1
|
He Y, Hu C, Zhang X. GW1929 (an agonist of PPARγ) inhibits excessive production of reactive oxygen species in cisplatin-stimulated renal tubular epithelial cells, hampers cell apoptosis, and ameliorates renal injury. J Histotechnol 2024; 47:68-79. [PMID: 38018414 DOI: 10.1080/01478885.2023.2286692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023]
Abstract
Cisplatin-induced nephrotoxicity has long been explored for development of preventative and therapeutic drugs. The current investigation focused on the renal protective effect of GW1929, an agonist for peroxisome proliferator-activated receptors gamma (PPARγ), on cisplatin-induced kidney injury. HK2 cells treated with 20 μM cisplatin and C57BL/6 mice injected with 20 mg/kg cisplatin were used as the cell model and animal model for acute kidney injury. HK2 cell viability after cisplatin or GW1929 (0-80 μM) treatment was tested using methyl thiazolyl tetrazolium assays. Flow cytometry analysis and TUNEL assays were used to measure cell apoptosis. Intracellular reactive oxygen species (ROS) level was measured through fluorescence intensities. Levels of blood urea nitrogen (BUN) and serum creatinine (SCr) were measured to evaluate the renal function of mice. For renal morphology observation and cell apoptosis assessment in vivo, hematoxylin-eosin staining and TUNEL assays were conducted. The concentrations of oxidative stress markers in renal samples were measured using colorimetric tests. It was found that GW1929 dose-dependently enhanced protein levels of PPARγ, PGC-1α and TFEB in HK2 cells. Meanwhile, intracellular ROS overproduction, the decrease in cell viability and excessive cell apoptosis mediated by cisplatin were reversed by GW1929. For in vivo experiments, GW1929 notably attenuated cisplatin-stimulated nephrotoxicity and oxidative stress while reducing BUN and Scr levels in cisplatin-challenged model mice. Moreover, GW1929 significantly dampened renal cell apoptosis in vivo. GW1929 mitigates renal tubular epithelial cell injury and renal damage by inhibiting oxidative stress and renal cell apoptosis.
Collapse
Affiliation(s)
- Yong He
- Department of Nephrology, The Fifth Hospital of Wuhan, Wuhan, China
| | - Caihong Hu
- Department of Clinical Internal Medicine, Wuhan Hospital of China University of Geoscience, Wuhan, China
| | - Xin Zhang
- Department of Nephrology, The Fifth Hospital of Wuhan, Wuhan, China
| |
Collapse
|
2
|
Kamal MM, El-Abhar HS, Abdallah DM, Ahmed KA, Aly NES, Rabie MA. Mirabegron, dependent on β3-adrenergic receptor, alleviates mercuric chloride-induced kidney injury by reversing the impact on the inflammatory network, M1/M2 macrophages, and claudin-2. Int Immunopharmacol 2024; 126:111289. [PMID: 38016347 DOI: 10.1016/j.intimp.2023.111289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
The β3-adrenergic receptor (β3-AR) agonism mirabegron is used to treat overactive urinary bladder syndrome; however, its role against acute kidney injury (AKI) is not unveiled, hence, we aim to repurpose mirabegron in the treatment of mercuric chloride (HgCl2)-induced AKI. Rats were allocated into normal, normal + mirabegron, HgCl2 untreated, HgCl2 + mirabegron, and HgCl2 + the β3-AR blocker SR59230A + mirabegron. The latter increased the mRNA of β3-AR and miR-127 besides downregulating NF-κB p65 protein expression and the contents of its downstream targets iNOS, IL-4, -13, and -17 but increased that of IL-10 to attest its anti-inflammatory capacity. Besides, mirabegron downregulated the protein expression of STAT-6, PI3K, and ERK1/2, the downstream targets of the above cytokines. Additionally, it enhanced the transcription factor PPAR-α but turned off the harmful hub HNF-4α/HNF-1α and the lipid peroxide marker MDA. Mirabegron also downregulated the CD-163 protein expression, which besides the inhibited correlated cytokines of M1 (NF-κB p65, iNOS, IL-17) and M2 (IL-4, IL-13, CD163, STAT6, ERK1/2), inactivated the macrophage phenotypes. The crosstalk between these parameters was echoed in the maintenance of claudin-2, kidney function-related early (cystatin-C, KIM-1, NGAL), and late (creatinine, BUN) injury markers, besides recovering the microscopic structures. Nonetheless, the pre-administration of SR59230A has nullified the beneficial effects of mirabegron on the aforementioned parameters. Here we verified that mirabegron can berepurposedto treat HgCl2-induced AKI by activating the β3-AR. Mirabegron signified its effect by inhibiting inflammation, oxidative stress, and the activated M1/M2 macrophages, events that preserved the proximal tubular tight junction claudin-2 via the intersection of several trajectories.
