1
|
Huang Z, Song X, Song J, Su L, Meng S, Yu X, Liang K, Huang H, Zhang F, Li H, Tang Y, Sun B. Physiological and transcriptomic analysis of purple flowering stalks (Brassica campestris var. purpurea) under cadmium stress and exogenous glutathione application. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109424. [PMID: 39721184 DOI: 10.1016/j.plaphy.2024.109424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Glutathione (GSH) has a beneficial effect on the response of plants to cadmium (Cd) stress. The physiological and molecular processes by which glutathione influences Cd tolerance in purple flowering stalks (a Brassica vegetable) remain unclear. The aim of this study was to investigate the role of exogenous GSH in alleviating Cd toxicity in purple flowering stalks. On day 10 of the Cd stress treatment, spraying of GSH resulted in an increase in the net photosynthetic rate by 18.48%; enhanced antioxidant enzyme activities and the endogenous GSH and ascorbic acid contents; reduced the malondialdehyde and proline content 32.45% and 24.65%, respectively; and reduced the Cd content in the roots by 2.93%. On day 5, the transcriptome analysis showed that the application of GSH up-regulated the expression of 27 genes in the photosynthetic pathway. In contrast, GSH application led to the down-regulation of most genes involved in GSH metabolism, sulfur metabolism, and arginine and proline metabolism. These findings will aid future studies of the response of purple flowering stalks to Cd stress.
Collapse
Affiliation(s)
- Zhi Huang
- College of Horticulture, Sichuan Agricultural University, 611130, Chengdu, China
| | - Xiaoli Song
- College of Horticulture, Sichuan Agricultural University, 611130, Chengdu, China; Dongpo District Agriculture and Rural Bureau, 620000, Meishan, China
| | - Junyan Song
- College of Horticulture, Sichuan Agricultural University, 611130, Chengdu, China
| | - Liping Su
- College of Horticulture, Sichuan Agricultural University, 611130, Chengdu, China
| | - Shiling Meng
- College of Horticulture, Sichuan Agricultural University, 611130, Chengdu, China
| | - Xuena Yu
- College of Horticulture, Sichuan Agricultural University, 611130, Chengdu, China
| | - Kehao Liang
- College of Horticulture, Sichuan Agricultural University, 611130, Chengdu, China; Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegaard Alle 13, Taastrup, 2630, Denmark
| | - Huanhuan Huang
- College of Agronomy, Sichuan Agricultural University, 611130, Chengdu, China
| | - Fen Zhang
- College of Horticulture, Sichuan Agricultural University, 611130, Chengdu, China
| | - Huanxiu Li
- College of Horticulture, Sichuan Agricultural University, 611130, Chengdu, China
| | - Yi Tang
- College of Horticulture, Sichuan Agricultural University, 611130, Chengdu, China.
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, 611130, Chengdu, China.
| |
Collapse
|
2
|
Hou R, Wang Y, Deng Y, Zhu B, Zhang J, Zhou Y, Huang W. Engineered biochars for simultaneous immobilization of as and Cd in soil: Field evidence. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122764. [PMID: 39383747 DOI: 10.1016/j.jenvman.2024.122764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/04/2024] [Accepted: 09/29/2024] [Indexed: 10/11/2024]
Abstract
Agricultural soil contamination by potentially toxic elements (PTEs) such as arsenic (As) and cadmium (Cd) poses a serious threat to food security. Immobilization serves as a widely used approach for the remediation of PTEs contaminated soils, nevertheless, the long-term effectiveness for the simultaneous immobilization of both cations and oxyanions remains a challenge. In order to effectively enhance the synergistic immobilization effect of soil As and Cd contaminated by multiple elements and improve the ecological environment of farmland. In this study, a typical polluted tailings area farmland was selected for situ immobilization experiments, and biochar was prepared from cow manure (CMB), rice straw (RSB), and pine wood (PWB) as raw materials. On this basis, the pristine biochar was modified with ferric chloride (F), potassium permanganate (K), magnesium chloride (M), and aluminum chloride (A), respectively. Furthermore, the immobilization effect of modified biochar on As-Cd and the stress effect on soil respiration were investigated. The results showed that CMB and RSB reduced the bioavailability of heavy metals, potassium permanganate has strong oxidizing properties, and the strong oxidability of potassium permanganate stimulated the generation of more oxygen-containing functional groups on the surface of biochar, thereby enhancing the adsorption and complexation effect of modified materials on As and Cd. Among them, the extracted Cd concentration of Diethylenetriamine pentaacetic acid (DTPA) in KCMB and KRSB in 2020 decreased by 8.23-43.12% and 9.67-35.29% compared to other treatments, respectively. Meanwhile, the KCMB and KRSB treatments also reduced the enrichment of As and Cd in plant tissues. In addition, the dissolved organic carbon (DOC) content in KCMB treatment was relatively high, and the carbon stability of the material was weakened. Simultaneously, the soil respiration emission of KCMB treatment was increased by 5.63% and 11.93% compared to KRSB and KPWB treatments, respectively. In addition, the structural equation also shows that DOC has a large positive effect on soil respiration. In summary, the KRSB treatment effectively achieve synergistic immobilization of As-Cd and provide important guiding significance for green and low-carbon remediation of polluted farmland.
