1
|
Peng F, Yu L, Zhang C, Liu Q, Yan K, Zhang K, Zheng Y, Liu W, Li Y, Fan J, Ding C. Analysis of serum metabolome of laborers exposure to welding fume. Int Arch Occup Environ Health 2023; 96:1029-1037. [PMID: 37243737 DOI: 10.1007/s00420-023-01987-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
OBJECTIVE Welding fume exposure is inevitable of welding workers and poses a severe hazard to their health since welding is a necessary industrial process. Thus, preclinical diagnostic symptoms of worker exposure are of great importance. The aim of this study was to screen serum differential metabolites of welding fume exposure based on UPLC-QTOF-MS/MS. METHODS In 2019, 49 participants were recruited at a machinery manufacturing factory. The non-target metabolomics technique was used to clarify serum metabolic signatures in people exposed to welding fume. Differential metabolites were screened by OPLS-DA analysis and Student's t-test. The receiver operating characteristic curve evaluated the discriminatory power of differential metabolites. And the correlations between differential metabolites and metal concentrations in urine and whole blood were analyzed utilizing Pearson correlation analysis. RESULTS Thirty metabolites were increased significantly, and 5 metabolites were decreased. The differential metabolites are mainly enriched in the metabolism of arachidonic acid, glycero phospholipid, linoleic acid, and thiamine. These results observed that lysophosphatidylcholine (20:1/0:0) and phosphatidylglycerol(PGF1α/16:0) had a tremendous anticipating power with relatively increased AUC values (AUC > 0.9), and they also presented a significant correlation of Mo concentrations in whole blood and Cu concentrations in urine, respectively. CONCLUSION The serum metabolism was changed significantly after exposure to welding fume. Lysophosphatidylcholine (20:1/0:0) and phosphatidylglycerol (PGF1α/16:0) may be a potential biological mediator and biomarker for laborers exposure to welding fume.
Collapse
Affiliation(s)
- Fangda Peng
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China
- NHC Key Laboratory for Engineering Control of Dust Hazard, Beijing, 102308, China
| | - Lijia Yu
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China
- NHC Key Laboratory for Engineering Control of Dust Hazard, Beijing, 102308, China
| | - Chunmin Zhang
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China
- NHC Key Laboratory for Engineering Control of Dust Hazard, Beijing, 102308, China
| | - Qicai Liu
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China
- NHC Key Laboratory for Engineering Control of Dust Hazard, Beijing, 102308, China
| | - Kai Yan
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China
- NHC Key Laboratory for Engineering Control of Dust Hazard, Beijing, 102308, China
| | - Kangfu Zhang
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China
- NHC Key Laboratory for Engineering Control of Dust Hazard, Beijing, 102308, China
| | - Yuqiao Zheng
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China
- NHC Key Laboratory for Engineering Control of Dust Hazard, Beijing, 102308, China
| | - Wubin Liu
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China
- NHC Key Laboratory for Engineering Control of Dust Hazard, Beijing, 102308, China
| | - Yan Li
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China
- NHC Key Laboratory for Engineering Control of Dust Hazard, Beijing, 102308, China
| | - Jingguang Fan
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China.
- NHC Key Laboratory for Engineering Control of Dust Hazard, Beijing, 102308, China.
| | - Chunguang Ding
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China.
- NHC Key Laboratory for Engineering Control of Dust Hazard, Beijing, 102308, China.