Collapse
Affiliation(s)
- Mahmoud M Kamal
- Research Institute of Medical Entomology, General Organization for Teaching Hospitals and Institutes, Cairo, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology, Toxicology, and Biochemistry, Faculty of Pharmacy, Future University in Egypt (FUE), 11835 Cairo, Egypt
| | - Dalaal M Abdallah
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt.
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Nour Eldin S Aly
- Research Institute of Medical Entomology, General Organization for Teaching Hospitals and Institutes, Cairo, Egypt
| | - Mostafa A Rabie
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt; Faculty of Pharmacy and Drug Technology, Egyptian Chinese University (ECU), 19346, Egypt
| |
Collapse
|
3
|
Saleem M, Sens DA, Somji S, Pierce D, Wang Y, Leopold A, Haque ME, Garrett SH. Contamination Assessment and Potential Human Health Risks of Heavy Metals in Urban Soils from Grand Forks, North Dakota, USA. TOXICS 2023; 11:132. [PMID: 36851006 PMCID: PMC9958806 DOI: 10.3390/toxics11020132] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Heavy metal (HM) pollution of soil is an increasingly serious problem worldwide. The current study assessed the metal levels and ecological and human health risk associated with HMs in Grand Forks urban soils. A total 40 composite surface soil samples were investigated for Mn, Fe, Co, Ni, Cu, Zn, As, Pb, Hg, Cr, Cd and Tl using microwave-assisted HNO3-HCl acid digestion and inductively coupled plasma mass spectrometry (ICP-MS) analysis. The enrichment factor (EF), contamination factor (CF), geoaccumulation index (Igeo), ecological risk and potential ecological risk index were used for ecological risk assessment. The park soils revealed the following decreasing trend for metal levels: Fe > Mn > Zn > Cr > Ni > Cu > Pb > As > Co > Cd > Tl > Hg. Based on mean levels, all the studied HMs except As and Cr were lower than guideline limits set by international agencies. Principal component analysis (PCA) indicated that Mn, Fe, Co, Ni, Cu, Zn, As, Cd, Pb, Cr and Tl may originate from natural sources, while Hg, Pb, As and Cd may come from anthropogenic/mixed sources. The Igeo results showed that the soil was moderately polluted by As and Cd and, based on EF results, As and Cd exhibited significant enrichment. The contamination factor analysis revealed that Zn and Pb showed moderate contamination, Hg exhibited low to moderate contamination and As and Cd showed high contamination in the soil. Comparatively higher risk was noted for children over adults and, overall, As was the major contributor (>50%), followed by Cr (>13%), in the non-carcinogenic risk assessment. Carcinogenic risk assessment revealed that As and Cr pose significant risks to the populations associated with this urban soil. Lastly, this study showed that the soil was moderately contaminated by As, Cd, Pb and Hg and should be regularly monitored for metal contamination.
