1
|
Jia C, Huang Y, Cheng Z, Zhang N, Shi T, Ma X, Zhang G, Zhang C, Hua R. Combined Transcriptomics and Metabolomics Analysis Reveals Profenofos-Induced Invisible Injury in Pakchoi ( Brassica rapa L.) through Inhibition of Carotenoid Accumulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15321-15333. [PMID: 38917998 DOI: 10.1021/acs.jafc.4c03262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Profenofos insecticide poses risks to nontarget organisms including mammals and hydrobionts, and its effects on crops are not known. This study examined the invisible toxicity of profenofos on pakchoi (Brassica rapa L.), using transcriptome and metabolome analyses. Profenofos inhibited the photosynthetic efficiency and light energy absorption by leaves and severely damaged the chloroplasts, causing the accumulation of reactive oxygen species (ROS). Metabolomic analysis confirmed that profenofos promoted the conversion of β-carotene into abscisic acid (ABA), as evidenced by the upregulation of the carotenoid biosynthesis pathway genes: zeaxanthin epoxidase (ZEP), 9-cis-epoxycarotenoid dioxygenase (NCED3), and xanthoxin dehydrogenase (XanDH). The inhibitory effects on carotenoid accumulation, photosynthesis, and increased ABA and ROS contents of the leaves led to invisible injury and stunted growth of the pakchoi plants. The findings of this study revealed the toxicological risk of profenofos to nontarget crops and provide guidance for the safe use of insecticides.
Collapse
Affiliation(s)
- Caiyi Jia
- Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, No. 130 Changjiangxilu, Hefei 230036, China
- College of Resources and Environment, Anhui Agricultural University, No. 130 Changjiangxilu, Hefei 230036, China
| | - Youkun Huang
- Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, No. 130 Changjiangxilu, Hefei 230036, China
- College of Resources and Environment, Anhui Agricultural University, No. 130 Changjiangxilu, Hefei 230036, China
| | - Zechao Cheng
- Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, No. 130 Changjiangxilu, Hefei 230036, China
- College of Resources and Environment, Anhui Agricultural University, No. 130 Changjiangxilu, Hefei 230036, China
| | - Nan Zhang
- Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, No. 130 Changjiangxilu, Hefei 230036, China
- College of Resources and Environment, Anhui Agricultural University, No. 130 Changjiangxilu, Hefei 230036, China
| | - Taozhong Shi
- Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, No. 130 Changjiangxilu, Hefei 230036, China
- College of Resources and Environment, Anhui Agricultural University, No. 130 Changjiangxilu, Hefei 230036, China
| | - Xin Ma
- Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, No. 130 Changjiangxilu, Hefei 230036, China
- College of Resources and Environment, Anhui Agricultural University, No. 130 Changjiangxilu, Hefei 230036, China
| | - Genrong Zhang
- Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, No. 130 Changjiangxilu, Hefei 230036, China
- College of Resources and Environment, Anhui Agricultural University, No. 130 Changjiangxilu, Hefei 230036, China
| | - Chao Zhang
- College of Agronomy, Anhui Agricultural University, No. 130 Changjiangxilu, Hefei 230036, P. R. China
| | - Rimao Hua
- Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, No. 130 Changjiangxilu, Hefei 230036, China
- College of Resources and Environment, Anhui Agricultural University, No. 130 Changjiangxilu, Hefei 230036, China
| |
Collapse
|
2
|
Li D, Zhou C, Wang S, Hu Z, Xie J, Pan C, Sun R. Imidacloprid-induced stress affects the growth of pepper plants by disrupting rhizosphere-plant microbial and metabolite composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165395. [PMID: 37437628 DOI: 10.1016/j.scitotenv.2023.165395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
Overusing imidacloprid (IMI) has been found to impede secondary metabolism and hinder plant growth. The impact of IMI stress on the interaction between metabolites, rhizosphere, and plant-microbe dispersion through various pathways in pepper plants has not been extensively studied. This study investigated the effects of IMI on plant signaling components, secondary metabolic pathways, and microbial communities in the rhizosphere and phyllosphere. Here, the distribution of IMI and its metabolites (6-chloronicotinic acid, IMI-desnitro, 5-hydroxy-IMI, IMI-urea, and IMI-olefin) was primarily observed in the pepper plant leaves. A rise in IMI concentration had a more significant inhibitive effect on the metabolism of pepper leaves than on pepper roots. The findings of non-target metabolomics indicated that IMI exposure primarily suppresses secondary metabolism in pepper plants, encompassing flavones, phenolic acids, and phytohormones. Notably, the IMI treatment disrupted the equilibrium between plants and microbes by decreasing the population of microorganisms such as Vicinamibacteria, Verrucomicrobiae, Gemmatimonadetes, and Gammaproteobacteria in the phyllosphere, as well as Vicinamibacteria, Gemmatimonadetes, Gammaproteobacteria, and Alphaproteobacteria in the rhizosphere of pepper plants. The study demonstrates that overexposure to IMI harms microbial composition and metabolite distribution in the rhizosphere soil and pepper seedlings, inhibiting plant growth.
