1
|
Li K, Li J, Luo S, Chai L. Cogrowth advantage: Intestinal microbiota analysis of Bufo gargarizans and Rana chensinensis. Comp Biochem Physiol A Mol Integr Physiol 2025; 299:111764. [PMID: 39396615 DOI: 10.1016/j.cbpa.2024.111764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Intestinal microbiota has profound effects on host health and adaptation to environmental changes. Bufo gargarizans and Rana chensinensis coexist in the same habitat and have been paid much attention to economically because of their medicinal value. To date, no comparison of differences between single and mixed populations has been made. In our study, differences in the structure and function of the intestinal microbial of B. gargarizans and R. chensinensis in environments of single-species and mixed-species growth were investigated by high-throughput sequencing. Our results suggest that the cogrowth of B. gargarizans and R. chensinensis could lead to the decrease of the abundance of pathogenic bacteria (Bosea) and the introduction or increase of beneficial bacteria (Kaistia, Cetobacterium and Erysipelatoclostridium). The Tax4Fun-based functional predictions revealed that the level of pathways involved in the metabolism of R. chensinensis in mixed-species aquaria is greatly up-regulated. This study provides useful information for ecologists, ecosystem policy makers and wildlife conservationists to promote more effective conservation measures.
Collapse
Affiliation(s)
- Kaiyue Li
- School of Water and Environment, Chang' an University, Xi'an 710054, China; College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Jiayi Li
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Shuangyan Luo
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Lihong Chai
- School of Water and Environment, Chang' an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang' an University, Xi'an 710054, China.
| |
Collapse
|
2
|
Lin CY, Lee HL, Wang C, Sung FC, Su TC. Positive Association Between Serum Concentration of 4-Tertiary-octylphenol and Oxidation of DNA and Lipid in Adolescents and Young Adults. EXPOSURE AND HEALTH 2024; 16:1311-1320. [DOI: 10.1007/s12403-024-00628-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/14/2023] [Accepted: 01/08/2024] [Indexed: 01/04/2025]
|
3
|
Rosenfeld CS. Should Pregnant Women Consume Probiotics to Combat Endocrine-Disrupting Chemical-Induced Health Risks to Their Unborn Offspring? Biomedicines 2024; 12:1628. [PMID: 39200093 PMCID: PMC11351870 DOI: 10.3390/biomedicines12081628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/12/2024] [Accepted: 07/20/2024] [Indexed: 09/01/2024] Open
Abstract
Endocrine-disrupting chemicals (EDCs) have become so pervasive in our environment and daily lives that it is impossible to avoid contact with such compounds, including pregnant women seeking to minimize exposures to themselves and their unborn children. Developmental exposure of humans and rodent models to bisphenol A (BPA) and other EDCs is linked to increased anxiogenic behaviors, learning and memory deficits, and decreased socio-sexual behaviors. Prenatal exposure to BPA and other EDCs leads to longstanding and harmful effects on gut microbiota with reductions in beneficial bacteria, i.e., gut dysbiosis, and such microbial changes are linked to host changes in fecal metabolites, including those involved in carbohydrate metabolism and synthesis, and neurobehavioral alterations in adulthood, in particular, social and cognitive deficits. Gut dysbiosis is increasingly being recognized as a key driver of a myriad of diseases, ranging from metabolic, cardiovascular, reproductive, and neurobehavioral disorders via the gut-microbiome-brain axis. Thus, EDCs might induce indirect effects on physical and mental health by acting as microbiome-disrupting chemicals. Findings raise the important question as to whether pregnant women should consume a probiotic supplement to mitigate pernicious effects of EDCs, especially BPA, on themselves and their unborn offspring. Current studies investigating the effects of maternal probiotic supplementation on pregnant women's health and that of their unborn offspring will be reviewed. Data will inform on the potential application of probiotic supplementation to reverse harmful effects of EDCs, especially BPA, in pregnant women unwittingly exposed to these compounds and striving to give their offspring the best start in life.