Collapse
Affiliation(s)
- Muhammad Saleem
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Donald A. Sens
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Seema Somji
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - David Pierce
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, USA
| | - Yuqiang Wang
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, USA
| | - August Leopold
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, USA
| | - Mohammad Ehsanul Haque
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Scott H. Garrett
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| |
Collapse
|
4
|
Shi X, Zhuang L, Zhai Z, He Y, Sun E. Polydatin protects against gouty nephropathy by inhibiting renal tubular cell pyroptosis. Int J Rheum Dis 2023; 26:116-123. [PMID: 36328529 DOI: 10.1111/1756-185x.14463] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To investigate the protective effect and mechanism of polydatin (PD) against gouty nephropathy (GN) in mice. METHODS Twenty-four mice were randomly divided into three groups: the control group (no treatment), the GN group (300 mg/kg hypoxanthine + 150 mg/kg potassium oxonate), and the GN + PD group (300 mg/kg hypoxanthine + 150 mg/kg potassium oxonate + 50 mg/kg PD). Histological changes in the kidneys and the levels of uric acid (UA), blood urea nitrogen (BUN), and serum creatinine (SCr) in the sera were measured. In addition, the expression of gasdermin D (GSDMD) protein in renal tubular epithelial cells, and the expression of NOD-like receptor protein 3 (NLRP3), GSDMD, and caspase-1 proteins in the kidney tissues were determined by immunohistochemistry, immunofluorescence, and Western blot. RESULTS In vitro, PD inhibited the expression of NLRP3, caspase-1, and GSDMD and protected the renal tubular epithelial cells from pyroptosis. In vivo, PD treatment significantly ameliorated the pathological changes in kidney tissue, and reversed the decrease of serum UA and BUN in GN model mice. The expression of NLRP3, GSDMD, and caspase-1 proteins was also decreased in the PD-treated GN mice. CONCLUSION The results suggest that PD has a protective effect on mice with GN, which may be related to the downregulation of NLRP3, GSDMD, and caspase-1 proteins and the inhibition of renal tubular epithelial cells pyroptosis.
Collapse
Affiliation(s)
- Xingliang Shi
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Institute of Clinical Immunology, Academy of Orthopedics Guangdong Province, Guangzhou, China
| | - Lili Zhuang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Institute of Clinical Immunology, Academy of Orthopedics Guangdong Province, Guangzhou, China
| | - Zeqing Zhai
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Institute of Clinical Immunology, Academy of Orthopedics Guangdong Province, Guangzhou, China
| | - Yi He
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Institute of Clinical Immunology, Academy of Orthopedics Guangdong Province, Guangzhou, China
| | - Erwei Sun
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Institute of Clinical Immunology, Academy of Orthopedics Guangdong Province, Guangzhou, China
| |
Collapse
|
5
|
Wang Q, Duan X, Li S, Lai H, Cheng W, Ao J, Zhang J, Duan C. Active Compounds Screening and Hepatoprotective Mechanism of Shuganning Injection Based on Network Pharmacology and Experimental Validation. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221124756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective: The study aimed to analyze the core active compounds and the potential mechanism of Shuganning injection (SGNI) through network pharmacology with biological experiments. Methods: Active compounds and targets of SGNI were screened from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and Targetnet database, whereas the liver disease-related targets were identified through the Genecards and Online Mendelian Inheritance in Man databases. The “compound-target” and “protein-protein interaction” networks construction, core target identification, and pathway enrichment were then performed. Finally, the exploration of the mechanism of action for SGNI against acetaminophen (APAP)-induced liver injury in the HepaRG cells and validation of three identified protein targets was also carried out through western blot assay, including tumor protein p53 (p53, TP53), transcription factor Jun (Jun), and Caspase 3 (CASP3). Results: The result showed that a total of 312 active compounds of SGNI and 408 liver disease-related targets, as well as 131 core targets were revealed through databases, such as prostaglandin G/H synthase 1, prostaglandin G/H synthase 2, and nuclear factor NF-kappa B (NF-kB) p65 subunit (RELA). The core targets of SGNI were involved in regulating hepatitis B signaling pathway, NF-kB signaling pathway, Toll-like receptor signaling pathway, and tumor necrosis factor (TNF) signaling pathway. Moreover, results of molecular docking in this study indicated that chlorogenic acid, geniposide, baicalin, indirubin, and ganoderic acid A could act on RELA, JUN, TP53, TNF, CASP3, Caspase 8 (CASP8) and nuclear factor NF-kB p105 subunit (NFKB1). Similarly, results of western blot revealed that SGNI reduced the expression of p53, Jun, and Caspase 3 proteins in HepaRG cells as compared with the APAP group ( P < 0.01 or P < 0.05). Conclusion: The present study verified the therapeutic effects and mechanism of SGNI on liver diseases and pointed out new directions for further research.