Collapse
Affiliation(s)
- Renjie Hou
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Yuxuan Wang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yanling Deng
- Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China.
| | - Bingyu Zhu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jian Zhang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yulu Zhou
- Guizhou Institute of Water Resources Science, Guiyang, Guizhou 550002, China
| | - Wei Huang
- Guizhou Institute of Water Resources Science, Guiyang, Guizhou 550002, China
| |
Collapse
|
3
|
Mabagala FS, Zhang T, Zeng X, He C, Shan H, Qiu C, Gao X, Zhang N, Su S. A review of amendments for simultaneously reducing Cd and As availability in paddy soils and rice grain based on meta-analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121661. [PMID: 38991353 DOI: 10.1016/j.jenvman.2024.121661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/17/2024] [Accepted: 06/29/2024] [Indexed: 07/13/2024]
Abstract
Arsenic (As) and cadmium (Cd) accumulation in rice grains is a global food safety issue, and various methods and materials have been used to remove or reduce As and Cd in agricultural soils and rice grains. Despite the availability of synthesized materials capable of simultaneous As and Cd reduction from soil and rice grains, the contributions, efficiency, and main ingredients of the materials for As and Cd immobilization remain unclear. The present study first summarized the biogeochemistry of As and Cd in paddy soils and their transfer in the soil-food-human continuum. We also reviewed a series of reported inorganic and organic materials for simultaneous immobilization of As and Cd in paddy soils, and their reduction efficiency of As and Cd bioavailability were listed and compared. Based on the abovementioned materials, the study conducted a meta-analysis of 38 articles with 2565 observations to quantify the impacts of materials on simultaneous As and Cd reduction from soil and rice grains. Meta-analysis results showed that combining organic and inorganic amendments corresponded to effect sizes of -62.3% and -67.8% on As and Cd accumulation in rice grains, while the effect sizes on As and Cd reduction in paddy soils were -44.2% and -46.2%, respectively. Application of Fe based materials significantly (P < 0.05) reduced As (-54.2%) and Cd (-74.9%), accounting for the highest immobilization efficiency of As and Cd in rice grain among all the reviewed materials, outweighing S, Mn, P, Si, and Ca based materials. Moreover, precipitation, surface complexation, ion exchange, and electrostatic attraction mechanisms were involved in the co-immobilization tactics. The present study underlines the application of combined organic and inorganic amendments in simultaneous As and Cd immobilization. It also highlighted that employing Fe-incorporated biochar material may be a potential strategy for co-mitigating As and Cd pollution in paddy soils and accumulation in rice grains.
Collapse
Affiliation(s)
- Frank Stephano Mabagala
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100081, PR China; Tanzania Agricultural Research Institution (TARI), TARI-Mlingano Centre, P.O. Box 5088, Tanga, Tanzania
| | - Ting Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100081, PR China; Gembloux Agro-Bio Tech, University of Liège, 5030, Gembloux, Belgium
| | - Xibai Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100081, PR China
| | - Chao He
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100081, PR China
| | - Hong Shan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100081, PR China
| | - Cheng Qiu
- Institute of Agricultural Resources and Environment, Xizang Academy of Agricultural and Animal Husbandry Sciences, 850000, PR China
| | - Xue Gao
- Institute of Agricultural Resources and Environment, Xizang Academy of Agricultural and Animal Husbandry Sciences, 850000, PR China
| | - Nan Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100081, PR China.
| | - Shiming Su
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100081, PR China
| |
Collapse
|
4
|
Tan X, Cao J, Liu J, Wang J, Duan G, Zhang Y, Cui J, Lin A. Characteristics of three organic fertilizers and their influence on the mobility of cadmium and arsenic in a soil-rice (Oryza sativa L.) system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:49469-49480. [PMID: 39080167 DOI: 10.1007/s11356-024-34218-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/29/2024] [Indexed: 08/15/2024]
Abstract
The properties of different organic fertilizers and their potential for stabilizing toxic metals(loids) in soil have not been fully investigated. This study characterized and evaluated three organic fertilizers from different raw materials. The mushroom residue organic fertilizer (MO) had higher C, H, and O contents and more functional groups (-OH, C-H, and C = O). Its application significantly increased pH (1.00 ~ 1.32 units), organic matter (OM) content (26.58 ~ 69.11%), and cation exchange capacity (CEC) (31.52 ~ 39.91%) of soil. MO treatments can simultaneously reduce the bioavailable TCLP-Cd and TCLP-As in soil, solving the difficulties of remediating the combined Cd and As pollution. MO treatments inhibited the migration of Cd and As from soil to plant, promoting plant growth. Redundancy analysis (RDA) revealed that metal(loid) variations in plants were related to soil properties (40.09%) and TCLP-Cd/As (44.74%). Furthermore, the toxic metals(loids) risk assessment for all organic fertilizers was at safe levels. This study provided a valuable reference for choosing organic fertilizers and presented a novel option for the "producing while remediating" of farmlands with low pollution.