Collapse
Affiliation(s)
- Cheryl S. Rosenfeld
- Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA;
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
- Department of Genetics Area Program, University of Missouri, Columbia, MO 65211, USA
- Department of Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
4
|
Chai L, Song Y, Chen A, Jiang L, Deng H. Gut microbiota perturbations during larval stages in Bufo gargarizans tadpoles after Cu exposure with or without the presence of Pb. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122774. [PMID: 37871736 DOI: 10.1016/j.envpol.2023.122774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Cu and Pb are ubiquitous environmental contaminants, but there is limited information on their potential impacts on gut microbiota profile in anuran amphibians at different developmental stages during metamorphosis. In this study, Bufo gargarizans tadpoles were chronically exposed to Cu alone or Cu combined with Pb from Gs26 throughout metamorphosis. Morphology of tadpoles, histological characteristic and bacterial community of intestines were evaluated at three developmental stages: Gs33, Gs36, and Gs42. Results showed that Cu and Cu + Pb exposure caused various degrees of morphological and histological changes in guts at tested three stages. In addition, bacterial richness and diversity in tadpoles especially at Gs33 and Gs42 were disturbed by Cu and Cu + Pb. Beta diversity demonstrated that the bacterial community structures were influenced by both heavy metals exposure and developmental stages. Alterations in taxonomic composition were characterized by increased abundance of Proteobacteria and Firmicutes, reduction of Fusobacteriota, as well as decreased Cetobacterium and increased C39 at all three stages. Overall, response of gut bacterial diversity and composition to Cu stress depends on the developmental stage, while the altered patterns of bacterial community at Cu stress could be modified further by the presence of Pb. Moreover, predicted metabolic disorders were associated with shifts in bacterial community, but needs integrated information from metagenomic and metatranscriptomic analyses. These results contribute to the growing body of research about potential ecotoxicological effects of heavy metals on amphibian gut microbiota during metamorphosis.
Collapse
Affiliation(s)
- Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China.
| | - Yanjiao Song
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China.
| | - Aixia Chen
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China
| | - Ling Jiang
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China
| | - Hongzhang Deng
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China
| |
Collapse
|
5
|
Li X, Li K, Li J, Zhang Z, Wang H. Effects of perchlorate and exogenous T4 on growth, development and tail resorption of Rana chensinensis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122333. [PMID: 37558196 DOI: 10.1016/j.envpol.2023.122333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/31/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
Endocrine disruptors have been demonstrated to exert adverse effects on growth and development of amphibians by disrupting hormone levels. Tail resorption, which is one of the most remarkable events during amphibian metamorphosis, is closely associated with thyroid hormones levels. However, limited research has been conducted on the effects of endocrine disruptors on tail resorption in amphibians. This study explored the effects of NaClO4 and T4 on the growth, development and tail resorption during the metamorphosis of Rana Chensinensis. The results demonstrated that exposure to NaClO4 led to an increase in body size and a delay in metamorphosis of R. Chensinensis tadpoles. Histological analysis revealed that both NaClO4 and exogenous T4 exposure resulted in thyroid gland injury, and NaClO4 treatment delayed the degradation of notochord and muscles, thereby delaying tail resorption. Moreover, transcriptome sequencing results showed that apoptosis-related genes (APAF1, BAX and CASP6) and cell component degradation-related genes (MMP9 and MMP13) were highly expressed in the T4 exposure group, and the expression of oxidative stress-related genes (SOD and CAT) was higher in the NaClO4 exposure group. Taken together, both NaClO4 and exogenous T4 affect tail resorption in R. Chensinensis, thereby affecting their adaptation to terrestrial life. The present study will not only provide a reference for future experimental research on the effects of other endocrine disruptors on the growth, development and tail resorption of amphibians but will also provide insights into environmental protection and ecological risk assessment.
Collapse
Affiliation(s)
- Xinyi Li
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Kaiyue Li
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Jiayi Li
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhiqin Zhang
- Basic Experimental Teaching Center, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
6
|
Lin CY, Chen CW, Wang C, Sung FC, Su TC. The Association between 4-Tertiary-Octylphenol, Apoptotic Microparticles, and Carotid Intima-Media Thickness in a Young Taiwanese Population. TOXICS 2023; 11:757. [PMID: 37755767 PMCID: PMC10537624 DOI: 10.3390/toxics11090757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023]
Abstract
As one of the most common alkylphenols, 4-tertiary-octylphenol (4-tOP) is commonly used in many consumer products. Our previous epidemiological study revealed a negative correlation between serum 4-tOP levels and carotid intima-media thickness (CIMT), which serves as a biomarker of arteriosclerosis. We aimed to explore the role of apoptotic microparticles, markers of vascular endothelial cell function, in the 4-tOP and CIMT connection. To investigate this, we enrolled 886 Taiwanese adolescents and young adults (aged 12-30 years) and examined the relationships among serum 4-tOP levels, apoptotic microparticles (CD31+/CD42a-, CD31+/CD42a+), and CIMT. Our results showed negative associations among serum 4-tOP levels, both apoptotic microparticles, and CIMT in multiple linear regression analysis. The odds ratios for CIMT (≥75th percentile) and the natural logarithm of 4-tOP were highest when both CD31+/CD42a- and CD31+/CD42a+ were greater than the 50th percentile. Conversely, the odds ratios were lowest when both CD31+/CD42a- and CD31+/CD42a+ were less than the 50th percentile. In the structural equation model, we demonstrated that serum 4-tOP levels were negatively correlated with CIMT and indirectly and negatively correlated with CIMT through both apoptotic microparticles. In conclusion, our study reported the inverse association between 4-tOP apoptotic microparticles and CIMT in a young Taiwanese population. Further experimental studies are needed to clarify these associations.