Collapse
Affiliation(s)
- Qiyi Wang
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiaotong Duan
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi, Guizhou, China
| | - Shan Li
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi, Guizhou, China
| | - Huaqing Lai
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Weina Cheng
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jingwen Ao
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jianyong Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Cancan Duan
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
6
|
Rashid S, Shah IA, Supe Tulcan RX, Rashid W, Sillanpaa M. Contamination, exposure, and health risk assessment of Hg in Pakistan: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 301:118995. [PMID: 35189298 DOI: 10.1016/j.envpol.2022.118995] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Mercury is a highly toxic and highly mobile heavy metal. It has been regarded as more toxic than other nonessential and toxic nonradioactive heavy metals. Moreover, it has a high tendency of bioaccumulation and biomagnification in the ecosystem. This study aimed to assess the environmental and health risks related to Hg. Seventy studies related to Hg in environmental media, aquatic biota, and food stuffs across Pakistan were reviewed, and their concentrations were used for ecological and human health risk assessments. High concentrations of Hg were reported in the environment, with maximum concentrations of 72 mg L-1, 144 mg kg-1, 887 mg kg-1, and 49,807 ng m-3 in surface water, surface soil, surface sediments, and urban atmosphere, respectively. The possible non-carcinogenic health risk (hazard quotient) of Hg was assessed in soil, water, and fish. High risks were calculated for seafood and vegetable consumption, while low risks were estimated for soils and groundwater ingestion and exposure. Overall, children showed higher risks than adults. Last, the risk quotient analysis (RQ) revealed significant risks for aquatic species. RQs showed that multiple species, especially those with smaller resilience, could face long-term detrimental impacts. High, medium, and low risks were calculated from 66.66, 16.17, and 16.17% of the reported Hg concentrations.
Collapse
Affiliation(s)
- Sajid Rashid
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, 100875, China
| | - Izaz Ali Shah
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, 100875, China
| | - Roberto Xavier Supe Tulcan
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Wajid Rashid
- Department of Environmental and Conservation Sciences, University of Swat, 19130, Pakistan.
| | - Mika Sillanpaa
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa; Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia; Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; International Research Centre of Nanotechnology for Himalayan Sustainability, Shoolini University, Solan, 173212, Himachal Pradesh, India
| |
Collapse
|
7
|
Gao PC, Chen XW, Chu JH, Li LX, Wang ZY, Fan RF. Antagonistic effect of selenium on mercuric chloride in the central immune organs of chickens: The role of microRNA-183/135b-FOXO1/TXNIP/NLRP3 inflammasome axis. ENVIRONMENTAL TOXICOLOGY 2022; 37:1047-1057. [PMID: 34995020 DOI: 10.1002/tox.23463] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/25/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Mercury (Hg) is a persistent environmental and industrial pollutant that accumulated in the body and induces oxidative stress and inflammation damage. Selenium (Se) has been reported to antagonize immune organs damage caused by heavy metals. Here, we aimed to investigate the prevent effect of Se on mercuric chloride (HgCl2 )-induced thymus and bursa of Fabricius (BF) damage in chickens. The results showed that HgCl2 caused immunosuppression by reducing the relative weight, cortical area of the thymus and BF, and the number of peripheral blood lymphocytes. Meanwhile, HgCl2 induced oxidative stress and imbalance in cytokines expression in the thymus and BF. Further, we found that thioredoxin-interacting protein (TXNIP) and the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome mediated HgCl2 -induced oxidative stress and inflammation. Mechanically, the targeting and inhibitory effect of microRNA (miR)-135b/183 on forkhead box O1 (FOXO1) were an upstream event for HgCl2 -activated TXNIP/NLRP3 inflammasome pathway. Most importantly, Se effectively attenuated the aforementioned damage in the thymus and BF caused by HgCl2 and inhibited the TXNIP/NLRP3 inflammasome pathway by reversing the expression of FOXO1 through inhibiting miR-135b/183. In conclusion, the miR-135b/183-FOXO1/TXNIP/NLRP3 inflammasome axis might be a novel mechanism for Se to antagonize HgCl2 -induced oxidative stress and inflammation in the central immune organs of chickens.