| |
Collapse
|
2
|
Hou Y, Ding T, Guan Z, Wang J, Yao R, Yu Z, Zhao X. Untargeted metabolomics reveals the preventive effect of quercetin on nephrotoxicity induced by four organophosphorus pesticide mixtures. Food Chem Toxicol 2023; 175:113747. [PMID: 36997054 DOI: 10.1016/j.fct.2023.113747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
This research aimed to explore the protective effect of quercetin against nephrotoxicity induced by four organophosphate pesticide mixtures (PM) using untargeted metabolomics technology in rat kidneys. Sixty male Wistar rats were randomly divided into six groups: control, low-dose quercetin treated (10 mg/kg. bw), high-dose quercetin treated (50 mg/kg. bw), PM-treated, and two dosages of quercetin + PM-treated. Metabolomics results showed that 17 differential metabolites were identified in the PM-treated group, and pathway analysis revealed that renal metabolic disorders include purine metabolism, glycerophospholipid metabolism, and vitamin B6 metabolism. When high-dose quercetin and PM-treated were administered to rats concurrently, the intensities of differential metabolites were substantially restored (p < 0.01), suggesting that quercetin can improve renal metabolic disorders caused by organophosphate pesticides (OPs). Mechanistically, quercetin could regulate the purine metabolism disorder and endoplasmic reticulum stress (ERS)-mediated autophagy induced by OPs by inhibiting XOD activity. Moreover, quercetin inhibits PLA2 activity to regulate glycerophospholipid metabolism and it could also exert antioxidant and anti-inflammatory effects to correct vitamin B6 metabolism in rat kidneys. Taken together, the high dose of quercetin (50 mg/kg.bw) has a certain protective effect on OPs-induced nephrotoxicity in rats, which provides a theoretical basis for quercetin against nephrotoxicity caused by OPs.
Collapse
|
3
|
Jiao H, Yuan T, Wang X, Zhou X, Ming R, Cui H, Hu D, Lu P. Biochemical, histopathological and untargeted metabolomic analyses reveal hepatotoxic mechanism of acetamiprid to Xenopus laevis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120765. [PMID: 36455769 DOI: 10.1016/j.envpol.2022.120765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Acetamiprid, a commonly detected neonicotinoid in aquatic ecosystems, poses a threat to aquatic non-target organisms. However, limited information is available on the toxic effects of acetamiprid on nontarget aquatic organisms. This study assessed the toxic effects of acetamiprid on Xenopus laevis, a typical model organism. The acute toxicity for 96 h revealed that acetamiprid had detrimental effects with a median lethal concentration (LC50) value of 64.48 mg/L. Toxicity assays, including oxidative stress, histopathology and untargeted metabolomics of acetamiprid to X. laevis, were performed for 28 d at 1/10 and 1/100 LC50 by studying the liver, which is the most antioxidant and major metabolic organ. The results demonstrated that acetamiprid exposure significantly changed the oxidant status of and caused histological damage to the liver. Furthermore, the untargeted metabolomic analysis based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) identified the endogenous metabolites that were significantly altered. There were 89 differential metabolites compared to the controls: 64 in the 1/10 LC50 group, 47 in the 1/100 LC50 group, and 23 metabolites in the 1/10 LC50 group were the same as those in the 1/100 LC50 group. Sixteen pathways that were mainly associated with amino acid metabolism and lipid metabolism, such as sphingolipid metabolism, glycerophospholipid metabolism and histidine metabolism, were disrupted, revealing the hepatotoxic effects of acetamiprid on X. laevis at the molecular level. These findings provide crucial information for evaluating the aquatic risks of neonicotinoids.