Collapse
Affiliation(s)
- Dong Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou, Hainan 570228, PR China
| | - Chunran Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China Yuanmingyuan West Road 2, Beijing 100193, PR China
| | - Shuai Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou, Hainan 570228, PR China
| | - Zhan Hu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou, Hainan 570228, PR China
| | - Jia Xie
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou, Hainan 570228, PR China
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China Yuanmingyuan West Road 2, Beijing 100193, PR China.
| | - Ranfeng Sun
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou, Hainan 570228, PR China.
| |
Collapse
|
3
|
Jia Y, Kang L, Wu Y, Zhou C, Li D, Li J, Pan C. Review on Pesticide Abiotic Stress over Crop Health and Intervention by Various Biostimulants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13595-13611. [PMID: 37669447 DOI: 10.1021/acs.jafc.3c04013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Plants are essential for life on earth, and agricultural crops are a primary food source for humans. For the One Health future, crop health is crucial for safe, high-quality agricultural products and the development of future green commodities. However, the overuse of pesticides in modern agriculture raises concerns about their adverse effects on crop resistance and product quality. Recently, biostimulants, including microecological bacteria agents and nanoparticles, have garnered worldwide interest for their ability to sustain plant health and enhance crop resistance. This review analyzed the effects and mechanisms of pesticide stress on crop health. It also investigated the regulation of biostimulants on crop health and the multiomics mechanism, combining research on nanoselenium activating various crop health aspects conducted by the authors' research group. The paper helps readers understand the impact of pesticides on crop health and the positive influence of various biostimulants, especially nanomaterials and small molecules, on crop health.
Collapse
Affiliation(s)
- Yujiao Jia
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, P. R. China
| | - Lu Kang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, P. R. China
- Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, P. R. China
| | - Yangliu Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, P. R. China
| | - Chunran Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, P. R. China
| | - Dong Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, Hainan 570228, P. R. China
| | - Jiaqi Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
4
|
Zhou C, Zhang J, Miao P, Dong Q, Lin Y, Li D, Pan C. Novel Finding on How Melatonin and Nanoselenium Alleviate 2,4-D Butylate Stress in Wheat Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12943-12957. [PMID: 37622422 DOI: 10.1021/acs.jafc.3c03109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Nanoselenium (nano-Se) or melatonin (MT) foliar spray reduces pesticide stress by stimulating plant secondary metabolism and antioxidant capacity. However, the effects of nano-Se and MT biofortification on the interaction between plant secondary metabolic pathways and rhizosphere microbes in mitigating 2,4-D butyrate stress remain unknown. Compared to nano-Se or MT treatment alone, nano-Se and MT combined application increased the antioxidant enzyme activities and decreased the MDA (25.0%) and H2O2 (39.3%) contents with 2,4-D butylate exposure. Importantly, they enhance the soil enzymes (S-FDA by 53.1%), allelochemicals (luteolin by 164.1% and tricin by 147.3%), as well as plant secondary metabolites (JA by 63.3% and 193.3% in leaves and roots) levels. It also improved the beneficial microbial abundance of Comamonadaceae, Sphingomonadaceae, and Rhodobacteraceae in the rhizosphere soil. In conclusion, nano-Se and MT alleviate 2,4-D butylate stress in wheat plants by enabling the interaction between rhizosphere microorganisms, allelopathic substances, and secondary metabolites.
Collapse
Affiliation(s)
- Chunran Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, P. R. China
| | - Jingbang Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, P. R. China
| | - Peijuan Miao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, P. R. China
| | - Qinyong Dong
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, P. R. China
| | - Yongxi Lin
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, P. R. China
| | - Dong Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, Hainan 570228, P. R. China
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, P. R. China
| |
Collapse
|
5
|
Zhou C, Li D, Shi X, Zhang J, An Q, Wu Y, Kang L, Li JQ, Pan C. Nanoselenium Enhanced Wheat Resistance to Aphids by Regulating Biosynthesis of DIMBOA and Volatile Components. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14103-14114. [PMID: 34784717 DOI: 10.1021/acs.jafc.1c05617] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The mechanism of nanoselenium (nano-Se) improving the resistance induced by plant components to aphids is unclear. In this study, foliar sprayed nano-Se (5.0 mg/L) could significantly reduce the Sitobion avenae number (36%) compared with that in the control. Foliar application of nano-Se enhanced the antioxidant capacity by reducing malondialdehyde (MDA) and increasing GSH-Px, CAT, GSH, Pro, and VE concentrations in wheat seedlings. The phenylpropane pathway was activated by nano-Se biofortification, which increased apigenin and caffeic acid concentrations. The high-level expression of the related genes (TaBx1A, TaBx3A, TaBx4A, TaASMT2, and TaCOMT) induced the promotion of melatonin (88.6%) and 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) (64.3%). Different ratios of the secondary metabolites to nano-Se were taken to examine the effects on resistance of wheat to S. avenae. The results revealed that the combination of nano-Se and melatonin could achieve the best overall performance by reducing the S. avenae number by 52.2%. The study suggests that the coordinated applications of nano-Se and melatonin could more effectively improve the wheat resistance to aphids via the promotion of volatile organic compound synthesis and modulation in phenylpropane and indole metabolism pathways.