Collapse
Affiliation(s)
- Pei-Chao Gao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Xue-Wei Chen
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Jia-Hong Chu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Lan-Xin Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Zhen-Yong Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Rui-Feng Fan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China
| |
Collapse
|
8
|
Han B, Lv Z, Han X, Li S, Han B, Yang Q, Wang X, Wu P, Li J, Deng N, Zhang Z. Harmful Effects of Inorganic Mercury Exposure on Kidney Cells: Mitochondrial Dynamics Disorder and Excessive Oxidative Stress. Biol Trace Elem Res 2022; 200:1591-1597. [PMID: 34060062 DOI: 10.1007/s12011-021-02766-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022]
Abstract
Mercury is widely used in industry and has caused global environmental pollution. Inorganic mercury accumulates in the body causes damage to many organs, and the kidney is the most susceptible to the toxic effects of mercury. However, the underlying specific molecular mechanism of renal injury induced by inorganic mercury remains unclear at the cellular level. Therefore, in order to understand its molecular mechanism, we used in vitro method. We established experimental models by treating human embryonic kidney epithelial cell line (HEK-293 T) cells with HgCl2 (0, 1.25, 5, and 20 µmol/L). We found that HgCl2 can lead to a decrease in cell viability and oxidative stress of HEK-293 T, which may be mediated by upregulation mitochondrial fission. In addition, HgCl2 exposure resulted in the mitochondrial disorder of HEK-293 T cells, which was mediated by downregulating the expression of silent information regulator two ortholog 1 (Sirt1)/peroxisome proliferator-activated receptor coactivator-1α (PGC-1α) signaling pathway. In summary, our results suggest that HgCl2 induces HEK-293 T cell toxicity through promoting Sirt1/PGC-1α axis-mediated mitochondrial dynamics disorder and oxidative stress. Sirt1/PGC-1α may be an appealing pharmaceutical target curing HgCl2-induced kidney injury.
Collapse
Affiliation(s)
- Biqi Han
- College of Veterinary Medicine, Northeast Agricultural University, No. 600 Changjiang Road, Harbin, 150030, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, 600 Changjiang Road, Harbin, 150030, China
| | - Zhanjun Lv
- College of Veterinary Medicine, Northeast Agricultural University, No. 600 Changjiang Road, Harbin, 150030, China
| | - Xuemin Han
- Center for Animal Disease Control and Prevention of Chifeng, Chifeng, 024000, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, No. 600 Changjiang Road, Harbin, 150030, China
| | - Bing Han
- College of Veterinary Medicine, Northeast Agricultural University, No. 600 Changjiang Road, Harbin, 150030, China
| | - Qingyue Yang
- College of Veterinary Medicine, Northeast Agricultural University, No. 600 Changjiang Road, Harbin, 150030, China
| | - Xiaoqiao Wang
- College of Veterinary Medicine, Northeast Agricultural University, No. 600 Changjiang Road, Harbin, 150030, China
| | - Pengfei Wu
- College of Veterinary Medicine, Northeast Agricultural University, No. 600 Changjiang Road, Harbin, 150030, China
| | - Jiayi Li
- College of Veterinary Medicine, Northeast Agricultural University, No. 600 Changjiang Road, Harbin, 150030, China
| | - Ning Deng
- College of Veterinary Medicine, Northeast Agricultural University, No. 600 Changjiang Road, Harbin, 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, No. 600 Changjiang Road, Harbin, 150030, China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, 600 Changjiang Road, Harbin, 150030, China.
| |
Collapse
|
9
|
Luan ZL, Zhang C, Ming WH, Huang YZ, Guan YF, Zhang XY. Nuclear receptors in renal health and disease. EBioMedicine 2022; 76:103855. [PMID: 35123268 PMCID: PMC8819107 DOI: 10.1016/j.ebiom.2022.103855] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/31/2021] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
As a major social and economic burden for the healthcare system, kidney diseases contribute to the constant increase of worldwide deaths. A deeper understanding of the underlying mechanisms governing the etiology, development and progression of kidney diseases may help to identify potential therapeutic targets. As a superfamily of ligand-dependent transcription factors, nuclear receptors (NRs) are critical for the maintenance of normal renal function and their dysfunction is associated with a variety of kidney diseases. Increasing evidence suggests that ligands for NRs protect patients from renal ischemia/reperfusion (I/R) injury, drug-induced acute kidney injury (AKI), diabetic nephropathy (DN), renal fibrosis and kidney cancers. In the past decade, some breakthroughs have been made for the translation of NR ligands into clinical use. This review summarizes the current understanding of several important NRs in renal physiology and pathophysiology and discusses recent findings and applications of NR ligands in the management of kidney diseases.
