1
|
Zheng W, Hou S, Chen Y, Ge C, Ni B, Zheng X, Chen H, Zhao T, Wang A, Ren N. Removal and assessment of cadmium contamination based on the toxic responds of a soil ciliate Colpoda sp. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134762. [PMID: 38823099 DOI: 10.1016/j.jhazmat.2024.134762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
Bioremediation of cadmium (Cd) pollution, a recognized low-carbon green environmental protection technology, is significantly enhanced by the discovery of Cd-tolerant microorganisms and their underlying tolerance mechanisms. This study presents Colpoda sp., a soil ciliate with widespread distribution, as a novel bioindicator and bioremediator for Cd contamination. With a 24 h-LC50 of 5.39 mg l-1 and an IC50 of 24.85 μg l-1 in Cd-contaminated water, Colpoda sp. achieves a maximum bioaccumulation factor (BAF) of 3.58 and a Cd removal rate of 32.98 ± 0.74 % within 96 h. The toxic responses of Colpoda sp. to Cd stress were assessed through cytological observation with transmission electron microscopy (TEM), oxidative stress kinase activity, and analysis of Cd-metallothionein (Cd-MTs) and the cd-mt gene via qRT-PCR. The integrated biomarker response index version 2 (IBRv2) and structural equation models (SEM) were utilized to analyze key factors and mechanisms, revealing that the up-regulation of Cd-MTs and cd-mt expression, rather than the oxidative stress system, is the primary determinant of Cd accumulation and tolerance in Colpoda sp. The ciliate's ability to maintain growth under 24.85 μg l-1 Cd stress and its capacity to absorb and accumulate Cd particles from water into cells are pivotal for bioremediation. A new mathematical formula and regression equations based on Colpoda sp.'s response parameters have been established to evaluate environmental Cd removal levels and design remediation schemes for contaminated sites. These findings provide a novel bioremediation and monitoring pathway for Cd remobilization and accumulation in soil and water, potentially revolutionizing the governance of Cd pollution.
Collapse
Affiliation(s)
- Weibin Zheng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Sen Hou
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin 150025, China
| | - Ying Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin 150025, China.
| | - Chang Ge
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Bing Ni
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaodan Zheng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin 150025, China
| | - Hongbo Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin 150025, China
| | - Tianyi Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin 150025, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
2
|
Zahra I, DeVine L, Cole R, Malik HA, Wu J, Wen J, Hedfi A, Liaqat A, Ijaz R, Ramzan U, Shakoori AR, Shakoori FR, Betenbaugh MJ. Insights into the differential proteome landscape of a newly isolated Paramecium multimicronucleatum in response to cadmium stress. J Proteomics 2024; 300:105178. [PMID: 38636824 DOI: 10.1016/j.jprot.2024.105178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/01/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Employing microbial systems for the bioremediation of contaminated waters represent a potential option, however, limited understanding of the underlying mechanisms hampers the implication of microbial-mediated bioremediation. The omics tools offer a promising approach to explore the molecular basis of the bioremediation process. Here, a mass spectrometry-based quantitative proteome profiling approach was conducted to explore the differential protein levels in cadmium-treated Paramecium multimicronucleatum. The Proteome Discoverer software was used to identify and quantify differentially abundant proteins. The proteome profiling generated 7,416 peptide spectral matches, yielding 2824 total peptides, corresponding to 989 proteins. The analysis revealed that 29 proteins exhibited significant (p ≤ 0.05) differential levels, including a higher abundance of 6 proteins and reduced levels of 23 proteins in Cd2+ treated samples. These differentially abundant proteins were associated with stress response, energy metabolism, protein degradation, cell growth, and hormone processing. Briefly, a comprehensive proteome profile in response to cadmium stress of a newly isolated Paramecium has been established that will be useful in future studies identifying critical proteins involved in the bioremediation of metals in ciliates. SIGNIFICANCE: Ciliates are considered a good biological indicator of chemical pollution and relatively sensitive to heavy metal contamination. A prominent ciliate, Paramecium is a promising candidate for the bioremediation of polluted water. The proteins related to metal resistance in Paramecium species are still largely unknown and need further exploration. In order to identify and reveal the proteins related to metal resistance in Paramecia, we have reported differential protein abundance in Paramecium multimicronucleatum in response to cadmium stress. The proteins found in our study play essential roles during stress response, hormone processing, protein degradation, energy metabolism, and cell growth. It seems likely that Paramecia are not a simple sponge for metals but they could also transform them into less toxic derivatives or by detoxification by protein binding. This data will be helpful in future studies to identify critical proteins along with their detailed mechanisms involved in the bioremediation and detoxification of metal ions in Paramecium species.