Collapse
Affiliation(s)
- Xiao Tan
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jinman Cao
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jiahao Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jinhang Wang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Guilan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100029, China
| | - Yinjie Zhang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jun Cui
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
5
|
Qi L, Xiao X, Liu T, Ren Z, Ren W, Gao Q, Liu M, Wei P, Lai Y, Yao W, An H, Zhang L, Li C, Luo S, Luo X. Functionally responsive hydrogels with salt-alkali sensitivity effectively target soil amelioration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170350. [PMID: 38307264 DOI: 10.1016/j.scitotenv.2024.170350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/28/2023] [Accepted: 01/19/2024] [Indexed: 02/04/2024]
Abstract
The long-standing crisis of soil salinization and alkalization poses a significant challenge to global agricultural development. High soil salinity-alkalinity, water dispersion, and nutrient loss present major hurdles to soil improvement. Novel environmentally friendly gels have demonstrated excellent water retention and slow-release capabilities in agricultural enhancement. However, their application for improving saline-alkali soil is both scarce and competitive. This study proposes a new strategy for regulating saline-alkali soil using gel-coated controlled-release soil modifiers (CWR-SRMs), where radical-polymerized gels are embedded on the surface of composite gel beads through spray coating. Characterization and performance analysis reveal that the three-dimensional spatial network structure rich in hydrophilic groups exhibits good thermal stability (first-stage weight loss temperature of 257.7 °C in thermogravimetric analysis) and encapsulation efficiency for fulvic acid‑potassium (FA-K), which can enhance soil quality in saline-alkali environments. The molecular chain relaxation under saline-alkali conditions promotes a synergistic effect of swelling and slow release, endowing it with qualifications as a water reservoir, Ca2+ source unit, and slow-release body. The results of a 6 weeks incubation experiment on 0-20 cm saline-alkaline soil with different application gradients showed that the gradient content had a significant effect on the soil improvement effect. Specifically, the T2 (the dosage accounted for 1 % of soil mass) treatment significantly increases water retention (30 % ~ 90 %), and nutrient levels (30 % ~ 50 %), while significantly decreasing soil sodium colloid content (30 % ~ 60 %) and soil pH (10 % ~ 15 %). Furthermore, PCA analysis indicates that the addition of 1 % CWR-SRMs as amendments can significantly adjust the negative aspects of soil salinity and alkalinity. This highlights the excellent applicability of CWR-SRMs in improving saline-alkali agricultural ecosystems, demonstrating the potential value of novel environmentally friendly gels as an alternative solution for soil challenges persistently affected by adverse salinity and alkalinity.
Collapse
Affiliation(s)
- Le Qi
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xiao Xiao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang 330063, PR China.
| | - Ting Liu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Zhong Ren
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Wei Ren
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Qifeng Gao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China; Institute for Total and Utilization of Resources, China Nonusferr Metals (Guilin) Geology and Mining Co., Ltd., Guilin 541004, China
| | - Mengting Liu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Pangzhi Wei
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Yongkang Lai
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Weipeng Yao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Huanhuan An
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Lan Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Chuncheng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Shenglian Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China; Key Laboratory of Jiangxi Province for agricultural environmental pollution prevention and control in red soil hilly region, School of life sciences, Jinggangshan University, Ji'an 343009, China.
| |
Collapse
|
6
|
Song X, Jin J, Li H, Wang F, Liu J, Wang X, Huang X, Chai C, Song N, Zong H. Kaolinite reduced Cd accumulation in peanut and remediate soil contaminated with both microplastics and cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115580. [PMID: 37864965 DOI: 10.1016/j.ecoenv.2023.115580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023]
Abstract
Microplastics (MPs) increase the effective state of heavy metals (HMs) in soil and seriously threaten the yield and quality of peanuts (Arachis Hypogea L.). Kaolinite (KL) has the potential to ameliorate MP- and HM- contaminated soils, but the mechanism of action between them is not well understood. Therefore, 60-day experiments were conducted, where KL (1 %, 2 %) and MPs (0.1 %, 1 %) were individually or jointly mixed into soils with different cadmium (Cd) concentrations (0.5, 2.5, and 5.0 mg·kg-1) to cultivate peanuts in a greenhouse. Finally, soil-bioavailable Cd, peanut dry weight, peanut Cd concentrations, the pH, cation exchange capacity (CEC), dissolved organic carbon (DOC), microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) were determined. It was shown that MPs negatively affected the peanut dry weight and increased the content of soil-bioavailable Cd and Cd concentration in peanut. In the MP- and Cd-contaminated soils, KL mitigated the negative influence of MPs by increasing the dry weight of peanuts by 8.40 %-40.59 %, decreasing the soil-bioavailable Cd by 23.70-35.74 %, and significantly decreasing peanut Cd concentrations by 9.65-30.86 %. The presence of MPs decreased soil pH (7.69-7.87) and the CEC (20.96-23.95 cmol·L-1) and increased the soil DOC (1.84-2.26 mg·kg-1). KL significantly increased soil pH (7.79-8.03) and the CEC (24.96-28.28 cmol·L-1) and mitigated the adverse influence of MPs on the pH and CEC of Cd-contaminated soils. A regression path analysis (RPA) evidenced that KL decreased Cd accumulation in plants by changing the properties of soil contaminated with MPs and Cd. The research results revealed the mechanism of KL on peanut growth and Cd absorption in MP- and Cd-contaminated soil. The results of this study provide a foundation to improve the quality of MP- and HM-contaminated soils and realize safe peanut production.