Collapse
Affiliation(s)
- Zhi-Lin Luan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China; Dalian Key Laboratory for Nuclear Receptors in Major Metabolic Diseases, Dalian, Liaoning 116044, China
| | - Cong Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Wen-Hua Ming
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Ying-Zhi Huang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - You-Fei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China; Dalian Key Laboratory for Nuclear Receptors in Major Metabolic Diseases, Dalian, Liaoning 116044, China.
| | - Xiao-Yan Zhang
- Health Science Center, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
10
|
He C, Zhao X, Lei Y, Nie J, Lu X, Song J, Wang L, Li H, Liu F, Zhang Y, Niu Q. Whole-transcriptome analysis of aluminum-exposed rat hippocampus and identification of ceRNA networks to investigate neurotoxicity of Al. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:1401-1417. [PMID: 34900398 PMCID: PMC8636738 DOI: 10.1016/j.omtn.2021.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022]
Abstract
Aluminum is a known neurotoxin that can induce Aβ deposition and abnormal phosphorylation of tau protein, leading to Alzheimer disease (AD)-like damages such as neuronal damage and decreased learning and memory functions. In this study, we constructed a rat model of subchronic aluminum maltol exposure, and the whole-transcriptome sequencing was performed on the hippocampus of the control group and the middle-dose group. A total of 167 miRNAs, 37 lncRNAs, 256 mRNAs, and 64 circRNAs expression changed. The Kyoto Encyclopedia of Genes and Genomes showed that PI3K/AKT pathway was the most enriched pathway of DEGs, and IRS1 was the core molecule in the PPI network. circRNA/lncRNA-miRNA-mRNA networks of all DEGs, DEGs in the PI3K/AKT pathway, and IRS1 were constructed by Cytoscape. Molecular experiment results showed that aluminum inhibited the IRS1/PI3K/AKT pathway and increased the content of Aβ and tau. In addition, we also constructed an AAV intervention rat model, proving that inhibition of miR-96-5p expression might resist aluminum-induced injury by upregulating expression of IRS1. In general, these results suggest that the ceRNA networks are involved in the neurotoxic process of aluminum, providing a new strategy for studying the toxicity mechanism of aluminum and finding biological targets for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Chanting He
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
- Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi 030001, China
- Key Lab of Cellular Physiology of Education Ministry, Shanxi Medical University, Taiyuan, Shanxi 030001, China
- Department of Anatomy, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaoyan Zhao
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yang Lei
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Jisheng Nie
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaoting Lu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Jing Song
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Linping Wang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Huan Li
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Fangqu Liu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yidan Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
- Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi 030001, China
- Key Lab of Cellular Physiology of Education Ministry, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| |
Collapse
|
11
|
Zhou Y, Zhao X, Hu W, Ruan F, He C, Huang J, Zuo Z. Acute and subacute oral toxicity of propylene glycol enantiomers in mice and the underlying nephrotoxic mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118050. [PMID: 34461418 DOI: 10.1016/j.envpol.2021.118050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Propylene glycol (PG; 1,2-propanediol) has been commonly used as a food additive and vehicle in pharmaceutical preparations. PG can form rectus (R-) enantiomers and sinister (S-) enantiomers. Herein, Kunming mice were used as the animal model to evaluate the acute and subacute oral toxicity of R-PG, S-PG and RS-PG (1:1 racemic mixture of R-PG and S-PG). The median lethal doses of R-PG, S-PG and RS-PG administered by oral gavage to mice were 22.81 g/kg, 26.62 g/kg and 24.92 g/kg, respectively. In the 28-day oral subacute toxicity study, the body weight, organ weights, serum biochemical, and renal histology were examined. There was no difference in subacute toxicity among R-PG, S-PG and RS-PG. The administration of 1 and 5 g/kg/day PG for 28 days caused nephrotoxicity. The kidney somatic index and levels of blood urea nitrogen exhibited a significant increase. Moreover, the activities of superoxide dismutase, catalase, and glutathione peroxidase significantly decreased after the treatment with PG. The levels of malondialdehyde, tumor necrosis factor α, interleukin 1β, and interleukin 6 significantly increased in the kidney. The results show that the nephrotoxic effects of PG are induced by oxidative stress, and the activation of the inflammatory response is mediated by the NF-κB signaling pathway. Together, these findings provide information on R-PG, S-PG and RS-PG treatments for the risk assessment of toxicity and effects on human health.