Collapse
Affiliation(s)
- Itrat Zahra
- Institute of Zoology, University of the Punjab, New Campus, Lahore 54590, Pakistan.
| | - Lauren DeVine
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Robert Cole
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Hafiza Aroosa Malik
- Bioenergy Research Center, Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| | - Jinke Wu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Junneng Wen
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Amor Hedfi
- Department of Biology, College of Sciences, Taif University, POBox 11099, Taif 21944, Saudi Arabia.
| | - Ayesha Liaqat
- Institute of Zoology, University of the Punjab, New Campus, Lahore 54590, Pakistan.
| | - Roohi Ijaz
- Institute of Zoology, University of the Punjab, New Campus, Lahore 54590, Pakistan.
| | - Uzma Ramzan
- Institute of Zoology, University of the Punjab, New Campus, Lahore 54590, Pakistan.
| | - Abdul Rauf Shakoori
- School of Biological Sciences, University of the Punjab, New Campus, Lahore 54590, Pakistan.
| | - Farah Rauf Shakoori
- Institute of Zoology, University of the Punjab, New Campus, Lahore 54590, Pakistan.
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
3
|
Li Y, Shi X, Chen Y, Luo S, Qin Z, Chen S, Wu Y, Yu F. Quantitative proteomic analysis of the mechanism of Cd toxicity in Enterobacter sp. FM-1: Comparison of different growth stages. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122513. [PMID: 37673320 DOI: 10.1016/j.envpol.2023.122513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/31/2023] [Accepted: 09/04/2023] [Indexed: 09/08/2023]
Abstract
Enterobacter sp. are widely used in bioremediation, but the mechanism of Cadmium (Cd) toxicity in Enterobacter sp. has been poorly studied. In the present study, we determined the tolerance of Enterobacter sp. FM-1 to Cd by analyzing the physiological and biochemical responses of FM-1 induced under Cd stress. Differentially expressed proteins (DEPs) under exposure to different Cd environments were analyzed by 4D-label-free proteomics to provide a comprehensive understanding of Cd toxicity in FM-1. The greatest total number of DEPs, 1148, was found in the High concentration vs. Control comparison group at 10 h. When protein expression was compared after different incubation times, FM-1 showed the highest Cd tolerance at 48 h. Additionally, with an increasing incubation time, different comparison groups gradually began to show similar growth patterns, which was reflected in the GO enrichment analysis. Notably, only 815 proteins were identified in the High concentration vs. Control group, and KEGG enrichment analysis revealed that these proteins were significantly enriched in the pyruvate metabolism, oxidative phosphorylation, peroxisome, glyoxylate and dicarboxylate metabolism, and citrate cycle pathways. These results suggested that an increased incubation time allows FM-1 adapt and survive in an environment with Cd toxicity, and protein expression significantly increased in response to oxidative stress in a Cd-contaminated environment during the pre-growth period. This study provides new perspectives on bacterial participation in bioremediation and expands our understanding of the mechanism of bacterial resistance under Cd exposure.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, 541004, Guilin, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Xinwei Shi
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Yuyuan Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Shiyu Luo
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Zhongkai Qin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Shuairen Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Yamei Wu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Fangming Yu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, 541004, Guilin, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China.