Collapse
Affiliation(s)
- Chien-Yu Lin
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City 237, Taiwan;
- School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan;
| | - Ching-Way Chen
- Department of Cardiology, National Taiwan University Hospital Yunlin Branch, Yunlin 640, Taiwan;
| | - Chikang Wang
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan;
| | - Fung-Chang Sung
- Department of Health Services Administration, China Medical University College of Public Health, Taichung 404, Taiwan;
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung 413, Taiwan
| | - Ta-Chen Su
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
7
|
Villatoro-Castañeda M, Forsburg ZR, Ortiz W, Fritts SR, Gabor CR, Carlos-Shanley C. Exposure to Roundup and Antibiotics Alters Gut Microbial Communities, Growth, and Behavior in Rana berlandieri Tadpoles. BIOLOGY 2023; 12:1171. [PMID: 37759571 PMCID: PMC10525943 DOI: 10.3390/biology12091171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023]
Abstract
The gut microbiome is important for digestion, host fitness, and defense against pathogens, which provides a tool for host health assessment. Amphibians and their microbiomes are highly susceptible to pollutants including antibiotics. We explored the role of an unmanipulated gut microbiome on tadpole fitness and phenotype by comparing tadpoles of Rana berlandieri in a control group (1) with tadpoles exposed to: (2) Roundup® (glyphosate active ingredient), (3) antibiotic cocktail (enrofloxacin, sulfamethazine, trimethoprim, streptomycin, and penicillin), and (4) a combination of Roundup and antibiotics. Tadpoles in the antibiotic and combination treatments had the smallest dorsal body area and were the least active compared to control and Roundup-exposed tadpoles, which were less active than control tadpoles. The gut microbial community significantly changed across treatments at the alpha, beta, and core bacterial levels. However, we did not find significant differences between the antibiotic- and combination-exposed tadpoles, suggesting that antibiotic alone was enough to suppress growth, change behavior, and alter the gut microbiome composition. Here, we demonstrate that the gut microbial communities of tadpoles are sensitive to environmental pollutants, namely Roundup and antibiotics, which may have consequences for host phenotype and fitness via altered behavior and growth.
Collapse
Affiliation(s)
- Melissa Villatoro-Castañeda
- Department of Biology, Texas State University, 601 University Dr., San Marcos, TX 78666, USA; (M.V.-C.); (Z.R.F.); (W.O.); (S.R.F.); (C.C.-S.)
| | - Zachery R. Forsburg
- Department of Biology, Texas State University, 601 University Dr., San Marcos, TX 78666, USA; (M.V.-C.); (Z.R.F.); (W.O.); (S.R.F.); (C.C.-S.)
- Archbold Biological Station, 123 Main Dr., Venus, FL 33960, USA
| | - Whitney Ortiz
- Department of Biology, Texas State University, 601 University Dr., San Marcos, TX 78666, USA; (M.V.-C.); (Z.R.F.); (W.O.); (S.R.F.); (C.C.-S.)
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Sarah R. Fritts
- Department of Biology, Texas State University, 601 University Dr., San Marcos, TX 78666, USA; (M.V.-C.); (Z.R.F.); (W.O.); (S.R.F.); (C.C.-S.)
| | - Caitlin R. Gabor
- Department of Biology, Texas State University, 601 University Dr., San Marcos, TX 78666, USA; (M.V.-C.); (Z.R.F.); (W.O.); (S.R.F.); (C.C.-S.)
| | - Camila Carlos-Shanley
- Department of Biology, Texas State University, 601 University Dr., San Marcos, TX 78666, USA; (M.V.-C.); (Z.R.F.); (W.O.); (S.R.F.); (C.C.-S.)