Collapse
Affiliation(s)
- Hui Jiao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Tingting Yuan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Xiaohuan Wang
- Guizhou Station of Plant Protection and Quarantine, China
| | - Xia Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Renyue Ming
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Honghao Cui
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Ping Lu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
4
|
Raj A, Kumar A. Recent advances in assessment methods and mechanism of microbe-mediated chlorpyrifos remediation. ENVIRONMENTAL RESEARCH 2022; 214:114011. [PMID: 35985484 DOI: 10.1016/j.envres.2022.114011] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Chlorpyrifos (CP) is one of the Organophosphorus pesticides (OPs) primarily used in agriculture to safeguard crops from pests and diseases. The pervasive use of chlorpyrifos is hazardous to humans and the environment as it inhibits the receptor for acetylcholinesterase activity, leading to abnormalities linked to the central nervous system. Hence, there is an ardent need to develop an effective and sustainable approach to the on-site degradation of chlorpyrifos. The role of microbes in the remediation of pesticides is considered the most effective and eco-friendly approach, as they have strong degradative potential due to their gene and enzymes naturally adapted to these sites. Several reports have previously been published on exploring the role of microbes in the degradation of CP. However, detection of CP as an environmental contaminant is an essential prerequisite for developing an efficient microbial-mediated biodegradation method with less harmful intermediates. Most of the articles published to date discuss the fate and impact of CP in the environment along with its degradation mechanism but still fail to discuss the analytical portion. This review is focused on the latest developments in the field of bioremediation of CP along with its physicochemical properties, toxicity, fate, and conventional (UV-Visible spectrophotometer, FTIR, NMR, GC-MS, etc) and advanced detection methods (Biosensors and immunochromatography-based methods) from different environmental samples. Apart from it, this review explores the role of metagenomics, system biology, in-silico tools, and genetic engineering in facilitating the bioremediation of CP. One of the objectives of this review is to educate policymakers with scientific data that will enable the development of appropriate strategies to reduce pesticide exposure and the harmful health impacts on both Human and other environmental components. Moreover, this review provides up-to-date developments related to the sustainable remediation of CP.
Collapse
Affiliation(s)
- Aman Raj
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, 470003, MP, India
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, 470003, MP, India.
| |
Collapse
|
5
|
Chen C, Luo J, Zhang W, Bu C, Ma L. Pesticide degradation in an integrated constructed wetland: Insights from compound-specific isotope analysis and 16S rDNA sequencing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156758. [PMID: 35718171 DOI: 10.1016/j.scitotenv.2022.156758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Carbon isotope analysis and the 16S rDNA sequencing were adopted to investigate the degradation process of chlorpyrifos during its transport in the integrated constructed wetland (ICW). Firstly, the extent of concentration decrease of chlorpyrifos was examined, and the removal efficiency in the first 36 h was found to be the highest. The removal rate reached 96.83 % after 96 h, and this process fit to the first-order kinetic model, with a kinetic constant (k) of 0.066 h-1. A significant carbon isotope fractionation was observed, with a change of the δ13C values from -26.54 ± 0.07 ‰ to -25.41 ± 0.08 ‰. The average chlorpyrifos biodegradation proportion reached 71.23 % (60.42 %-85.04 %), and it was predicted that about 11.79 %-36.41 % of chlorpyrifos removal in the ICW was attributed to abiotic factors. The outlet of the subsurface flow constructed wetland saw the highest D∗/B∗ value (1.38-3.88), indicating that the remaining fraction of dilution was much more significant than that of degradation in this period. The top 20 phyla of microbial community were identified in the ICW. Proteobacteria was the most dominant phylum, accounting for >40 % of the bacterial communities in all sampling locations. Acidobacteria and Bacteroidetes were the second and third dominant phyla. At the genus level, the microbial community composition differed more greatly in every stage of the ICW, and the spatial distribution difference was quite significant in the ICW. This study is important to figure out the migration and transformation of chlorpyrifos when the ICW was adopted as a removal tool for organic micro-pollutants, and more similar studies could be carried out in the future to promote the evaluation of pollutant removal capacity of the ICWs, and to further develop the application of stable isotope analysis of compounds in the natural environment.