| |
Collapse
|
4
|
Rivas-Castillo AM, Garcia-Barrera AA, Garrido-Hernandez A, Martinez-Valdez FJ, Cruz-Romero MS, Quezada-Cruz M. Ciliated Peritrichous Protozoa in a Tezontle-Packed Sequencing Batch Reactor as Potential Indicators of Water Quality. Pol J Microbiol 2022; 71:539-551. [PMID: 36511581 PMCID: PMC9944969 DOI: 10.33073/pjm-2022-049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/02/2022] [Indexed: 12/15/2022] Open
Abstract
The presence of colonial and solitary ciliated peritrichous protozoa was determined in a Sequencing Batch Reactor system filled with tezontle, a volcanic rock, economic, and abundant material that can be found in some parts of the world, like Mexico. The presence of these protozoa was related to the removal efficiencies of organic matter. Also, two novel staining techniques are proposed for staining both colonial and solitary peritrichous protozoa. The results show that tezontle promotes the growth of solitary and colonial ciliated peritrichous protozoa, which, once identified, could be used as indicators of the efficiency of the wastewater treatment process. Additionally, the staining techniques established in the current study allowed the precise observation of protozoan nuclei. They can represent a useful complementary methodology for identifying protozoan species present in water treatment processes, along with the already existing identification techniques. The number and variety of protozoa found in the system may be considered potential bioindicators of water quality during biological treatments.
Collapse
Affiliation(s)
| | | | | | | | - Maria S. Cruz-Romero
- Laboratory of Environmental Technology, Universidad Tecnológica de Tecámac, Tecámac, México
| | - Maribel Quezada-Cruz
- Laboratory of Environmental Technology, Universidad Tecnológica de Tecámac, Tecámac, México, M. Quezada-Cruz, Laboratory of Environmental Technology, Universidad Tecnológica de Tecámac, Tecámac, México
| |
Collapse
|
5
|
Wlodkowic D, Jansen M. High-throughput screening paradigms in ecotoxicity testing: Emerging prospects and ongoing challenges. CHEMOSPHERE 2022; 307:135929. [PMID: 35944679 DOI: 10.1016/j.chemosphere.2022.135929] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/09/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
The rapidly increasing number of new production chemicals coupled with stringent implementation of global chemical management programs necessities a paradigm shift towards boarder uses of low-cost and high-throughput ecotoxicity testing strategies as well as deeper understanding of cellular and sub-cellular mechanisms of ecotoxicity that can be used in effective risk assessment. The latter will require automated acquisition of biological data, new capabilities for big data analysis as well as computational simulations capable of translating new data into in vivo relevance. However, very few efforts have been so far devoted into the development of automated bioanalytical systems in ecotoxicology. This is in stark contrast to standardized and high-throughput chemical screening and prioritization routines found in modern drug discovery pipelines. As a result, the high-throughput and high-content data acquisition in ecotoxicology is still in its infancy with limited examples focused on cell-free and cell-based assays. In this work we outline recent developments and emerging prospects of high-throughput bioanalytical approaches in ecotoxicology that reach beyond in vitro biotests. We discuss future importance of automated quantitative data acquisition for cell-free, cell-based as well as developments in phytotoxicity and in vivo biotests utilizing small aquatic model organisms. We also discuss recent innovations such as organs-on-a-chip technologies and existing challenges for emerging high-throughput ecotoxicity testing strategies. Lastly, we provide seminal examples of the small number of successful high-throughput implementations that have been employed in prioritization of chemicals and accelerated environmental risk assessment.
