BPs may migrate from those products to different media under certain conditions and this situation causes chronic exposure for humans and other creatures in the environment. Especially bisphenol A (BPA) and its other analogues such as bisphenol F, bisphenol S and tetrabromobisphenol that have similar structures and are preferred as alternatives to BPA cause harmful adverse effects such as endocrine disruption, neurotoxicity, genotoxicity and cytotoxicity. There are legal restrictions and prohibitions by the European Union (EU) in order to prevent possible harmful effects. Therefore, it is important to develop highly sensitive, fast, easy to use and cheap sensors for the determination of BPs in biological, environmental and commercial samples. Electrochemical sensors, which are one of the most widely, used analytical techniques, provide these conditions. Additionally, it is possible to enhance the performance of electrochemical sensors with nanomaterials, molecularly imprinted polymers or aptamer based technologies. This review aims to give comprehensive information about BPs with summarizing most recent applications of electrochemical sensors for their determination in different samples.
Collapse
Affiliation(s)
- S Irem Kaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey.,Department of Analytical Chemistry, Gulhane Faculty of Pharmacy, University of Health Sciences, Ankara, Turkey
| | - Ahmet Cetinkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Sibel A Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
14
|
Kalogiouri NP, Pritsa A, Kabir A, Furton KG, Samanidou VF. A green molecular imprinted solid-phase extraction protocol for bisphenol A monitoring with HPLC-UV to guarantee the quality and safety of walnuts under different storage conditions. J Sep Sci 2021; 44:1633-1640. [PMID: 33448130 DOI: 10.1002/jssc.202001199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/10/2023]
Abstract
Monitoring the residual toxicant concentrations in foods is the key step for minimizing potential hazards. The huge interest about food contamination and exposure to endocrine disruptors such as bisphenol A has emerged the development of sensitive analytical methodologies to guarantee the safety and quality of foods. In this work, a green molecularly imprinted solid-phase extraction protocol coupled with high-performance liquid chromatography with UV detection was optimized following the principles of green analytical chemistry. An imprinted sol-gel silica-based hybrid inorganic-organic polymeric sorbent was used to monitor the leaching of bisphenol A from different packaging materials (glass vessels, cans, and polypropylene containers) in walnuts stored within a period of 6 months at 25 and 4°C. Extraction parameters including loading time (5-20 min), solvent type (acetonitrile, ethanol, methanol, acetone, acetonitrile:methanol, 50:50, v/v), and elution flow rate (0.2-1 mL/min) were optimized with one-factor-at-a-time method. The selected extraction optimum parameters incorporated elution with acetonitrile at 0.2 mL/min flow rate, for 10 min sample holding time. The imprinting factor was equal to 4.55 ± 0.26 (n = 3). The optimized method presented high recovery (94.3 ± 4.2%, n = 3), good linearity (>0.999), intra-assay repeatability (90.2-95.6%, n = 3), and interassay precision (86.7-93.1%, n = 3).
Collapse
Affiliation(s)
- Natasa P Kalogiouri
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Agathi Pritsa
- Laboratory of Chemical Biology, Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece
| | - Abuzar Kabir
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| | - Kenneth G Furton
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| | - Victoria F Samanidou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
15
|
The Development of a Photothermal Immunochromatographic Lateral Flow Strip for Rapid and Sensitive Detection of Bisphenol A in Food Samples. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01841-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Kalogiouri NP, Tsalbouris A, Kabir A, Furton KG, Samanidou VF. Synthesis and application of molecularly imprinted polymers using sol–gel matrix imprinting technology for the efficient solid-phase extraction of BPA from water. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104965] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Naebi M, Jamshidi MA, Farajzadeh MA, Abolhassni J, Mogaddam MRA. In-process prepared deep eutectic solvent based homogeneous liquid-liquid microextraction for the determination of irgaphos 168 and irganox 1010 in polypropylene packed drinks. J Sep Sci 2020; 43:2850-2857. [PMID: 32363747 DOI: 10.1002/jssc.202000148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/08/2020] [Accepted: 04/18/2020] [Indexed: 11/07/2022]
Abstract
In situ synthesis of a deep eutectic solvent and homogeneous liquid-liquid microextraction performed in a narrow bore tube was developed for efficient extraction of irgaphos 168 and irganox 1010 in doogh and water samples packed in polypropylene packages. First, pH of the aqueous sample solutions containing the analytes is adjusted at 9. Then a hydrogen bond acceptor (choline chloride) and a hydrogen bond donor (oleic acid) are dissolved in the solution and vortexed to obtain a homogeneous solution. The solution is filled into a narrow bore tube, in which its bottom was clogged by a septum. Then hydrochloric acid solution is injected into the solution by a syringe. The tube is placed in an ultrasonic bath. During this step, the droplets of choline chloride:oleic acid deep eutectic solvent are produced. The method indicated high enrichment factor (435 for irgaphos 168 and 488 for irganox 1010), low limits of detection (0.03 and 0.09 ng/mL for irgaphos 168 and irganox 1010, respectively) and quantification (0.13 and 0.29 ng/mL for irgaphos 168 and irganox 1010), good recovery (74 and 83% for irgaphos 168 and irganox 1010, respectively), and satisfactory repeatabilities (relative standard deviations ≤12%) can be obtained using the developed method.
Collapse
Affiliation(s)
- Maryam Naebi
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoumeh Arabli Jamshidi
- Department of Analytical Chemistry, Faculty of Science, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.,Engineering Faculty, Near East University, North Cyprus, Turkey
| | - Jafar Abolhassni
- Department of Analytical Chemistry, Faculty of Science, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|