Collapse
Affiliation(s)
- Chong Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jiahong Luo
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Weiwei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Chengcheng Bu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Limin Ma
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| |
Collapse
|
6
|
Djekkoun N, Depeint F, Guibourdenche M, El Khayat El Sabbouri H, Corona A, Rhazi L, Gay-Queheillard J, Rouabah L, Hamdad F, Bach V, Benkhalifa M, Khorsi-Cauet H. Chronic Perigestational Exposure to Chlorpyrifos Induces Perturbations in Gut Bacteria and Glucose and Lipid Markers in Female Rats and Their Offspring. TOXICS 2022; 10:toxics10030138. [PMID: 35324763 PMCID: PMC8949051 DOI: 10.3390/toxics10030138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 11/23/2022]
Abstract
An increasing burden of evidence is pointing toward pesticides as risk factors for chronic disorders such as obesity and type 2 diabetes, leading to metabolic syndrome. Our objective was to assess the impact of chlorpyrifos (CPF) on metabolic and bacteriologic markers. Female rats were exposed before and during gestation and during lactation to CPF (1 mg/kg/day). Outcomes such as weight, glucose and lipid profiles, as well as disturbances in selected gut bacterial levels, were measured in both the dams (at the end of the lactation period) and in their female offspring at early adulthood (60 days of age). The results show that the weight of CPF dams were lower compared to the other groups, accompanied by an imbalance in blood glucose and lipid markers, and selected gut bacteria. Intra-uterine growth retardation, as well as metabolic disturbances and perturbation of selected gut bacteria, were also observed in their offspring, indicating both a direct effect on the dams and an indirect effect of CPF on the female offspring. Co-treatment with inulin (a prebiotic) prevented some of the outcomes of the pesticide. Further investigations could help better understand if those perturbations mimic or potentiate nutritional risk factors for metabolic syndrome through high fat diet.
Collapse
Affiliation(s)
- Narimane Djekkoun
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, CEDEX 1, 80054 Amiens, France; (N.D.); (M.G.); (H.E.K.E.S.); (A.C.); (J.G.-Q.); (V.B.); (M.B.)
- Laboratory of Cellular and Molecular Biology, University of the Brothers Mentouri Constantine 1, Constantine 2500, Algeria;
| | - Flore Depeint
- Transformations & Agro-Ressources ULR7519, Institut Polytechnique UniLaSalle—Université d’Artois, 60026 Beauvais, France; (F.D.); (L.R.)
| | - Marion Guibourdenche
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, CEDEX 1, 80054 Amiens, France; (N.D.); (M.G.); (H.E.K.E.S.); (A.C.); (J.G.-Q.); (V.B.); (M.B.)
| | - Hiba El Khayat El Sabbouri
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, CEDEX 1, 80054 Amiens, France; (N.D.); (M.G.); (H.E.K.E.S.); (A.C.); (J.G.-Q.); (V.B.); (M.B.)
| | - Aurélie Corona
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, CEDEX 1, 80054 Amiens, France; (N.D.); (M.G.); (H.E.K.E.S.); (A.C.); (J.G.-Q.); (V.B.); (M.B.)
| | - Larbi Rhazi
- Transformations & Agro-Ressources ULR7519, Institut Polytechnique UniLaSalle—Université d’Artois, 60026 Beauvais, France; (F.D.); (L.R.)
| | - Jerome Gay-Queheillard
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, CEDEX 1, 80054 Amiens, France; (N.D.); (M.G.); (H.E.K.E.S.); (A.C.); (J.G.-Q.); (V.B.); (M.B.)
| | - Leila Rouabah
- Laboratory of Cellular and Molecular Biology, University of the Brothers Mentouri Constantine 1, Constantine 2500, Algeria;
| | - Farida Hamdad
- Center for Human Biology, CHU Amiens-Picardie, 80000 Amiens, France;
| | - Véronique Bach
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, CEDEX 1, 80054 Amiens, France; (N.D.); (M.G.); (H.E.K.E.S.); (A.C.); (J.G.-Q.); (V.B.); (M.B.)
| | - Moncef Benkhalifa
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, CEDEX 1, 80054 Amiens, France; (N.D.); (M.G.); (H.E.K.E.S.); (A.C.); (J.G.-Q.); (V.B.); (M.B.)
- Center for Human Biology, CHU Amiens-Picardie, 80000 Amiens, France;
| | - Hafida Khorsi-Cauet
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, CEDEX 1, 80054 Amiens, France; (N.D.); (M.G.); (H.E.K.E.S.); (A.C.); (J.G.-Q.); (V.B.); (M.B.)