Collapse
Affiliation(s)
- Donald Wlodkowic
- The Neurotox Lab, School of Science, RMIT University, Melbourne, VIC, 3083, Australia.
| | - Marcus Jansen
- LemnaTec GmbH, Nerscheider Weg 170, 52076, Aachen, Germany
| |
Collapse
|
6
|
Yang J, Liao A, Hu S, Zheng Y, Liang S, Han S, Lin Y. Acute and Chronic Toxicity of Binary Mixtures of Bisphenol A and Heavy Metals. TOXICS 2022; 10:255. [PMID: 35622668 PMCID: PMC9145676 DOI: 10.3390/toxics10050255] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/10/2022] [Accepted: 05/15/2022] [Indexed: 01/03/2023]
Abstract
Bisphenol A (BPA) and heavy metals are widespread contaminants in the environment. However, the combined toxicities of these contaminants are still unknown. In this study, the bioluminescent bacteria Vibrio qinghaiensis Q67 was used to detect the single and combined toxicities of BPA and heavy metals, then the joint effects of these contaminants were evaluated. The results show that chronic toxicities of chromium (Cr), cadmium (Cd), lead (Pb), arsenic (As), mercury (Hg), nickel (Ni), and BPA were time−dependent; in fact, the acute toxicities of these contaminants were stronger than the chronic toxicities. Furthermore, the combined toxicities of BPA and heavy metals displayed BPA + Hg > BPA + Cr > BPA + As > BPA + Ni > BPA + Pb > BPA + Cd in the acute test and BPA + Hg > BPA + Cd > BPA + As > BPA + Cd in the chronic test, which suggested that the combined toxicity of BPA and Hg was stronger than that of other mixtures in acute as well as chronic tests. Additionally, both CA and IA models underestimated the toxicities of mixtures at low concentrations but overestimated them at high concentrations, which indicates that CA and IA models were not suitable to predict the toxicities of mixtures of BPA and heavy metals. Moreover, the joint effects of BPA and heavy metals mainly showed antagonism and additive in the context of acute exposure but synergism and additive in the context of chronic exposure. Indeed, the difference in the joint effects on acute and chronic exposure can be explained by the possibility that mixtures inhibited cell growth and luminescence in chronic cultivation. The chronic toxicity of the mixture should be considered if the mixture results in the inhibition of the growth of cells.
Collapse
Affiliation(s)
- Jun Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (J.Y.); (A.L.); (S.H.); (Y.Z.); (S.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Anqi Liao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (J.Y.); (A.L.); (S.H.); (Y.Z.); (S.L.); (S.H.)
| | - Shulin Hu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (J.Y.); (A.L.); (S.H.); (Y.Z.); (S.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yiwen Zheng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (J.Y.); (A.L.); (S.H.); (Y.Z.); (S.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Shuli Liang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (J.Y.); (A.L.); (S.H.); (Y.Z.); (S.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Shuangyan Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (J.Y.); (A.L.); (S.H.); (Y.Z.); (S.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Ying Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (J.Y.); (A.L.); (S.H.); (Y.Z.); (S.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
7
|
Yu Y, Shi K, Li X, Luo X, Wang M, Li L, Wang G, Li M. Reducing cadmium in rice using metallothionein surface-engineered bacteria WH16-1-MT. ENVIRONMENTAL RESEARCH 2022; 203:111801. [PMID: 34339701 DOI: 10.1016/j.envres.2021.111801] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) accumulation in rice grains poses a health risk for humans. In this study, a bacterium, Alishewanella sp. WH16-1-MT, was engineered to express metallothionein on the cell surface. Compared with the parental WH16-1 strain, Cd2+ adsorption efficiency of WH16-1-MT in medium was increased from 1.2 to 2.6 mg/kg dry weight. The WH16-1-MT strain was then incubated with rice in moderately Cd-contaminated paddy soil. Compared with WH16-1, inoculation with WH16-1-MT increased plant height, panicle length and thousand-kernel weight, and decreased the levels of ascorbic acid and glutathione and the activity of peroxidase. Compared with WH16-1, WH16-1-MT inoculation significantly reduced the concentrations of Cd in brown rice, husks, roots and shoots by 44.0 %, 45.5 %, 36.1 % and 47.2 %, respectively. Moreover, inoculation with WH16-1-MT reduced the bioavailability of Cd in soil, with the total Cd proportion in oxidizable and residual states increased from 29 % to 32 %. Microbiome analysis demonstrated that the addition of WH16-1-MT did not significantly alter the original bacterial abundance and community structure in soil. These results indicate that WH16-1-MT can be used as a novel microbial treatment approach to reduce Cd in rice grown in moderately Cd-contaminated paddy soil.