Collapse
Affiliation(s)
- Xin Song
- Qingdao Engineering Research Center for Rural Environment/School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Jianpeng Jin
- Qingdao Engineering Research Center for Rural Environment/School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Haiyun Li
- Jingtanggang Branch of Technology Center of Shijiazhuang Customs District, Shijiazhuang 050011, PR China
| | - Fangli Wang
- Qingdao Engineering Research Center for Rural Environment/School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Jun Liu
- Qingdao Engineering Research Center for Rural Environment/School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Xuexia Wang
- Institute of plant nutrition and resources, Beijing Agricultural Forestry Academy Sciences, Beijing 100097, PR China
| | - Xiaoli Huang
- Central Laboratory, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Chao Chai
- Qingdao Engineering Research Center for Rural Environment/School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Ningning Song
- Qingdao Engineering Research Center for Rural Environment/School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China.
| | - Haiying Zong
- Qingdao Engineering Research Center for Rural Environment/School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China.
| |
Collapse
|
7
|
Xu Z, Nie N, Liu K, Li Q, Cui H, Du H. Analog soil organo-ferrihydrite composites as suitable amendments for cadmium and arsenic stabilization in co-contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162929. [PMID: 36934932 DOI: 10.1016/j.scitotenv.2023.162929] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 05/06/2023]
Abstract
Remediation of CdAs co-contaminated soils has long been considered a difficult problem to solve, as Cd and As have distinctly different metallic characters. Amending contaminated soils with traditional single passivation materials may not always work well in the stabilization of both Cd and As. Here, we reported that analog soil organo-ferrihydrite composites made with either living or non-living organics (bacterial cells or humic acid) could achieve stabilization of both Cd and As in contaminated soils. BCR and Wenzel sequential extractions showed that organo-ferrihydrite, particularly at 1 wt% loading, shifted liable Cd and As to more stable phases. Organo-ferrihydrite amendments significantly (p < 0.05) increased soil urease, alkaline phosphatase and catalase enzyme activities. With organo-ferrihydrite amendments, the bioavailable fraction of Cd decreased to 35.3 % compared with the control (65.1 %), while the bioavailable As declined from 29.4 % to 12.4%. Soil pH, microbial community abundance and diversity were almost unaffected by organo-ferrihydrite. Ferrihydrite and organo fractions both contributed to direct Cd-binding, while the organo fraction probably maintained the Fe-bound As via lowering ferrihydrite phase transformation. Compared to pure ferrihydrite, organo-ferrihydrite composites performed better not only in reducing liable Cd and As, but also in maintaining soil quality and ecosystem functions. This study demonstrates the applications of organo-ferrihydrite composites in eco-friendly remediation of CdAs contaminated soils, and provides a new direction in selecting appropriate soil amendments.
Collapse
Affiliation(s)
- Zelin Xu
- College of Resources and Environment, Hunan Agricultural University, 410127 Changsha, China; College of Environmental Science and Engineering, Tongji University, 200092 Shanghai, China
| | - Ning Nie
- College of Resources and Environment, Hunan Agricultural University, 410127 Changsha, China
| | - Kaiyan Liu
- College of Resources and Environment, Hunan Agricultural University, 410127 Changsha, China
| | - Qi Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Haojie Cui
- College of Resources and Environment, Hunan Agricultural University, 410127 Changsha, China
| | - Huihui Du
- College of Resources and Environment, Hunan Agricultural University, 410127 Changsha, China.
| |
Collapse
|
8
|
Qian F, Su X, Zhang Y, Bao Y. Variance of soil bacterial community and metabolic profile in the rhizosphere vs. non-rhizosphere of native plant Rumex acetosa L. from a Sb/As co-contaminated area in China. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131681. [PMID: 37245371 DOI: 10.1016/j.jhazmat.2023.131681] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/29/2023] [Accepted: 05/21/2023] [Indexed: 05/30/2023]
Abstract
Heavy metals (HMs) contamination poses a serious threat to soil health. However, the rhizosphere effect of native pioneer plants on the soil ecosystem remains unclear. Herein, how the rhizosphere (Rumex acetosa L.) influenced the process of HMs threatening soil micro-ecology was investigated by coupling various fractions of HMs, soil microorganisms and soil metabolism. The rhizosphere effect alleviated the HMs' stress by absorbing and reducing HMs' direct bioavailability, and the accumulation of ammonium nitrogen increased in the rhizosphere soil. Meanwhile, severe HMs contamination covered the rhizosphere effect on the richness, diversity, structure and predicted function pathways of soil bacterial community, but the relative abundance of Gemmatimonadota decreased and Verrucomicrobiota increased. The content of total HMs and physicochemical properties played a more important role than rhizosphere effect in shaping soil bacterial community. Furthermore, As was observed to have a more significant impact compared to Sb. Moreover, plant roots improved the stability of bacterial co-occurrence network, and significantly changed the critical genera. The process influenced bacterial life activity and nutrient cycling in soil, and the conclusion was further supported by the significant difference in metabolic profiles. This study illustrated that in Sb/As co-contaminated area, rhizosphere effect significantly changed soil HMs content and fraction, soil properties, and microbial community and metabolic profiles.