Collapse
Affiliation(s)
- Yixi Zhou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xijing Zhao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Weiping Hu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Fengkai Ruan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jiyi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
12
|
Gao PC, Chu JH, Chen XW, Li LX, Fan RF. Selenium alleviates mercury chloride-induced liver injury by regulating mitochondrial dynamics to inhibit the crosstalk between energy metabolism disorder and NF-κB/NLRP3 inflammasome-mediated inflammation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:113018. [PMID: 34837874 DOI: 10.1016/j.ecoenv.2021.113018] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Mercury (Hg) is a persistent heavy metal contaminant with definite hepatotoxicity. Selenium (Se) has been shown to alleviate liver damage induced by heavy metals. Therefore, the present study aimed to explore the mechanism of the antagonistic effect of Se on mercury chloride (HgCl2)-induced hepatotoxicity in chickens. Firstly, we confirmed that Se alleviated HgCl2-induced liver injury through histopathological observation and liver function analyzation. The results also showed that Se prevented HgCl2-induced liver lipid accumulation and dyslipidemia by regulating the gene expression related to lipid as well as glucose metabolism. Moreover, Se blocked the nuclear factor kappa B (NF-κB)/NLR family pyrin domain containing 3 (NLRP3) inflammasome signaling pathway, which was the key to alleviate the inflammation caused by HgCl2. Mechanically, Se inhibited immoderate mitochondrial division, fusion, and biogenesis caused by HgCl2, and also improved mitochondrial respiration, which were essential for preventing energy metabolism disorder and inflammation. In conclusion, our results suggested that Se inhibited energy metabolism disorder and inflammation by regulating mitochondrial dynamics, thereby alleviating HgCl2-induced liver injury in chickens. These results are expected to provide potential intervention and therapeutic targets for diseases caused by inorganic mercury poisoning.
Collapse
Affiliation(s)
- Pei-Chao Gao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Jia-Hong Chu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Xue-Wei Chen
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Lan-Xin Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Rui-Feng Fan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China.
| |
Collapse
|
13
|
Xu X, Yu Z, Han B, Li S, Sun Y, Du Y, Wang Z, Gao D, Zhang Z. Luteolin alleviates inorganic mercury-induced kidney injury via activation of the AMPK/mTOR autophagy pathway. J Inorg Biochem 2021; 224:111583. [PMID: 34428638 DOI: 10.1016/j.jinorgbio.2021.111583] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/14/2021] [Accepted: 08/15/2021] [Indexed: 12/11/2022]
Abstract
Inorganic mercury is a ubiquitous toxic pollutant in the environment. Exposure to inorganic mercury can cause various poisonous effects, including kidney injury. However, no safe and effective treatment for kidney injury caused by inorganic mercury has been found and used. Luteolin (Lut) possesses various beneficial bioactivities. Here, our research aims to investigate the protective effect of Lut on renal injury induced by mercury chloride (HgCl2) and identify the underlying autophagy regulation mechanism. Twenty-eight 6-8 weeks old Wistar rats were randomly assigned to four groups: control, HgCl2, HgCl2 + Lut, and Lut. We performed the determination of oxidative stress and renal function indicators, histopathological analysis, the terminal deoxynucleotidyl transferase-mediated deoxyuracil nucleoside triphosphate nick-end labeling assay to detect apoptosis, western blot detection of autophagy-related protein levels, and atomic absorption method to detect mercury content. Our results showed that Lut ameliorated oxidative stress, apoptosis and restored the autophagy and renal function caused by HgCl2 in rats. Concretely, the level of nuclear factor E2-related factor, renal adenosine monophosphate-activated protein kinase (AMPK) expression, and autophagy regulation-related proteins levels were down-regulated, and the mammalian target of rapamycin (mTOR) expression was up-regulated by HgCl2 treatment. However, Lut treatment reversed the above changes. Notably, Lut reduced the accumulation of HgCl2 in the kidneys and promoted the excretion of HgCl2 through urine. Collectively, our results demonstrate that Lut can attenuate inorganic mercury-induced renal injury via activating the AMPK/mTOR autophagy pathway. Therefore, Lut may be a potential biological medicine to protect against renal damage induced by HgCl2.
Collapse
Affiliation(s)
- Xinyue Xu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Zhongxian Yu
- Pharmacy Department, The Affiliated Hospital to Changchun University of Chinese Medicine, 1478 Gongnong Road, Hongqi Street, Chaoyang District, Changchun City, Jilin Province 130021, China
| | - Biqi Han
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Yingshuo Sun
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Yu Du
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Ziwei Wang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Di Gao
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, 600 Changjiang Road, Harbin 150030, China.
| |
Collapse
|