Collapse
Affiliation(s)
- Ying Yu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Kaixiang Shi
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Xuexue Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Xiong Luo
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Mengjie Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Lin Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Mingshun Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| |
Collapse
|
8
|
Kumar S, Bharti D, Shazib SUA, Shin MK. Characterization of a Novel Hypotrich Ciliate From Heavy Metal-Contaminated Industrial Outlet in Onsan, Ulsan, South Korea. Front Microbiol 2021; 12:761961. [PMID: 34867893 PMCID: PMC8639589 DOI: 10.3389/fmicb.2021.761961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/18/2021] [Indexed: 11/15/2022] Open
Abstract
Very few studies exist on the description of protozoan ciliates from industrially contaminated sites. In this study, we report a description of a novel hypotrich ciliate isolated from water samples collected from an industrially contaminated outlet in Onsan, Ulsan, South Korea. The oxytrichid ciliate, Histriculus tolerans n. sp., was investigated using live observation and protargol impregnation. The morphology, morphogenesis, and molecular phylogeny inferred from small-subunit (SSU) rRNA gene sequences were studied. The new species is mainly characterized by a cell size of about 70 × 40 μm in vivo, two elongate ellipsoidal macronuclear nodules and one or two micronuclei, adoral zone of about 51% of body length with 32 membranelles on average, about 34 cirri in the right and 24 cirri in the left marginal row, 18 frontoventral transverse cirri, six dorsal kineties including two dorsomarginal rows, and dorsal kinety 1 with 26 bristles. Morphogenesis is similar to that of the type species, i.e., Histriculus histrio, except that oral primordium does not contribute to anlage II of the proter. Phylogenetic analyses, based on small-subunit rRNA gene sequences, consistently place the new species within the family Oxytrichidae, clustering with H. histrio.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea.,Zoological Survey of India, Kolkata, India
| | - Daizy Bharti
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea.,Zoological Survey of India, Kolkata, India
| | - Shahed Uddin Ahmed Shazib
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Mann Kyoon Shin
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| |
Collapse
|
9
|
T. T. Luu H, Esteban GF, Butt AA, Green ID. Effects of Copper and the Insecticide Cypermethrin on a Soil Ciliate (Protozoa: Ciliophora) Community. Protist 2021; 173:125855. [DOI: 10.1016/j.protis.2021.125855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 10/19/2022]
|
10
|
Brovini EM, Cardoso SJ, Quadra GR, Vilas-Boas JA, Paranaíba JR, Pereira RDO, Mendonça RF. Glyphosate concentrations in global freshwaters: are aquatic organisms at risk? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:60635-60648. [PMID: 34160765 DOI: 10.1007/s11356-021-14609-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/24/2021] [Indexed: 06/13/2023]
Abstract
Glyphosate is the most used herbicide worldwide. Many studies have reported glyphosate risks to aquatic organisms of different trophic levels. Moreover, evidence suggests flaws in countries' legislation that may imply the non-protection of aquatic species exposed to glyphosate. Therefore, we aimed to investigate glyphosate concentrations in freshwater ecosystems worldwide based on a systematic literature review, to discuss the results considering each country's legislation, and to assess the relative tolerance and risk for aquatic species. Only articles providing in situ concentrations of glyphosate in freshwater systems were included in our study. In total, 73 articles met the inclusion criteria and were used in our analysis. The studies comprised freshwater ecosystems from 21 countries. Most countries evaluated (90%) did not have restrictive legislation for aquatic glyphosate concentrations, resulting in a potential non-protection of aquatic organisms. Glyphosate may pose a moderate to high risk in 95% of the countries investigated, reaching a maximum concentration of 105 mg L-1. Additionally, the risk analysis showed that glyphosate concentrations below 0.1 μg L-1 represent a low risk, whereas glyphosate concentrations above 1 μg L-1, which is below the limit established by some countries' legislation, represent a high risk to aquatic organisms. Therefore, we strongly recommend a revision of the countries' legislation for glyphosate concentration in freshwater systems.