Collapse
Affiliation(s)
- Fanghan Qian
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, PR China
| | - Xiangmiao Su
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, PR China
| | - Ying Zhang
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, PR China
| | - Yanyu Bao
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, PR China.
| |
Collapse
|
9
|
Ibrahim EA, El-Sherbini MAA, Selim EMM. Effects of biochar, zeolite and mycorrhiza inoculation on soil properties, heavy metal availability and cowpea growth in a multi-contaminated soil. Sci Rep 2023; 13:6621. [PMID: 37095187 PMCID: PMC10125964 DOI: 10.1038/s41598-023-33712-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/18/2023] [Indexed: 04/26/2023] Open
Abstract
Heavy metal pollution of agricultural soil has become a major serious concern. The development of suitable control and remediation strategies for heavy metal contaminated soil has become critical. The outdoor pot experiment was conducted to investigate the effect of biochar, zeolite, and mycorrhiza on the bioavailability reduction of heavy metals and its subsequent effects on soil properties and bioaccumulation in plants as well as the growth of cowpea grown in highly polluted soil. Zeolite, biochar, mycorrhiza, zeolite with mycorrhiza, biochar with mycorrhiza, and soil without any modifications were the six treatments used. The experiment was conducted with a completely randomized design and four replications. The results indicated that the combination of biochar with mycorrhiza had the highest values of root and shoot dry weight and the lowest heavy metal concentrations in root and shoot as well as bioconcentration and translocation factors for all heavy metals. The highest significant reductions in the availability of heavy metals over the control were found with biochar with mycorrhiza, which were 59.1%, 44.3%, 38.0%, 69.7%, 77.8%, 77.2% and 73.6% for Cd, Co, Cr, Cu, Ni, Pb and Zn, respectively. The application of biochar and zeolite either alone or in combination with mycorrhiza increased significantly soil pH and EC compared to mycorrhiza treatment and untreated soil. It can be concluded that the combination of biochar and mycorrhizal inoculation has great potential as a cost-effective and environmentally technique for enhancing heavy metal immobilization, lowering heavy metal availability and plant uptake, and improving cowpea plant growth.
Collapse
Affiliation(s)
- Ehab A Ibrahim
- Vegetables Research Department, Horticulture Research Institute, Agricultural Research Center, 9 Cairo University St., Orman, Giza, Egypt.
| | - Mohamed A A El-Sherbini
- Vegetables Research Department, Horticulture Research Institute, Agricultural Research Center, 9 Cairo University St., Orman, Giza, Egypt
| | - El-Metwally M Selim
- Department of Soil Sciences, Faculty of Agriculture, Damietta University, Damietta, 34517, Egypt
| |
Collapse
|
10
|
Zhao C, Yao J, Knudsen TŠ, Liu J, Zhu X, Ma B. Effect of goethite-loaded montmorillonite on immobilization of metal(loid)s and the micro-ecological soil response in non-ferrous metal smelting areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161283. [PMID: 36587687 DOI: 10.1016/j.scitotenv.2022.161283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
In this work, the immobilization stabilization and mechanism of heavy metal(loid)s by goethite loaded montmorillonite (GMt) were investigated, and the soil microbial response was explored. The simulated acid rain leaching experiment showed that GMt had a higher acid tolerance and the more stable heavy metal(loid)s fixation ability. The soil incubation demonstrated that GMt significantly decreased the available Cd, Zn, Pb and As concentration. Interestingly, higher immobilization of heavy metals was observed by GMt in highly acid leached and acidic soils. The richness and diversity of bacterial communities improved after the addition of GMt. GMt induced the enrichment of the excellent functional bacteria of the phylum Proteobacteria as well as the genus Massilia and Sphingomonas. The main immobilization mechanisms of heavy metal(loid)s by GMt include electrostatic interaction, complexation, precipitation and oxidation. The addition of the GMt also optimizes the soil bacterial community structure, which further facilitates the immobilization of heavy metal(loid)s. Our results confirm that the novel GMt has a promising application in the immobilization and stabilization of heavy metal(loid)s contaminated soils in non-ferrous metal smelting areas.