| |
Collapse
|
8
|
Hou J, Xiang J, Li D, Liu X, Pan W. Gut microbial response to host metabolic phenotypes. Front Nutr 2022; 9:1019430. [PMID: 36419554 PMCID: PMC9676441 DOI: 10.3389/fnut.2022.1019430] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/21/2022] [Indexed: 09/10/2023] Open
Abstract
A large number of studies have proved that biological metabolic phenotypes exist objectively and are gradually recognized by humans. Gut microbes affect the host's metabolic phenotype. They directly or indirectly participate in host metabolism, physiology and immunity through changes in population structure, metabolite differences, signal transduction and gene expression. Obtaining comprehensive information and specific identification factors associated with gut microbiota and host metabolic phenotypes has become the focus of research in the field of gut microbes, and it has become possible to find new and effective ways to prevent or treat host metabolic diseases. In the future, precise treatment of gut microbes will become one of the new therapeutic strategies. This article reviews the content of gut microbes and carbohydrate, amino acid, lipid and nucleic acid metabolic phenotypes, including metabolic intermediates, mechanisms of action, latest research findings and treatment strategies, which will help to understand the relationship between gut microbes and host metabolic phenotypes and the current research status.
Collapse
Affiliation(s)
- Jinliang Hou
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jianguo Xiang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Deliang Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xinhua Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | | |
Collapse
|
9
|
Wang H, Liu Y, Chai L, Wang H. Morphology and molecular mechanisms of tail resorption during metamorphosis in Rana chensinensis tadpole (Anura: Ranidae). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 41:100945. [PMID: 34864614 DOI: 10.1016/j.cbd.2021.100945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
The tail resorption process was an inevitable and pivotal transformation during amphibian metamorphosis. The present study investigated the mechanisms of tail resorption through histological and transcriptome analysis in Rana chensinensis. The results showed that tail resorption was initiated before the onset of metamorphic climax, and dramatically regressed after metamorphic climax by external-morphology measurement. The drastic disintegration of tail muscle and notochord occurred at Gs42-44, which were consistent with the trend of thyroid follicular cell height. Besides, expression level analysis and functional annotation of DEGs (differentially expressed genes) were conducted through RNA-seq analysis of the tail. Our study also analyzed the expression of genes related to oxidative stress, autophagy, apoptosis and degradation of cellular components in the tail of R. chensinensis. This study enriched the R. chensinensis transcriptome database and laid the foundation of further analysis of tail resorption.
Collapse
Affiliation(s)
- Hemei Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yutian Liu
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710062, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
10
|
Chen J, Huang G, Xiong H, Qin H, Zhang H, Sun Y, Dong X, Lei Y, Zhao Y, Zhao Z. Effects of Mixing Garlic Skin on Fermentation Quality, Microbial Community of High-Moisture Pennisetum hydridum Silage. Front Microbiol 2021; 12:770591. [PMID: 34819925 PMCID: PMC8606783 DOI: 10.3389/fmicb.2021.770591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 09/29/2021] [Indexed: 11/30/2022] Open
Abstract
Garlic skin, a by-product of garlic processing, was supposed to improve the fermentation quality of high-moisture silages because of its low moisture content and active compounds. Thus, fermentation and microbial characteristics of high-moisture Pennisetum hydridum ensiled with the addition of 0, 10, 20, and 30 wt% garlic skin (on a fresh matter basis) were analyzed during a 60-days fermentation. Results showed that the addition of garlic skin increased the dry matter content and lactic acid production, and decreased the pH and ammonia-N content of the silage. Adding garlic skin changed the relative abundance of bacterial communities with an increase in Lactobacillus and a decrease in Clostridium relative abundance. In conclusion, co-ensiling of high-moisture Pennisetum hydridum with garlic skin could be a simple approach to improve the silage quality and nutrients preservation.
Collapse
Affiliation(s)
- Juncai Chen
- College of Animal Science and Technology, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Herbivore Science, Chongqing, China
| | - Guohao Huang
- College of Animal Science and Technology, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Herbivore Science, Chongqing, China
| | - Hanlin Xiong
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Hao Qin
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Haonan Zhang
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yawang Sun
- College of Animal Science and Technology, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Herbivore Science, Chongqing, China
| | - Xianwen Dong
- Chongqing Academy of Animal Science, Chongqing, China
| | - Yan Lei
- Chengdu Agricultural College, Chengdu, China
| | - Yongju Zhao
- College of Animal Science and Technology, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Herbivore Science, Chongqing, China
| | - Zhongquan Zhao
- College of Animal Science and Technology, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Herbivore Science, Chongqing, China
| |
Collapse
|
11
|
Rosenfeld CS. Xenoestrogen Effects on the Gut Microbiome. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2021; 19:41-45. [PMID: 34423175 DOI: 10.1016/j.coemr.2021.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Endocrine disrupting chemicals (EDCs) that act as xenoestrogens are natural and synthetic chemicals widely present in food products, industrial products, and the environment. Such compounds can activate or inhibit normal hormonal pathways by binding to steroid and non-steroid receptors. It is becomingly apparent that resident bacteria in the gut and elsewhere in the body can dramatically influence host responses. As such, increasing number of studies have examined how EDCs affect the gut microbiome in a range of animal species. This review article will examine what is known about how various xenoestrogens, including bisphenol A (BPA), phthalates, and phytoestrogens, affect the gut microbiome in vertebrate species, any known secondary host effects, such as through alteration of gut metabolites, and future directions in the field.