- Correspondence: ; Tel.: +33-322-827-896
| |
Collapse
|
7
|
Kaur J, Sengupta P, Mukhopadhyay S. Critical Review of Bioadsorption on Modified Cellulose and Removal of Divalent Heavy Metals (Cd, Pb, and Cu). Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04583] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jatinder Kaur
- Department of Chemistry, Fergusson College, Pune 411004, India
| | | | - Samrat Mukhopadhyay
- Department of Textile and Fiber Engineering, Indian Institute of Technology, New Delhi 110016, India
| |
Collapse
|
8
|
Zhang Y, Guo S, Wang S, Li X, Hou D, Li H, Wang L, Xu Y, Ma B, Wang H, Jiang X. LncRNA OIP5-AS1 inhibits ferroptosis in prostate cancer with long-term cadmium exposure through miR-128-3p/SLC7A11 signaling. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112376. [PMID: 34051661 DOI: 10.1016/j.ecoenv.2021.112376] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 05/19/2023]
Abstract
Previous studies suggest that cadmium (Cd) is one of the causative factors of prostate cancer (PCa), but the effect of chronic Cd exposure on PCa progression remains unclear. Besides, whether long noncoding RNAs (lncRNAs) are involved in the regulation of prolonged exposure to Cd in PCa needs to be elucidated. In the present study, we found that the serum concentration of Cd in PCa patients was positively correlated with the Gleason score and tumor-node-metastasis (TNM) classification. To simulate chronic Cd exposure in PCa, we subjected PC3 and DU145 cells to long-term, low-dose Cd exposure and further examined tumor behavior. Functional studies identified that chronic Cd exposure promoted cell growth and ferroptosis resistance in vitro and in vivo. Furthermore, we found that lncRNA OIP5-AS1 expression was greatly elevated in PC3 and DU145 cells upon chronic Cd exposure. Dysregulation of OIP5-AS1 expression mediated cell growth and Cd-induced ferroptosis. Mechanistically, we demonstrated that OIP5-AS1 served as an endogenous sponge of miR-128-3p to regulate the expression of SLC7A11, a surrogate marker of ferroptosis. Moreover, miR-128-3p decreased cell viability by enhancing ferroptosis. Taken together, our data indicate that lncRNA OIP5-AS1 promotes PCa progression and ferroptosis resistance through miR-128-3p/SLC7A11 signaling.
Collapse
Affiliation(s)
- Yangyi Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, PR China
| | - Shanqi Guo
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, PR China
| | - Shuo Wang
- The School of Medicine, Nankai University, Tianjin 300071, PR China
| | - Xiaojian Li
- Department of Urology, Peking University Shougang Hospital, Beijing 100144, PR China
| | - Dingkun Hou
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, PR China
| | - Hongzheng Li
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, PR China
| | - Lili Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, PR China
| | - Yong Xu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, PR China
| | - Baojie Ma
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, PR China.
| | - Haitao Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, PR China.
| | - Xingkang Jiang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, PR China; The School of Medicine, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
9
|
Liu H, Li H, Zhang X, Gong X, Han D, Zhang H, Tian X, Xu Y. Metabolomics comparison of metabolites and functional pathways in the gills of Chlamys farreri under cadmium exposure. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 86:103683. [PMID: 34052434 DOI: 10.1016/j.etap.2021.103683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 04/17/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
The biological processes of Chlamys farreri (C. farreri), an economically important shellfish, are affected when exposed to Cd2+. In this study, changes to biological processes and metabolite levels in C. farreri were examined when exposed to Cd2+. Ultra-performance liquid chromatography-tandem TOF mass spectrometry (UPLC-TOF/MS)-based untargeted metabolomics was used to examine changes in the metabolism of C. farreri gill tissue exposed to 0.050 mg/L Cd2+ for 96 h in a natural environment. Sixty-eight metabolites with significant differences were screened by multivariate statistical analysis. Eleven enriched functional pathways displayed significant changes in inactivity. Differential metabolites, mainly C00157 and C00350, have a significant impact on functional pathways and can be used as potential major biomarkers. Lipid phosphorylation, disruption of signal transduction, and autophagy activation were observed to change in C. farreri when exposed to Cd. The metabolome information supplements research on C. farreri exposure to heavy metals and provides a platform for further multi-omics analysis.