Collapse
Affiliation(s)
- Chenchen Zhao
- School of Water Resources and Environment, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Jun Yao
- School of Water Resources and Environment, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China.
| | - Tatjana Šolević Knudsen
- Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, University of Belgrade, Njegoševa 12, Belgrade 11000, Serbia
| | - Jianli Liu
- School of Water Resources and Environment, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Xiaozhe Zhu
- School of Water Resources and Environment, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Bo Ma
- School of Water Resources and Environment, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| |
Collapse
|
11
|
Han L, Zhao Z, Li J, Ma X, Zheng X, Yue H, Sun G, Lin Z, Guan S. Application of humic acid and hydroxyapatite in Cd-contaminated alkaline maize cropland: A field trial. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160315. [PMID: 36403838 DOI: 10.1016/j.scitotenv.2022.160315] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/17/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Soil quality is critical to the quality and safety of agricultural products, and remediation of heavy metal contaminated soils is an urgent task to be implemented. This study applied hydroxyapatite (HAP) and humic acid (HA) as remediation materials to Cd-contaminated alkaline cropland. Data on soil pH, electrical conductivity (EC), cation exchange capacity (CEC), soil organic matter (SOM), diethylenetriamine pentaacetic acid (DTPA) extraction, and improved BCR sequential extraction were obtained for different periods. The joint application of HAP and HA enhanced the soil's buffering capacity. During the experiment, treatment groups CK, H1, H2, H3, and H4 showed changes in pH of 0.29, 0.28, 0.21, 0.24, and 0.32, respectively, and changes in the conductivity of 341.4, 183.0, 133.1, 104.6 and 320.2 μS/cm. Soil organic matter had a positive effect on soil's effective phosphorus content. HAP and HA both reduced the BCFgrain/soil of Cd for the maize, but the impact of HA was more substantial (20.19 % reduction compared to CK). HA increased the yield of maize by 44.20 %. The combination of HA and HAP was recommended.
Collapse
Affiliation(s)
- Liangwei Han
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China; Key Laboratory of Western China's Environmental Systems, Lanzhou 730000, PR China; Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, PR China
| | - Zhuanjun Zhao
- Key Laboratory of Mountain Environment Evolvement and Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, PR China.
| | - Jie Li
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China; Key Laboratory of Western China's Environmental Systems, Lanzhou 730000, PR China; Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, PR China
| | - Xiangbang Ma
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China; Key Laboratory of Western China's Environmental Systems, Lanzhou 730000, PR China; Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, PR China
| | - Xu Zheng
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China; Key Laboratory of Western China's Environmental Systems, Lanzhou 730000, PR China; Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, PR China
| | - Haoyu Yue
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China; Key Laboratory of Western China's Environmental Systems, Lanzhou 730000, PR China; Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, PR China
| | - Guohuai Sun
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China; Key Laboratory of Western China's Environmental Systems, Lanzhou 730000, PR China; Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, PR China
| | - Zhiyuan Lin
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China; Key Laboratory of Western China's Environmental Systems, Lanzhou 730000, PR China; Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, PR China
| | - Shuqi Guan
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China; Key Laboratory of Western China's Environmental Systems, Lanzhou 730000, PR China; Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, PR China
| |
Collapse
|
12
|
Wang Q, Guo S, Ali M, Song X, Tang Z, Zhang Z, Zhang M, Luo Y. Thermally enhanced bioremediation: A review of the fundamentals and applications in soil and groundwater remediation. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128749. [PMID: 35364527 DOI: 10.1016/j.jhazmat.2022.128749] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Thermally enhanced bioremediation (TEB), a new concept proposed in recent years, explores the combination of thermal treatment and bioremediation to address the challenges of the low efficiency and long duration of bioremediation. This study presented a comprehensive review regarding the fundamentals of TEB and its applications in soil and groundwater remediation. The temperature effects on the bioremediation of contaminants were systematically reviewed. The thermal effects on the physical, chemical and biological characteristics of soil, and the corresponding changes of contaminants bioavailability and microbial metabolic activities were summarized. Specifically, the increase in temperature within a suitable range can proliferate enzymes enrichment, extracellular polysaccharides and biosurfactants production, and further enhancing bioremediation. Furthermore, a systematic evaluation of TEB applications by utilizing traditional in situ heating technologies, as well as renewable energy (e.g., stored aquifer thermal energy and solar energy), was provided. Additionally, TEB has been applied as a biological polishing technology post thermal treatment, which can be a cost-effective method to address the contaminants rebounds in groundwater remediation. However, there are still various challenges to be addressed in TEB, and future research perspectives to further improve the basic understanding and applications of TEB for the remediation of contaminated soil and groundwater are presented.
Collapse
Affiliation(s)
- Qing Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Siwei Guo
- Zhejiang University, Hangzhou, China
| | - Mukhtiar Ali
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhiwen Tang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuanxia Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Floodplain soils contamination assessment using the sequential extraction method of heavy metals from past mining activities. Sci Rep 2022; 12:2927. [PMID: 35190628 PMCID: PMC8861111 DOI: 10.1038/s41598-022-06929-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/03/2022] [Indexed: 12/01/2022] Open
Abstract
Floodplains are among the most precious and threatened ecosystems in the world. The study deals with floodplain soil contamination caused by 8 heavy metals (HMs) (Cd, Co, Cr, Cu, Mo, Ni, Pb, Zn) originating and transported from old mine works along the Štiavnica River in Slovakia. We determined the total HMs content and the HM fractions using BCR sequential extraction method. We selected 12 alluvial sites (AS), two contaminated sites (CS), and one reference site (RS). The sampling points were located within the riparian zones (RZ), arable lands (AL), and grasslands (GL). We confirmed soil contamination by HMs and the related ecological risk by different factors. The contamination by HMs at many AS localities was similar or even higher than at CS localities. The highest contamination factor was calculated for Cu (39.8), followed by Pb (27.4), Zn (18.2), and Cd (7.2). The HMs partitioning in the different fractions at the CS and AS localities revealed that Cd, Zn, and Pb were mainly associated with the exchangeable and reducible fractions, while Cu was mainly associated with the oxidisable fraction. The soil properties were selectively correlated with the HM fractions. Based on the ANOVA results, the effect of different ecosystem types on HM fractions was revealed.