Collapse
Affiliation(s)
- Cheryl S Rosenfeld
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO 65211 USA
- Biomedical Sciences, University of Missouri, Columbia, MO 65211 USA
- MU Institute for Data Science and Informatics (MU IDSI), University of Missouri, Columbia, MO 65211 USA
- Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO 65211 USA
- Genetics Area Program, University of Missouri, Columbia, MO 65211 USA
| |
Collapse
|
12
|
Zhang G, Li N, Zhang Y, Pan J, Gong D. Binding mechanism of 4-octylphenol with human serum albumin: Spectroscopic investigations, molecular docking and dynamics simulation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 255:119662. [PMID: 33780895 DOI: 10.1016/j.saa.2021.119662] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
4-Octylphenol (OP) is an environmental estrogen that can enter organisms through the food chain and cause various toxic effects. Here, the interaction between OP and human serum albumin (HSA) was explored through multipectral, molecular docking and dynamics simulation. The results showed that OP and HSA formed a ground state complex through a static quenching mechanism, and the interaction was spontaneously driven by hydrogen bonds and hydrophobic interaction forces. The binding constant at different temperatures was measured to be on the order of 105 L mol-1. Site competition experiments suggested that OP interacted with amino acid residues Lys195, Cy245 and Cys246 located at the Sudlow site I of HSA, resulting in a more stretched protein peptide. The presence of OP increased the surface hydrophobicity of HSA, and reduced the content of α-helix in HSA by 3.4%. FT-IR spectra showed that OP interacted with the C=O and C-H groups of the polypeptide backbone. Molecular docking demonstrated that OP mainly bound to Site I of HSA and hydrogen bonds participated in the interaction. In addition, molecular dynamics simulations further explored the stability and dynamic behavior of the OP-HSA complex through RMSD, RMSF, SASA and Rg.
Collapse
Affiliation(s)
- Guowen Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Na Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ying Zhang
- Division of Accounting, Nanchang University, Nanchang 330047, China
| | - Junhui Pan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Deming Gong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| |
Collapse
|
13
|
Seasonal Variation in Gut Microbiota Related to Diet in Fejervarya limnocharis. ANIMALS : AN OPEN ACCESS JOURNAL FROM MDPI 2021; 11:ani11051393. [PMID: 34068415 PMCID: PMC8153623 DOI: 10.3390/ani11051393] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/16/2022]
Abstract
Organisms adapt to environmental fluctuations by varying their morphology and structural, physiological, and biochemical characteristics. Gut microbiome, varying rapidly in response to environmental shifts, has been proposed as a strategy for adapting to the fluctuating environment (e.g., new dietary niches). Here, we explored the adaptive mechanism of frog intestinal microbes in response to environmental changes. We collected 170 Fejervarya limnocharis during different seasons (spring, summer, autumn, and pre-hibernation) to study the compositional and functional divergence of gut microbiota and analysed the effects of seasonal feeding habits and body condition on intestinal microorganisms using 16S rRNA high-throughput sequencing, Tax4Fun function prediction analysis, and bioinformatics analysis. The results showed no significant dietary difference in various seasons and between males and females. However, a significantly positive correlation was detected between dietary diversity and food niche width. Host condition (body size, body mass, and body condition) also revealed seasonal changes. The frogs were colonised by 71 bacterial phyla and dominated by Proteobacteria, Firmicutes, and Bacteroidetes. Stenotrophomonas was the most abundant genus in the Proteobacteria. The composition, diversity, and function of intestinal microorganisms in different seasons were significantly different. Significant differences were observed in composition and function but not in the microbial diversity between sexes. Furthermore, seasonal foods and body mass were significantly correlated with gut microbial composition. Our results suggest that gut microbiomes of F. limnocharis vary seasonally in response to diet under fluctuating environments.
Collapse
|