Collapse
Affiliation(s)
- Huan Liu
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai, 200120, China
| | - Huanjun Li
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, China
| | - Xiuzhen Zhang
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, China
| | - Xianghong Gong
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, China
| | - Dianfeng Han
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, China
| | - Huawei Zhang
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, China
| | - Xiuhui Tian
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, China
| | - Yingjiang Xu
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, China.
| |
Collapse
|
10
|
Yang G, Wang Y, Li J, Wang D, Bao Z, Wang Q, Jin Y. Health risks of chlorothalonil, carbendazim, prochloraz, their binary and ternary mixtures on embryonic and larval zebrafish based on metabolomics analysis. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124240. [PMID: 33075626 DOI: 10.1016/j.jhazmat.2020.124240] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/24/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Chlorothalonil (CTL), carbendazim (CBZ), and prochloraz (PCZ) are fungicides widely used in many countries. The use of these fungicides raises concerns because they are often applied together or used in the same agricultural area. However, the toxicity of these fungicides or mixtures, especially to aquatic organisms, has received limited attention. Here, embryonic and larval zebrafish were exposed to indicated concentrations of CTL, CBZ, and PCZ and their binary (CTL+CBZ, CTL+PCZ and CBZ+PCZ) and ternary (CTL+CBZ+PCZ) mixtures for 24 h. Based on metabolomics analysis, we observed that hundreds of metabolites were altered, and glycolysis metabolism and amino acid metabolism were the two most affected pathways. Interestingly, a total of 9 and 26 metabolites changed significantly in embryos and larvae treated with all fungicides, respectively. Among these altered metabolites, 2-aminoadipic acid (2-AAA) levels increased significantly in all groups, indicating that 2-AAA potentially represents a useful biomarker for evaluating the toxicity of fungicides. Furthermore, the joint effects of CTL+PCZ on embryos and larvae, especially on amino acid metabolism, were weaker than those in other groups, but combined treatment did not influence individual fungicidal activity. Data acquired from metabolomics provided important insight for understanding the mechanism by which fungicides or their mixtures affect zebrafish.
Collapse
Affiliation(s)
- Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Jian Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Zhiwei Bao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
11
|
Zhang LJ, Qian L, Ding LY, Wang L, Wong MH, Tao HC. Ecological and toxicological assessments of anthropogenic contaminants based on environmental metabolomics. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2021; 5:100081. [PMID: 36158612 PMCID: PMC9488080 DOI: 10.1016/j.ese.2021.100081] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/06/2021] [Accepted: 01/23/2021] [Indexed: 05/02/2023]
Abstract
There has long been a great concern with growing anthropogenic contaminants and their ecological and toxicological effects on living organisms and the surrounding environment for decades. Metabolomics, a functional readout of cellular activity, can capture organismal responses to various contaminant-related stressors, acquiring direct signatures to illustrate the environmental behaviours of anthropogenic contaminants better. This review entails the application of metabolomics to profile metabolic responses of environmental organisms, e.g. animals (rodents, fish, crustacean and earthworms) and microorganisms (bacteria, yeast and microalgae) to different anthropogenic contaminants, including heavy metals, nanomaterials, pesticides, pharmaceutical and personal products, persistent organic pollutants, and assesses their ecotoxicological impacts with regard to literature published in the recent five years. Contaminant-induced metabolism alteration and up/down-regulation of metabolic pathways are revealed in typical organisms. The obtained insights of variations in global metabolism provide a distinct understanding of how anthropogenic contaminants exert influences on specific metabolic pathways on living organisms. Thus with a novel ecotechnique of environmental metabolomics, risk assessments of anthropogenic contaminants are profoundly demonstrated.
Collapse
Affiliation(s)
- Li-Juan Zhang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
| | - Lu Qian
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
| | - Ling-Yun Ding
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
| | - Lei Wang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Ming Hung Wong
- Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Hu-Chun Tao
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
- Corresponding author.
| |
Collapse
|