Collapse
|
14
|
Li Z, Liang Y, Hu H, Shaheen SM, Zhong H, Tack FMG, Wu M, Li YF, Gao Y, Rinklebe J, Zhao J. Speciation, transportation, and pathways of cadmium in soil-rice systems: A review on the environmental implications and remediation approaches for food safety. ENVIRONMENT INTERNATIONAL 2021; 156:106749. [PMID: 34247006 DOI: 10.1016/j.envint.2021.106749] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/03/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) contamination in paddy fields is a serious health concern because of its high toxicity and widespread pollution. Recently, much progress has been made in elucidating the mechanisms involved in Cd uptake, transport, and transformation from paddy soils to rice grains, aiming to mitigate the associated health risk; however, these topics have not been critically reviewed to date. Here, we summarized and reviewed the (1) geochemical distribution and speciation of Cd in soil-rice systems, (2) mobilization, uptake, and transport of Cd from soil to rice grains and the associated health risks, (3) pathways and transformation mechanisms of Cd from soil to rice grains, (4) transporters involved in reducing Cd uptake, transport, and accumulation in rice plants, (5) factors governing Cd bioavailability in paddy, and (6) comparison of remediation approaches for mitigating the environmental and health risks of Cd contamination in paddy fields. Briefly, this review presents the state of the art about the fate of Cd in paddy fields and its transport from soil to grains, contributing to a better understanding of the environmental hazards of Cd in rice ecosystems. Challenges and perspectives for controlling Cd risks in rice are thus raised. The summarized findings in this review may help to develop innovative and applicable methods for controlling Cd accumulation in rice grains and sustainably manage Cd-contaminated paddy fields.
Collapse
Affiliation(s)
- Zhanming Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Liang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China
| | - Hangwei Hu
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Filip M G Tack
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 659, B-9000 Gent, Belgium
| | - Mengjie Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yu-Feng Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuxi Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea.
| | - Jiating Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
15
|
Li S, Sun X, Li S, Liu Y, Ma Q, Zhou W. Effects of amendments on the bioavailability, transformation and accumulation of heavy metals by pakchoi cabbage in a multi-element contaminated soil. RSC Adv 2021; 11:4395-4405. [PMID: 35424422 PMCID: PMC8694506 DOI: 10.1039/d0ra09358k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/23/2020] [Indexed: 11/21/2022] Open
Abstract
This study aims to assess the effect of green waste compost (GWC), biochar (BC) and humic acid (HA) amendments of an alkaline heavy metal-contaminated soil. In this study, amendments with GWC, GWC + BC and GWC + HA were applied to the heavy metal-contaminated soil in four application rates (0, 1, 2 and 5%), and was aimed at substantially mitigating the bioavailability of heavy metals for pakchoi cabbage from the sewage irrigation soils. The addition of different ratios of amendments can increase the pH of the soil by 0.11-0.30 units and also increase the organic matter content by 3.1-35.1%. The concentration of available arsenic (As), cadmium (Cd), zinc (Zn) and copper (Cu) in the CaCl2 extract was decreased effectively by all the amendments, except for the increase in the available concentration of As by compost-humic acid (T8) in the soil. Compared with the control, the CaCl2 extractable Cd was decreased by 33-48% after the addition of different ratios of amendments in the soil. Moreover, by increasing the content of compost and compost-biochar in combinations, easily exchangeable fractions of As, Cd, Zn and Cu were decreased, while the oxidation fraction and residual fractions were increased. When the soil amendments were applied, fresh weight of the root and shoot increased by 29-63% and 39-85%, respectively. Cd concentration in the roots and shoots of the pakchoi cabbage decreased by 21-44% and 26-53%, respectively, after adding different ratios of amendments. All the amendments were effective in reducing the Cd, Zn and Cu uptake by the roots and shoots of the pakchoi cabbage, and simultaneously reduce the absorption of As in the roots of pakchoi cabbage. As soil amendments, GWC alone or GWC + BC/GWC + HA application can significantly reduce the heavy metal levels in pakchoi cabbage while increasing the biomass production and higher application rate is more effective than the lower application rate.