Collapse
Affiliation(s)
- Emília Marques Brovini
- Laboratório de Ecologia Aquática, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, 36036-900, Brazil.
- Programa de Pós-Graduação em Biodiversidade e Conservação da Natureza, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-900, Brazil.
| | - Simone Jaqueline Cardoso
- Laboratório de Ecologia Aquática, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, 36036-900, Brazil
- Programa de Pós-Graduação em Biodiversidade e Conservação da Natureza, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-900, Brazil
- Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, 36036-900, Brazil
| | - Gabrielle Rabelo Quadra
- Laboratório de Ecologia Aquática, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, 36036-900, Brazil
- Programa de Pós-Graduação em Biodiversidade e Conservação da Natureza, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-900, Brazil
| | - Jéssica Andrade Vilas-Boas
- Programa de Pós-Graduação em Biodiversidade e Conservação da Natureza, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-900, Brazil
- Laboratório de Protozoologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, 36036-900, Brazil
| | - José R Paranaíba
- Laboratório de Ecologia Aquática, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, 36036-900, Brazil
- Programa de Pós-Graduação em Biodiversidade e Conservação da Natureza, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-900, Brazil
| | - Renata de Oliveira Pereira
- Programa de Pós-Graduação em Engenharia Civil, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, 36036-900, Brazil
| | - Raquel Fernandes Mendonça
- Laboratório de Ecologia Aquática, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, 36036-900, Brazil
- Programa de Pós-Graduação em Biodiversidade e Conservação da Natureza, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-900, Brazil
| |
Collapse
|
11
|
Brovini EM, de Deus BCT, Vilas-Boas JA, Quadra GR, Carvalho L, Mendonça RF, Pereira RDO, Cardoso SJ. Three-bestseller pesticides in Brazil: Freshwater concentrations and potential environmental risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144754. [PMID: 33736156 DOI: 10.1016/j.scitotenv.2020.144754] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/11/2020] [Accepted: 12/22/2020] [Indexed: 05/22/2023]
Abstract
Agricultural production in Brazil is favored by weather conditions and by the large amount of available land. Therefore, currently, Brazil is the second largest exporter of agricultural products globally. Pesticides are widely used in Brazilian crops due to their high efficiency, their low cost, and permissive legislation. However, pesticides tend to reach water resources threatening organisms and the water quality. Thereby, we aimed to review the surface freshwater concentrations of the three-bestseller pesticides in Brazil (glyphosate, 2,4D, and atrazine), and discuss the results with sales, legislation, toxicity and potential risks. For that, we performed a systematic review of quantitative studies of glyphosate, atrazine, and 2,4D in Brazilian freshwater and included monitoring data provided by the Brazilian Ministry of Health in our analysis. Finally, we calculated the risk assessment for the three pesticides. Only a few scientific studies reported concentrations of either of the three-bestseller pesticides in Brazilian freshwaters. Between 2009 and 2018, an increase in the sales of 2,4D, atrazine, and glyphosate was observed. It was not possible to evaluate the relation between concentrations and sales, due to limited number of studies, lack of standard criteria for sampling, individual environmental properties, and type of pesticide. Atrazine showed a higher toxicity compared to 2,4D and glyphosate. Regarding the environmental risks, 65%, 72%, and 94% of the Brazilian states had a medium to high risk to 2,4D, atrazine, and glyphosate, respectively. Finally, 80% of the Brazilian states evaluated showed a high environmental risk considering a mixture of the three pesticides. Although most of the environmental concentrations registered were below the allowed limits according to the Brazilian legislation, they are already enough to pose a high risk for the aquatic ecosystems. We, therefore, strongly recommend a revaluation of the maximum allowed values in the national surface freshwater Brazilian legislation.