Collapse
Affiliation(s)
- Chunran Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing 100193, P. R. China
| | - Dong Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing 100193, P. R. China
| | - Xinlei Shi
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing 100193, P. R. China
| | - Jingbang Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing 100193, P. R. China
| | - Quanshun An
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing 100193, P. R. China
| | - Yangliu Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing 100193, P. R. China
| | - Lu Kang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing 100193, P. R. China
| | - Jia-Qi Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing 100193, P. R. China
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing 100193, P. R. China
| |
Collapse
|
6
|
Li D, Zhou C, Zou N, Wu Y, Zhang J, An Q, Li JQ, Pan C. Nanoselenium foliar application enhances biosynthesis of tea leaves in metabolic cycles and associated responsive pathways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116503. [PMID: 33486255 DOI: 10.1016/j.envpol.2021.116503] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/26/2020] [Accepted: 01/11/2021] [Indexed: 05/05/2023]
Abstract
An emerging stress of pesticides in plant and soil is closely watched as it affects crop antioxidant systems, nutritional quality, and flavor. Although selenium (Se) can enhance the resistance of plants, the protective mechanism of nanoselenium is still not known under the long-term pesticide stress in tea trees. In this study, we investigated the potential effects of foliar application of nanoselenium for a two-year field experiment on tea plants under pesticide-induced oxidative stress. Compared to control, nano-Se (10 mg/L) markedly enhanced the protein, soluble sugar, carotenoid, tea polyphenols, and catechins contents. High levels of theanine, glutamic acid, proline, and arginine were found to be induced most likely by adjusting the GS-GOGAT cycle. Se-supplementation may promote tea leaves' secondary metabolism, thus increasing the accumulation of total phenols and flavonoids (apigenin, kaempferol, quercetin, myricetin, and rutin). It also minimized the accumulation of malondialdehyde, hydrogen peroxide, and superoxide anion by activating the antioxidants enzymes including in the AsA-GSH cycle. Selenium-rich tea also showed better fragrance and flavor. In summary, nano-Se can ameliorate the nutrients quality and abiotic stresses resistance of crops.
Collapse
Affiliation(s)
- Dong Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Chunran Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Nan Zou
- College of Plant Protection, Shandong Agricultural University, Shandong, 271000, China
| | - Yangliu Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Jingbang Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Quanshun An
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Jia-Qi Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
7
|
Qi Z, Wang Q, Song S, Wang H, Tan M. Enhanced Cytotoxicity of Cadmium by a Sulfated Polysaccharide from Abalone. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14996-15004. [PMID: 33270443 DOI: 10.1021/acs.jafc.0c06399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Consumption of seafood is a common route of cadmium ion (Cd2+) exposure to consumers. The seafood matrices may alter the toxicity profile of Cd2+ due to the interaction between Cd2+ and biomacromolecules in seafood. In this study, enhanced cytotoxicity of Cd2+ was found in the presence of an abalone gonad sulfated polysaccharide (AGSP) and the mechanism was investigated at a metabolic level. The formation of the AGSP-Cd2+ complex was demonstrated by isothermal titration calorimetry. The level of reactive oxygen species (ROS) increased and mitochondrial membrane potential reduced upon exposure to the AGSP-Cd2+ complex as compared with those of Cd2+ exposure. The decreased cell viability after incubation with the AGSP-Cd2+ complex also suggested enhanced Cd2+ toxicity induced by AGSP. The metabolomics and lipidomics analysis revealed that, compared with the Cd2+ group, the AGSP-Cd2+ downregulated the phospholipid metabolism and resulted in more serious damage in the cellular membrane. The lipid metabolism disorder, in turn, amplified the generation of ROS, leading to a decrease in cell viability. These results provided new evidence of the enhanced Cd2+ toxicity upon interaction with seafood polysaccharides, and much attention should be paid to the effect of food ingredients on heavy metal ion toxicity.
Collapse
Affiliation(s)
- Zihe Qi
- School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China
- Engineering Research Center of Seafood of Ministry of Education of China, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Qinghong Wang
- School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China
- Engineering Research Center of Seafood of Ministry of Education of China, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Shuang Song
- School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China
- Engineering Research Center of Seafood of Ministry of Education of China, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Haitao Wang
- School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China
- Engineering Research Center of Seafood of Ministry of Education of China, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Mingqian Tan
- School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China
- Engineering Research Center of Seafood of Ministry of Education of China, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| |
Collapse
|