Collapse
Affiliation(s)
- Song Li
- College of Forestry, Beijing Forestry University Beijing 100083 China
| | - Xiangyang Sun
- College of Forestry, Beijing Forestry University Beijing 100083 China
| | - Suyan Li
- College of Forestry, Beijing Forestry University Beijing 100083 China
| | - Yuanxin Liu
- College of Forestry, Beijing Forestry University Beijing 100083 China
| | - Qixue Ma
- College of Forestry, Beijing Forestry University Beijing 100083 China
| | - Wenjie Zhou
- College of Forestry, Beijing Forestry University Beijing 100083 China
| |
Collapse
|
16
|
Zheng XJ, Chen M, Wang JF, Liu Y, Liao YQ, Liu YC. Assessment of Zeolite, Biochar, and Their Combination for Stabilization of Multimetal-Contaminated Soil. ACS OMEGA 2020; 5:27374-27382. [PMID: 33134700 PMCID: PMC7594124 DOI: 10.1021/acsomega.0c03710] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/17/2020] [Indexed: 05/05/2023]
Abstract
In this study, the natural zeolite and rice husk biochar were mixed as a combination amendment for metal immobilization in a Cd, Pb, As, and W co-contaminated soil. A 90 day incubation study was conducted to investigate the effects of amendments on toxic metal in soil. Zeolite, biochar, and their combination application increased the soil pH and cation exchange capacity. A combination of amendments decreased the bioavailability of Cd, Pb, As, and W. Besides, the potential drawback of biochar application on As and W release was overcome by the combination agent. Zeolite, biochar, and combination treatment decreased total bioavailability toxicity from 335.5 to 182.9, 250.5, and 143.4, respectively, which means that combination was an optimum amendment for soil remediation. The results of the Community Bureau of Reference sequential extraction and scanning electron microscopy-energy-dispersive spectrometry images confirmed the Cd and Pb adsorption onto biochar. However, As and W immobilization was dominantly controlled by zeolite. It appears that the combination of amendments is an efficient amendment to remediate Cd, Pb, As, and W co-contamination in soil, although the combination of amendments has a lower stabilization rate for W than for zeolite.
Collapse
Affiliation(s)
- Xiao-Jun Zheng
- Jiangxi Provincial Key Laboratory of
Pollution Control for Mining & Metallurgy Environmental Pollution
Control, Jiangxi University of Science and
Technology, Ganzhou 341000, China
| | - Ming Chen
- Jiangxi Provincial Key Laboratory of
Pollution Control for Mining & Metallurgy Environmental Pollution
Control, Jiangxi University of Science and
Technology, Ganzhou 341000, China
| | - Jun-Feng Wang
- Jiangxi Provincial Key Laboratory of
Pollution Control for Mining & Metallurgy Environmental Pollution
Control, Jiangxi University of Science and
Technology, Ganzhou 341000, China
| | - Yan Liu
- Jiangxi Provincial Key Laboratory of
Pollution Control for Mining & Metallurgy Environmental Pollution
Control, Jiangxi University of Science and
Technology, Ganzhou 341000, China
| | - Yue-Qing Liao
- Jiangxi Provincial Key Laboratory of
Pollution Control for Mining & Metallurgy Environmental Pollution
Control, Jiangxi University of Science and
Technology, Ganzhou 341000, China
| | - You-Cun Liu
- Jiangxi Provincial Key Laboratory of
Pollution Control for Mining & Metallurgy Environmental Pollution
Control, Jiangxi University of Science and
Technology, Ganzhou 341000, China
| |
Collapse
|
17
|
Acid-Modified and Unmodified Natural Clay Deposits for In Situ Immobilization and Reducing Phytoavailability of Molybdenum in a Sandy Loam Calcareous Soil. SUSTAINABILITY 2020. [DOI: 10.3390/su12198203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Molybdenum (Mo) in basic soils has high bioavailability and plant toxicity. This study aimed to investigate the effect of increasing Mo concentration on its availability and toxicity threshold in alfalfa plants grown in sandy loam calcareous soils, and the potential use of raw and acid- modified clay deposits as soil additives to immobilize Mo and reduce its phytoavailability. Raw clay deposits (RCD) were treated with H2SO4 to produce acid-modified clay deposits (AMCD). The first experiment was performed using soils treated with 0, 0.1, 1, 10, 50, and 100 mg Mo kg−1. The second experiment was conducted with soils treated with 10 or 50 mg Mo kg−1 and amended with RCD and AMCD at application rates of 0, 2.5, 5, and 10% (w/w). After harvesting, water-soluble Mo, ammonium bicarbonate-diethylenetriaminepentaacetic acid (AB-DTPA)-extractable Mo, and shoot Mo content as well as dry matter were measured. The results showed that water-soluble Mo, AB-DTPA-extractable Mo, and shoot Mo concentration increased at higher Mo soil addition. AMCD had a stronger influence on Mo immobilization and reduction effect on plant shoots compared to RCD, depending on soil Mo concentration and application rate. Applying AMCD decreased soil pH but increased salinity levels. The shoot dry matter significantly increased in soils amended with RCD and/or AMCD compared to control soils; with the highest improvement recorded for RCD at 10%. It was concluded that AMCD is an efficient immobilizing agent to reduce Mo mobility and its phytoavailability in calcareous soils. Additionally, both AMCD and especially RCD were able to create favorable conditions for plant growth.
Collapse
|