Collapse
Affiliation(s)
- Emília Marques Brovini
- Laboratório de Ecologia Aquática, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, 36036-900 Juiz de Fora, Minas Gerais, Brazil; Programa de Pós-Graduação em Biodiversidade e Conservação da Natureza, Universidade Federal de Juiz de Fora, 36036-900, Brazil.
| | - Beatriz Corrêa Thomé de Deus
- Programa de Pós-Graduação em Engenharia Civil, Universidade Federal de Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil
| | - Jéssica Andrade Vilas-Boas
- Programa de Pós-Graduação em Biodiversidade e Conservação da Natureza, Universidade Federal de Juiz de Fora, 36036-900, Brazil; Laboratório de Protozoologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, 36036-900 Juiz de Fora, Minas Gerais, Brazil
| | - Gabrielle Rabelo Quadra
- Laboratório de Ecologia Aquática, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, 36036-900 Juiz de Fora, Minas Gerais, Brazil; Programa de Pós-Graduação em Biodiversidade e Conservação da Natureza, Universidade Federal de Juiz de Fora, 36036-900, Brazil
| | - Luana Carvalho
- Laboratório de Protozoologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, 36036-900 Juiz de Fora, Minas Gerais, Brazil
| | - Raquel Fernandes Mendonça
- Laboratório de Ecologia Aquática, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, 36036-900 Juiz de Fora, Minas Gerais, Brazil; Programa de Pós-Graduação em Biodiversidade e Conservação da Natureza, Universidade Federal de Juiz de Fora, 36036-900, Brazil
| | - Renata de Oliveira Pereira
- Programa de Pós-Graduação em Engenharia Civil, Universidade Federal de Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil
| | - Simone Jaqueline Cardoso
- Laboratório de Ecologia Aquática, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, 36036-900 Juiz de Fora, Minas Gerais, Brazil; Programa de Pós-Graduação em Biodiversidade e Conservação da Natureza, Universidade Federal de Juiz de Fora, 36036-900, Brazil
| |
Collapse
|
12
|
Irfan M, Liu X, Hussain K, Mushtaq S, Cabrera J, Zhang P. The global research trend on cadmium in freshwater: a bibliometric review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 30:10.1007/s11356-021-13894-7. [PMID: 33877520 DOI: 10.1007/s11356-021-13894-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Cadmium pollution turns out to be a global environmental problem. This study conducted a quantitative and qualitative bibliometric analysis based on 9188 research items from the Web of Science Core Collection published in the last 20 years (2000-2020), presenting an in-depth statistical investigation of global freshwater cadmium research progress and developing trend. Our results demonstrated that the researchers from China, the USA, and India contribute the most to this field. The primary sources of cadmium are mining, industry, wastewater, sedimentation, and agricultural activities. In developing countries, cadmium exposure occurs mainly through the air, freshwater, and food. Fish and vegetables are the main food sources of cadmium for humans because of their high accumulation capability. Source evaluation, detection, and remediation represent the main technologies used to clean up cadmium-contaminated sites. To mitigate the risk of cadmium contamination in freshwater, biomarker-based cadmium monitoring methods and integrated policies/strategies to reduce cadmium exposure merit further concern.
Collapse
Affiliation(s)
- Muhammad Irfan
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, People's Republic of China
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, People's Republic of China.
| | - Khalid Hussain
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Suraya Mushtaq
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, People's Republic of China
| | - Jonnathan Cabrera
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, People's Republic of China
| | - Pingping Zhang
- College of Food Science and Engineering, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| |
Collapse
|